
JMLR: Workshop and Conference Proceedings 45:81–95, 2015 ACML 2015

Consistency of structured output learning with missing labels

Kostiantyn Antoniuk1 ANTONKOS@CMP.FELK.CVUT.CZ
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Václav Hlaváč2 HLAVAC@FEL.CVUT.CZ
1 Faculty of Electrical Engineering, Czech Technical University in Prague
2 Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague

Editor: Geoffrey Holmes and Tie-Yan Liu

Abstract
In this paper we study statistical consistency of partial losses suitable for learning structured output
predictors from examples containing missing labels. We provide sufficient conditions on data gen-
erating distribution which admit to prove that the expected risk of the structured predictor learned
by minimizing the partial loss converges to the optimal Bayes risk defined by an associated com-
plete loss. We define a concept of surrogate classification calibrated partial losses which are easier
to optimize yet their minimization preserves the statistical consistency. We give some concrete
examples of surrogate partial losses which are classification calibrated. In particular, we show that
the ramp-loss which is in the core of many existing algorithms is classification calibrated.
Keywords: missing labels, statistical consistency, structured output learning

1. Introduction

This paper studies statistical consistency of risk minimization methods designed for learning struc-
tured output predictors from a set of partially annotated training examples. We concentrate on a
scenario when the object is characterized by an input observation and labelling of a set of local
parts, however, a training set contains examples of inputs and labellings only for a subset of the
local parts. In contrast, the conventional supervised methods require all local parts to be annotated.
Since the missing label scenario is common in practice, several methods learning structured predic-
tors from partial annotations have been proposed during the past few years: Vedaldi and Zisserman
(2009); Lou and Hamprecht (2012); Fernandes and Brefeld (2011); Li et al. (2013); Yu et al. (2014).
These algorithms implement the empirical risk minimization principle using certain surrogate loss
functions that can be evaluated on partially annotated examples. Despite excellent empirical re-
sults a clear statistical justification for these methods has not been provided so far. In this paper
we attempt to fix this gap by extending the concept of statistical consistent learning (e.g. Zhang
(2004a); Tewari and Bartlett (2007); Gao and Zhou (2011); Ramaswamy and Agarwal (2012)) to
the structured output setting with the partially annotated examples.

We assume that the target (complete) loss is additive over the local parts, that is, it is a sum
of single label losses for each local part. We analyze a partial loss that can be constructed from
any complete additive loss by simply neglecting those single label losses for which the labels in the
training set are missing. A detailed definition of the considered setting is described in Section 2.
The main contribution of this paper is sufficient conditions on data generating statistical model
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which admits to prove that minimization of the partial loss yields structured predictor with expected
risk converging in probability to the Bayes risk (i.e, the minimal attainable risk) defined by the
associated complete loss. The statistical model is defined in Section 3 and the consistency is proved
in Section 4. Since minimizing the partial loss directly is often a hard problem because of its discrete
domain, in Section 5 we analyze surrogate partial losses which are easier to optimize. By adapting
the general framework of Ramaswamy and Agarwal (2012) to our setting we define the concept of a
surrogate classification calibrated partial loss which preserve the statistical consistency. Finally, we
give some concrete examples of the classification calibrated surrogate partial losses. In particular,
we show that the ramp-loss, whose variants have been previously used to construct algorithms for
learning from partial annotations e.g. in Lou and Hamprecht (2012); Fernandes and Brefeld (2011);
Li et al. (2013), is calibrated and hence the so far heuristic methods are statistically consistent.
Conclusions are given in Section 6.

The consistency of the ramp-loss has been previously studied in McAllester and Keshet (2011).
There are two major differences compared to our results. First, they analyze consistency under
the PCA-Bayesian setting which threats the parameters to be learned as random variables while
we in contrast stay in the classical frequentist statistics. Second, they consider only the standard
supervised setting when the labels to be predicted are not missing in the training set. Although they
consider also latent variables these are introduced just to make the model more flexible but they do
not appear in the loss function and hence the problem remains supervised.

