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Abstract visual representation of the environment. The closest view

gives the position of the robot.
We present an approach to view-based mobile robot

localization using a X-dlits image based rendering (IBR)

method for creating novel views from a set of input images.

The input images are acquired by a non-central catadiop-

tric sensor mounted on a robot moving on a straight line.
We propose to use the IBR for column ordering only, where
occlusions in the horizontal direction are modeled and the
sensor can be non-central. For the column matching be-
tween a query view at an unknown position and virtual
views created by I BR, we use correlation of columns.
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1. Introduction

Robot localization is an important task when the robot
has to find its position in a known environment using some
representation of the environment. There are two localiza-
tion scenarios; the ‘kidnaped’ robot problem and incremen-
tal localization. The ‘kidnaped’ robot problem is formu-
lated as reentering a previously visited environment at an
unknown location and the robot has to localize without any Figure 1. Robot localization using IBR.
prior hint of its position. In incremental localization,eth
robot looks for an unknown position is some small neigh-  Feature based approaches need enough stable, unam-
borhood area of its previous location. biguous, features to be detected in the scene and they also

We focus on the case of purely visual representation andrequire a central camera model for triangulation (or cali-
the kidnaped robot scenario, when the robot uses a quenprated non-central camera) while image based methods are
view of the environment captured at unknown location and very sensitive to occlusions. Our proposed image based ren-
tries to extract its position from images describing thel-env dering (IBR) approach to localization tries to combine the
ronment. We also restrain ourselves from using any markersstrength of image based methods with robustness to occlu-
deployed in the scene. For this scenario, there are bagicall sions. IBR P] creates novel images from a set of input im-
two approaches; feature and image based methods. Feaages by recomposition of pixels into the novel view. The
ture based approaches [7, 8, 10] use natural landmarks novel view appears as captured from a camera position not
in the environment, perform matching between landmarks contained in the input set. We pose the robot localization as
detected in the query view with landmarks in the visual rep- an optimization problem, where we look ftite most sim-
resentation, and triangulate the position of the robotgena ilar virtual view to some query view when the parameters
based method$[ 3] use matching of the whole query view used to synthesize the virtual view determine the positfon o
with images captured at known positions in the scene — thethe robot. The localization process is depicted in Figure
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We have chosen X-slits method for IBRY] because it uses
only a very simple constant scene depth assumption and the
position of the virtual camera can be directly related to the
location position of the robot with respect to the input set.
The most related work to the presented method i§, [
where the localization was performed from 1D panoramic
images representing the horizon line in catadioptric insage
Our approach differs in employment of much more informa-
tion in the matching for robustness and it also does not re-
quire the horizon to be precisely determined. 1y K-slits
IBR was used for mobile robot localization with a narrow-
field-of-view camera, which suffers from aperture problem.
Moreover, employment of a camera with narrow FOV re-
sults in a much simpler implementation of X-slits IBR but
only a single viewing direction can be used for all input
images as well as for the query images. Omnidirectional
images capture light rays in all directional and the rotatio
between the query view and the input views can be esti- Figure 2. Omnidirectional X-slits with catadioptric imageThe
mated p]. red shaded area marks viewing directionghich cannot be syn-
The paper is organized as follows. In Sectibwe sum- thesized from the input set for a virtual view at this positio
marize omnidirectional X-slits rendering with catadioptr
images. Sectior3 presents the idea of IBR as a column
ordering task, with the column matching presented in Sec-
tion 4. Experimental evaluation is given in Sectidn

direction by some columa’ from the viewlI;, which meets

our desired light ray at some scene degthsee Figures.