2. Setting

We first describe the common fully supervised setting in section 2.1. The formulation of learning
from partially annotated examples which is annalyzed in this paper is then defined in section 2.2.
We use a notation adopted from Ramaswamy and Agarwal (2012) being a paper on which we built
our results.

2.1. Common fully supervised setting

Let X be an input space, V a finite set of local parts and Y a finite set of labels. An object is fully
characterized by an input (observation) x ∈ X and a labelling y = (yv ∈ Y | v ∈ V) of local parts
V . In supervised setting we are given a training setDm = {(x1,y1), . . . , (xm,ym)} ∈ (X ×YV)m

drawn from i.i.d. random variables with distribution p(x,y) defined over X × YV . We want to
design a decision function h : X → T V which mapping an input x ∈ X to a vector of decisions
t = (tv ∈ T | v ∈ V) ∈ T V . We assume that the decision set T for each local part is finite.
For example, in the most typical setting T = Y and h is the structured output classifier predicting
directly the labels. Note that in general T can be different from Y , for example in the classification
with the reject option when T = Y ∪ {don’t know}.

Let ` : YV × T V → R+ be a given loss function assigning a non-negative number to each pair
of labelling y ∈ YV and a decision t ∈ T V . In this paper we confine ourselves to losses which are
additive over the local parts being a natural choice in many applications, i.e.

`(y, t) =
∑
v∈V

`v(yv, tv) (1)

where `v : Y × T → R+, v ∈ V , are single label losses. Throughout the paper we assume that `v
are bounded and non-trivial, i.e. `v(y, t) < ∞ and ∀y ∃t such that `v(y, t) > 0. An example of a
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frequently used additive loss is the Hamming loss obtained when T = Y and `v(yv, tv) = [[yv 6=
tv]], v ∈ V . A decision function h is then evaluated by the `-risk

R`(h; p) = Ep(x,y)`(y,h(x)) = Ep(x)
∑
y∈YV

p(y | x)`(y,h(x)) = Ep(x)py(x)T `h(x) ,

where py(x) = (p(y | x) | y ∈ YV) is a vector function denoting the conditional probabilities at
x and `t = (`(y, t) | y ∈ YV) is a vector of losses for the decision t ∈ T V . The ultimate goal is to
learn from Dm a decision function with the `-risk close to the Bayes `-risk

R`∗(p) = inf
h : X→T V

R`(h; p) = Ep(x) min
t∈T V

py(x)T `t .

A direct minimization of the loss ` is often a hard problem, therefore it is common to replace ` by
a surrogate loss function ψ : YT × T̂ → R+ which operates on a surrogate decision set T̂ ⊆ Rd.
The goal is then to learn a function f : X → T̂ minimizing the ψ-risk

Rψ(f ; p) = Ep(x,y)ψ(y,f(x)) = Ep(x)
∑
y∈YV

p(y | x)ψ(y,f(x)) = Ep(x)py(x)Tψf(x) ,

where ψt̂ = (ψ(y, t̂) | y ∈ YV) is a vector of proxy losses at the decision t̂ ∈ T̂ . The learned
function f is used to construct the decision function via a transform pred: T̂ → T . The `-risk of the
resulting decision function pred(f(x)) is R`(pred ◦ f ; p). For example, f(x) = (〈w,Ψ(x,y)〉 |
y ∈ YV) is a vector of scores linear in parameters w ∈ Rn and pred(t̂) ∈ Argmaxy∈YV t̂y which
yields the linear structured output classifier h(x) ∈ Argmaxy∈YV 〈w,Ψ(x,y)〉.

Under suitable conditions the uniform low of large numbers applies (Vapnik (1998)) and learn-
ing fm from Dm by minimizing the empirical risk Rψemp(f) = 1

m

∑m
i=1 ψ(yi,xi) is statistically

consistent, i.e. for the number of examples m going to infinity, Rψ(fm; p) converges in probability
to the minimal (Bayes) ψ-risk

Rψ∗ (p) = inf
f : X→T̂

Rψ(f ; p) .

It has been shown (e.g. Zhang (2004a); Tewari and Bartlett (2007); Gao and Zhou (2011)) that the
consistency with respect to the ψ-risk implies the consistency with respect to the `-risk provided the
surrogate loss ψ is classification calibrated w.r.t the loss `. We will extend this result to the setting
when the training examples are partially annotated as defined in the next section.

2.2. Learning with missing labels studied in this paper

Let us consider that we are given a training set D̂m = {(x1,a1), . . . , (xm,am)} ∈ (X × AV)m

drawn from i.i.d. random variables with the distribution

p′′(x,a) =
∑
y∈YV

p(x,y,a)

where A = {Y ∪ {Y}} denotes a set of admissible annotations of a local part and p(x,y,a)
is a properly defined distribution over X × YV × AV . At given part v ∈ V the label is either
known av ∈ Y or missing av = Y meaning that all labels are possible. The partial annotation of

83



ANTONIUK FRANC HLAVÁČ

the i-th training instance is a vector ai = (aiv ∈ A | v ∈ V) assigning labels to the local parts
V iknown = {v ∈ V | |aiv| = 1} while the labels of the remaining local parts V \ V iknown are missing.

The distribution p′(x,y) over input-label space X × YV can be obtained from p(x,y,a) by
marginalization over the annotations AV , i.e.,

p′(x,y) =
∑
a∈AV

p(x,y,a) .

Our ultimate goal is to learn from D̂m a decision function h : X → T V with `-risk R`(h; p′) close
to the Bayes `-riskR`∗(p

′). It is important to stress that the objective (i.e. the `-risk) of learning from
the missing labels analyzed in this paper is exactly the same as the objective in the conventional fully
supervised setting, however, the annotation of the training examples is different.

In order to make learning from missing labels possible we define a partial loss:

Definition 1 For a given (complete) additive loss ` : YV ×T V → R+ defined by (1) the associated
partial loss `p : AV × T V → R+ is defined as

`p(a, t) =
∑
v∈V

[[|av| = 1]]`v(av, tv)
1 , (2)

where `v : Y ×T → R+, v ∈ V , are the same single label losses used to define the complete loss `.

The partial loss `p simply neglects the local losses corresponding to the missing labels. We can now
learn a decision function h : X → T V by minimizing the `p-risk

R`
p
(h; p′′) = Ep′′(x,a)`p(a,h(x)) = Ep(x)

∑
a∈AV

p(a | x)`p(a,h(x)) = Ep(x)pa(x)T `ph(x)

where pa(x) = (p(a | x) | a ∈ AV) is a vector function denoting the conditional probabilities at
x ∈ X and `pt = (`p(a, t) | a ∈ AV) is a vector of partial losses for the decision t ∈ YV . The
Bayes `p-risk is defined as

R`
p

∗ (p′′) = inf
h : X→T V

R`
p
(h; p′′) = Ep(x) min

t∈T V
pa(x)T `pt .

It is clear that learning from the partial annotations is not possible without imposing constraints
on the distribution p(x,y,a). For example, when p(x,y,a) = p(x,y)p(a) the annotations carry
no information about the labels and hence learning is not possible. As the first contribution of this
paper, we provide sufficient conditions on p(x,y,a) which guarantee that minimization of the `p-

risk is equivalent to the minimization of the `-risk, namely, that R`
p
(hm; p′′)

P→ R`
p

∗ (p′′) if and

only if R`(hm; p′)
P→ R`∗(p

′) where hm is a decision function learned from a random training

set D̂m and P→ denotes convergence in probability. This claim justifies algorithms which learn h
by approximately minimizing the partial loss `p by implementing the empirical risk minimization
principle like those proposed e.g. in Lou and Hamprecht (2012); Fernandes and Brefeld (2011); Li
et al. (2013). The conditions on the statistical model are described in Section 3 and the consistency
is proved in Section 4.