The former case is equivalent to settiddgto infinity. This

2. Catadioptric X-slitsimages holds also for the classical X-slits with narrow filed-ofwvi
cameras.

X-slits [12] is an imaging model where all light rays
forming the image intersect two, generally distinct, lines
(slits). One of these lines is the trajectory of the camera
which captured the input images, the other corresponds to
the position of the virtual view. It is convenient to ensure
that the lines are perpendicular in the X-slits setup, which
leads to a simplified image formation model, where novel

images are created by recomposition of columns of the in- [ i‘rYA L
put images 12]. X-slits model for panoramic images was d
also introduced in12] but it was not discussed in detail. e
In this section, we give a thorough analysis of panoramic
X-slits with emphasis on localization tasks. 4
Figure2 depicts the principle of panoramic X-slits. Input ly
panoramic images are acquired on a linear trajectory and aFigure 3. For scene depth at infinity, the same angkeused from
novel viewI, is created by composition of columasrom the nearest view; to a missing viewl; + o, while for a finite scene

view I; into columnsa of I,. This means that we begin depth, different angle” has to be used.
by filling the columns of the virtual view by using columns
with the same index in a view at position where the desired  What is different for panoramic images and was not dis-
viewing directionw intersects the input path. This principle cussed in12] is that we do not always have light rays avail-
holds only for a very dense input sequence, in which we able for everyn, when the position of the virtual view,
always have some vievy for eacha. moves away from the input line. Since the input images
In practice, we have a discrete number of input imageswere acquired on a linear trajectory, we do not have light
and it may happen that we need to sample a column fromrays in the direction of motion (and light rays in the op-
a view I, o which is not available. Then we have to use posite direction as well) from other position than from the
the nearest view; to a viewI;, o. We can either use the input trajectory. The range af for which we do not have
same columnx from the viewI; as we would use from input data widens as we move away from the input line, see
the view I, A or we can approximate the desired viewing Figure2, where is it marked by the red shaded area. We



have to mask out the respective part of the virtual image for ordering, simply measuring the azimuth angle of the respec-
the localization process. tive column gives us the azimuth direction of all rays in this
column. The azimuth angle has to be measured from some
zero valuexg, corresponding to the direction of motion of
the camera capturing the inputimages. We have determined
this value manually, but it can be estimated from the optical
flow in the images, since it corresponds to a source of the
flow.

The main advantage of using IBR over feature based lo-
calization is that IBR determines the correspondences di-
rectly by this column ordering. This is a different situ-
ation from feature matching, where we detect features in
the whole query image and we have to solve the problem
of matching the features from the query image to features
in the input images. Real scenes usually contain repetitive
patters and similar objects, resulting in many false mache
Some robust technique, such as RANSAC, has to be used to
resolve these ambiguities but it also requires some camera
model. On the other hand, the IBR column ordering gives
us a proper column order for the virtual view and we can
directly try to match the columns with columns in the query
view.

Moreover, by limiting the vertical field of view of the
Figure 4. Transformation of a catadioptric image into arajical T:Jmnlcyilrectlonal Images to a small range covering only the
panorama organized by angles. The two circles limit the fild walls’ of the environment, we relax also calibration of the
view used for IBR. mapping between the light rays and radii in the omnidi-

rectional image in the elevation direction and we can use

We acquire panoramic images using a catadioptric sen-equidistant projection model.
sor, when a camera observes a curved rotational symmetric
mirror which reflects the scene into the imagg [Some of r=af, (1)
these sensors have an important property called single-effe
tive viewpoint (SEV) which allows us to model the resulting
sensor by a central projectioi]] We do not restrict our-
selves to these kind of sensors, we only require rotational
symmetry of the mirror and a rough alignment of the axis
of the mirror with the optical axis of the camera.

For the following analysis and also for implementation
convenience, we transfer the catadioptric images intmeyli

wherer is the radius in imagej is the elevation angle and
a is a model parameter.

We can also deal with non-central sensors by assuming
a scene much more distant compared to the displacement
of intersections with of the light rays with the axis of the
mirror in a non-central sensor. This assumption will always
hold for a limited FOV thus we can assume that the light
rays meet in a single point, since we do not perform any