1. Strictly speaking the correct formula here is `p(a, t) =
∑

v∈{v′∈V| |a′
v|=1} `v(av, tv), however for the sake of

simplicity we slightly abuse the notation.
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3. Statistical Model of Partial Annotations

In this section we describe a generative model of the partially annotated data. The standard model
p(x,y) is defined over the input-label space X ×YV . We augment the standard model by additional
binary random variables z = (zv ∈ {0, 1} | v ∈ V) ∈ ZV assumed to be a realization of a random
field distributed according to p(z | x). The binary variables z ∈ ZV determine which labels in
y = (yv ∈ Y | v ∈ V) are annotated. Specifically, zv = 1 means that the local part v is annotated,
while zv = 0 means that the label is missing. The annotation a ∈ AV is created from y and z by
copying those labels which are annotated, or formally via a vector function α : YV × ZV → AV
defined as a = (a1, . . . , a|V|) = α(y, z) =

(
α(y1, z1), · · · , α(y|V|, z|V|)

)
where av =

α(yv, zv) =

{
yv if zv = 1 ,
Y if zv = 0 .

We assume that the random variables y and z are conditionally

independent, i.e.
p(y, z | x) = p(y | x) p(z | x) , (3)

which implies that for fixed x the annotation a is distributed according to

p(a | x) =
∑
y∈YV

∑
z∈ZV

p(y | x)p(z | x)[[a = α(y, z)]] . (4)

The model described above defines a random process generating a set of partially annotated
examples according to the distribution

p(x,a) = p(x) p(a | x) . (5)

Let as define a function c : YV ×AV → {0, 1} as

c(y,a) =
∏
v∈V

[[yv ∈ av]]

which evaluates to 1 if the labeling y is consistent with the annotation a and it is 0 otherwise. It is
not difficult to show that

p(y |x,a) =
p(y |x)c(y,a)∑

y′∈YV p(y
′ |x)c(y′,a)

, (6)

We use the convention that p(y |x,a) = 0 if the denominator and the numerator are zero. The
distribution (6) together with (5) defines a joint distribution

p(x,y,a) = p(x) p(a | x) p(y |x,a) (7)

describing dependency of the random variables (x,y,a) ∈ X × YV ×AV .

Definition 2 We say that a distribution p(x,y,a) defined over X × YV × AV has a property A if
there exists a triplet of properly defined distributions p(x), p(y | x), p(z | x) which satisfy the
following conditions:

1. The equations (4), (6) and (7) hold true simultaneously.

2. There exists a constant ρ > 0 such that p(y | x) ≥ ρ, ∀y ∈ YV and p(zv = 1 | x) ≥ ρ,
∀v ∈ V .
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The condition 2 is required for two reasons. First, it implies that the space of probabilities with
property A is a compact set which is needed to prove the consistency. Second, the nonzero marginal
distributions p(zv = 1 | x) ≥ ρ, v ∈ V , guarantee that each local part has a chance to be annotated
otherwise it is clear that learning from partial annotations would not be possible.

Example application In this paragraph we give an example of a prototypical application in which
the property A is guaranteed by steering the annotation process. In particular, let us consider a
problem of learning structured output detector of facial landmarks (e.g. Uřičář et al. (2012)). The
facial landmarks are well discriminative features of human face like the corners of eyes or the
corners of mouth. The parameters of the detector are learned from a set of training images with
manually annotated landmark positions. The annotation of the training images is tedious and time
consuming work. For example, in the work of Uřičář et al. (2012) around 13,000 images had to
be annotated to get desired accuracy. In the fully supervised case the annotator is asked to mark
positions of all landmarks in a given image. This corresponds to the annotation scheme p(zt | x) =
1, ∀t ∈ V . However, we can instruct the annotator to mark only a subset of landmarks by using the
following annotation scheme:

• In each even image the annotator marks only the positions of landmarks on the left part of the
face (yt ∈ Yt | t ∈ Vleft).

• In each odd image the annotator marks only the positions of landmarks on the right part of
the face (yt ∈ Yt | t ∈ Vright).

Provided the annotator follows these instructions and the images are presented in a random order
(which we can easily assure by randomly reshuffling the images before annotation) implies that

p(zt | x) =
1

2
, t ∈ Vleft ∪ Vright .

This implies that with the same afford (i.e. when the annotator clicks the same amount of landmark
positions) we can annotate twice as much different faces compared to the supervised framework.
It is reasonable to expect that the variation in landmarks of different faces (e.g. depicting different
identities) is much higher than variation between the paired landmarks of the same face. Hence
the partial learning should deliver more robust landmark detector without increasing the cost of
annotations.

4. Consistency of partial loss

In this section we present the first main result which justifies learning of the structured classifiers by
minimization of the partial loss provided the data are generated from the statistical model defined
in section 3.

Theorem 3 Let p(x,y,a) be an arbitrary distribution defined over X × YV × AV with property
A and p′(x,y) =

∑
a∈AV p(x,y,a) and p′′(x,a) =

∑
y∈YV p(x,y,a) be the corresponding

marginal distributions. Let ` be an additive loss (1) and let `p be an associated partial loss defined
by (2). Then, for all sequences of random decision functions hm : X → T V (depending on training
data generated from i.i.d variables with p′′(x,a)) it holds

R`
p
(hm; p′′)

P→ R`
p

∗ (p′′)⇔ R`(hm; p′)
P→ R`∗(p

′) .
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We start with a key lemma which shows that under proper assumptions a set of minimizers of
the supervised risk is the same as the set of minimizers of the partial risk although the risk functions
and their values are different.

Lemma 4 Let ` : YV × T V → R+ be an additive loss function and let `p : AV × T V → R+ be
the associated partial loss. Let p(x,y,a) be a distribution with the property A. Then, h∗ : X →
T V is a minimizer of R`(h; p′) if and only if it is a minimizer of R`

p
(h; p′′) where p′(x,y) =∑

a∈AV p(x,y,a) and p′′(x,a) =
∑

y∈YV p(x,y,a) .

PROOF: The risk R`
p
(h; p′′) can be rewritten as follows:

R`
p
(h; p′′) = Ep(x)

∑
a∈AV

p(a | x)`p(a,h(x))

= Ep(x)
∑
a∈AV

p(a | x)
∑
v∈V

[[|av| = 1]]`v(yv, hv(x))

= Ep(x)
∑
v∈V

∑
av∈A

p(av | x)[[|av| = 1]]`v(yv, hv(x))

(∗)
= Ep(x)

∑
v∈V

∑
yv∈Y

p(zv = 1 | x)p(yv | x)`v(yv, hv(x))

= Ep(x)
∑
v∈V

p(zv = 1 | x)
∑
yv∈Y

p(yv | x)`v(yv, hv(x)) .

Here equality (∗) holds due to the equality following from (4):

p(av | x) =
∑
yv∈Y

∑
zv∈Z

p(yv | x)p(zv | x)[[av = α(yv, zv)]] ,

which for av = {yv} gives us the following equality

p(av | x) = p(zv = 1 | x)p(yv | x) .

It is seen from the last equation that if h(x)∗ = (hv(x) | v ∈ V) is a minimizer of R`
p
(h; p) then

for any x ∈ X and v ∈ V it holds that

h∗v(x) ∈ Argmin
t∈T

∑
yv∈Y

p(yv | x)`v(yv, t), (8)

because the marginals p(zv | x) > 0 thanks to Definition 2. Analogically, one can rewrite the risk
R`(h; p′) as follows:

R`(h; p′) = Ep(x)
∑
y∈YV

p(y | x)`(y,h(x)) = Ep(x)
∑
v∈V

∑
yv∈Y

p(yv | x)`v(yv,hv(x)) ,

showing that also any minimizer h(x)∗ = (hv(x) | v ∈ V) of R`(h; p′) has to satisfy (8).

Note that Lemma 4 shows that the `-risk and the `p-risk have the same set of minimizers, how-
ever, they do not have the same minimal value because the `-risk upper bounds the `p-risk. The
lemma is easy to prove and understand. However, it is not immediately applicable in practice be-
cause we cannot minimize the risks due unknown data generating distributions. Instead, we resort
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to minimization of the empirical risk by which we obtain approximate minimizers. The conditions
under which the minimizers of the empirical risk converge are well studied (Vapnik (1998)). It
remains to show that convergence of the minimizers of the empirical partial risk to the expected
partial risk implies the convergence of the same minimizers the expected true risk. The rigorous
proof is not trivial. In the rest of the section we give a road map of the proof and defer details to the
appendix.