) ) etriangulation of scene reconstruction where precisiomis r
azimuth angle and the row index corresponds to the eleva- ui

tion, see Figurd. From now on, referring to images means
referring to these panoramas. 4. Column matching
3. IBR ascolumn ordering A straightforward approach to column matching is a di-
. o . S rect comparison of pixel values of the columns, preferably
The keyideain this paper s that the omnidirectional IBR after some histogram equalization to compensate for iHumi

presentded.m thehprﬁvulnlus sectltonhser(\jlles asla 'FOO| f.Ort(l?lol'nation changes. For this, the columns have to be properly
umn orcering, which atiows us to handle occlusions in the scaled, that is we have to know the horizon line in the im-

scene, B colsion e mear oclusonsof it oiect s ad e hae t assume o scene dkpore:
' yady éver, we have to store the whole input images into memory

F:hangmg Ob.JECtS such as peqple. We rely on the am"””t %or efficient localization. The scaling function is expreds
information in the omnidirectional image to cope with the
latter. Because of the rotational symmetry of the catadiop- (d.p)

tric images, we do not need any calibration for this column 8= po+ d, —r "’ (2)



whereg, is the horizon row index (horizon line} is the
row index of a pixely is the distance of the input view

from which we sample the column from the scene object at

distancel,. from the virtual viewl,, as it is depicted in Fig-
ure5. Note that for simplicity we always measuig from
the actual position of the virtual view. After vertical noat

5. Experimental results

We have performed a real world experiment with a mo-
bile robot moving in an office environment. The robot was
equipped with a Flea camera observing a hyperbolical mir-
ror but no care was given to assembly of the camera—mirror

ization, we simply compute the correlation of the columnin rig, therefore the resulting catadioptric sensor has to be
the vertical image with the respective column in the query treated as non-central. The robot traversed two, almost par
image. Also note that we do not have to consider the ac-allel, linear trajectories and in our experiment, we used th
tual heighth of the object, since the relation is expressed first one as the visual representation and the second one as
solely in angles. The horizon ling, has to be determined & source of query images. The robot was heading roughly
in the images, in our case, we used manual detection, buin the same direction so we did not have to compensate for
some automatic method based on optical flow can be usedotations of the images. Moreover, we used constant frame
in the future making use of the fact, that image points im- rate and constant speed to obtain equally spaced input and
aged to the horizon line in the image do not change their query images. This was not exactly fulfilled but due to lack
elevation while the camera moves. Figérehows an ex-  of time, we did not implement support for odometry posi-
ample of an optical flow based horizon line determination, tions into our code. The distances between the inputimages
the features were tracked using a KLT tracker and as can beletermine the units of the environmental map, in our case 1
seen in detail of the source of the optical flow, we can de- unit was around 2cm.

termine features at the horizon line as well as featuresinth  The input path led through middle of the scene and the
direction of motion. In this particular case, we were lucky test path was close to one of the walls, which can be consid-
to have a single feature determining both. ered as a difficult case for our method because the distance
of the test line from the input path was about half of the in-
put path length, making the areas of no available columns
quite big in the virtual images corresponding to positions o
the test line, see Figurié

Figure 7, top, shows one of the input images. We
changed the environment by opening a cabinet and mov-
ing people and chairs to simulate real world occlusions, see
Figure7, middle. The bottom part of Figuré shows the
closest X-slits image for the above query image. Note that
‘ the range ofxr where no information was available was big,
thus only a small part of the scene could be rendered but it
was still sufficient to localize the robot.

de
Figure 5. Vertical scaling of the X-slits images simulates- f
ward/backward motion.

20

Figure 6. Top: Features tracked through every 10-th imadbeof
input sequence. Bottom: Detail of the source of the optical fl
showing a feature at a horizon and also in the direction ofanot
(red crosses).

Figure 7. Top: one of the input images. Middle: an example of
a query image. Note changes in the scene. Bottom: the closest
X-slits image for the above query image. Note that only a kmal
part of the scene could be rendered but it was sufficient taliloe

the robot. Only the intensity value of the pixels from thetihpet

is used, thus the X-slits image is shown in gray scale.



First, we tested the full IBR column matching with col- during the X-slits rendering we use inputimages at discrete
umn normalization. We selected 8 query images from the positions and a very small change of the position of the vir-
test line, equally spaced by 10 units, and run localization tual view does not results in a change in the virtual view.
for each of them. Figur8 shows the result. It can be seen Therefore, a similarity measure defined between the virtual
that the recovered locations of the robot lie approximately view and the query view would be unchanged by a small
on a line with similar spacing between them. Localization change in the parameters of the X-slits rendering and there-
error is mainly due to unequal distances between the imagegore we cannot use conventional optimization approaches.
in both the input and test datasets. Fortunately, our image similarity function is well behagin

and we have only two parameters to search for so we can
use a coarse to fine search where the global minimum can

100 o be iteratively found by brute force search over all possible
values with refinement of the increment in unknowns.
80! v Figure10depicts this process. We start with a big incre-

ment of the parameter values and then in the next iteration,
we focus only on an area around the global minima, ob-
tained by thresholding of the similarity values. In case the
thresholding does not give us a single area, we can either
40¢ % choose one based on the values of similarity in the areas or
A we can move the robot to a new location and try another
20t qguery image. In the next iteration, we refine the step of the
‘ ‘ T+ ‘ ‘ search and obtain another minimal area and so on, until we
110 9% 70 50 30 10 reach a unit step in the parameter values. Note that this lo-
calization is performed only once when the robot enters an
unknown environment and that the whole task can be imple-
mented quite efficiently by remembering already computed
To investigate the precision of the localization more values between iterations and by parallelization of the-com

clearly, we used a sequence of 8 query images spaced bputation.
1 unit and run localization for each of them, Fig@rshows .
the result. Note that the locations differ from a linear tra- 6- Conclusionsand future work

jectory by at most 1 unit and that the views were localized  \ye have presented a method for robot localization using
in a proper order, the symbols and colors in this figure cor- v _gits IBR, where the localization is posed as an optimiza-
respond to the ordering the previous experiment. The local-iq, problem where we look for a virtual view synthesized
ized positions are non-integer because we computed a meagom a set of input views (the image map of the environ-
value of several minimal values to cope with jitter and noise ment) which is the most similar to some query view cap-
in the virtual images. tured at an unknown position. Parameters of the X-slits ren-
dering then determine directly the position of the robot. We

601 o

Figure 8. Localization results for query images on a linesthp
The images are equally spaced by 10 units.

36 o have thoroughly described the concept of panoramic X-slits
v rendering focusing on practical issues such as using non-
35 SEV sensors and rough assumptions about the horizon line
34 and scene geometry, which allows us to produce X-slits im-
O ages with proper vertical normalization so that correfatio
337 can be used for column matching.
30| An alternative approach to correlation is a descriptor
based column matching, when the column is described for
31t x example by a histogram. This reduces the amount of data
30! A dramatically, but the robustness is lower. Another way of
reducing the amount of data would be to follow the idea of
29 20 6‘8* 66 64 subspace representation of the input images, such as PCA

in [1]. In our opinion, the best solution is to combine
Figure 9. Localization results for dense query images oneali features detected in the columns with histogram of areas,
path. The images are equally spaced by 1 unit. where no features are present. Both the features and the
histograms are matched by correlation, the feature corre-
The positions of the robot are discrete in our case, sincespondence problem is solved by the column ordering. Not
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Figure 10. Coarse to fine approach to optimization. Dark dimotes maximal values, dark red minimal. From left to rihltincrement
of the optimized parameters was 16, 4, and 1 unit.

only that the amount of information to store will be reduced,

but this approach does not require any vertical normaliza-
tion and therefore we do not need to know the horizon line
and the scene depth estimate. This will be our future work.

(3]

M. Jogan and A. Leonardis. Robust localization using an
omnidirectional appearance-based subspace model of envi-
ronment. Robotics and Autonomous Systems, Elsevier Sci-

ence, 45(1):51-72, 20031

in the virtual image cannot be defined by some other input
trajectory than line. For example, we can modify the ren-

dering algorithm to use "X’ or 'L’ shaped input trajectory,
with the latter more convenient from the acquisition point o

view; the robot can capture the whole trajectory in a single
run. The former shape is, on the other hand, optimal from

the rendering point of view, since it minimizes the distance
of the virtual views from the input path.
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