It follows from Lemma 4 that for fixed probability model p induced by model with property A
the function Hp(ε,pya) : R×∆|YV |×|AV | → R2 defined as follows

minimize
t∈T V

pa
T `pt − min

t′∈T V
pa

T `pt′

subject to py
T `t − min

t′∈T V
py

T `t′ ≥ ε

is always positive for any ε > 0, where pya(x) = (p(y,a | x) | a ∈ AV ,y ∈ YV). Flipped
function H(ε,pya) : R×∆|YV |×|AV | → R defined as

minimize
t∈T V

py
T `t − min

t′∈T V
py

T `t′

subject to pa
T `pt − min

t′∈T V
pa

T `pt′ ≥ ε

is positive as well for any ε > 0. It is possible to show (see Lemmas 12 and 16 in Appendix)
even stronger statement that for any ε > 0, Hp(ε) , inf

pay∈Px

Hp(ε,pay) > 0 and H(ε) ,

inf
pay∈Px

H(ε,pay) > 0. Thanks to this it is possible to show3 that for loss functions `(y, t) and

`p(a, t) defined by (1), (2) there exist nonnegative concave functions ξ : R→ R+and ζ : R→ R+,
both right continuous at 0 with ξ(0) = 0 and ζ(0) = 0, such that ∀ h : X → T V and for all
distributions with property A it holds that

Ep(x)py(x)T `h(x) − Ep(x) min
t′∈T V

py(x)T `t′ ≤ ξ
(
Ep(x)pa(x)T `ph(x) − Ep(x) min

t′∈T V
pa(x)T `pt′

)
,

Ep(x)pa(x)T `ph(x) − Ep(x) min
t′∈T V

pa(x)T `pt′ ≤ ζ
(
Ep(x)py(x)T `h(x) − Ep(x) min

t′∈T V
py(x)T `t′

)
.

See Lemmas 13 and 17 in appendix for complete proof.
Functions ξ and ζ make Theorem 3 easy to prove.

PROOF: (⇒) We have that for any ε > 0 and pya(x) ∈ Px the inequality

P{Ep(x)py(x)T `hm(x) − Ep(x) min
t′∈T V

py(x)T `t′ > ε} ≤

P{ξ(Ep(x)pa(x)T `phm(x) − Ep(x) min
t′∈T V

pa(x)T `pt′) > ε}

2. We use ∆n = {p ∈ Rn | pi ≥ 0, ∀i ∈ [n],
∑n

i=1 pi = 1} to denote the probability simplex in Rn. In case when x
does not change the argument x is omitted and we simply write py , pa, pya.

3. This proof is technically complicated, therefore it is moved to Appendix. There we provide full set of lemmas with
complete proves.
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holds. Since ξ(x) is right continuous at 0, there exists δ > 0 such that ∀x : x − 0 ≤ δ ⇒ ξ(x) −
ξ(0) ≤ ε. Hence, if ξ(x) > ε then x > δ, thus we obtain

P{ξ(Ep(x)pa(x)T `phm(x) − Ep(x) min
t′∈T V

pa(x)T `pt′) > ε} ≤

P{Ep(x)pa(x)T `phm(x) − Ep(x) min
t′∈T V

pa(x)T `pt′ > δ} −→ 0 ,

given m→∞.
(⇐) implication is proved by repeating the same steps but using relation with function ζ.

5. Surrogate partial losses

In the previous section we proved consistency of the minimization of the partial loss `p. Unfortu-
nately, a direct minimization of the partial loss is hard due to its discrete domain. For this reason
it is useful to employ a surrogate loss ψp : AV × T̂ → R+ and learn a function f : X → Rd by
minimizing the ψp-risk

Rψ
p
(f , p′′) = Ep′′(x,a)ψp(a,f(x)) .

Under suitable conditions, the ψp-risk of functions learned by the empirical risk minimization prin-
ciple, i.e. fm ∈ Argminf∈F

1
mψ

p(ai,f(xi)), will converge in probability to the Bayes ψp-risk

Rψ
p

∗ (p′′) = inf
f : X→T̂

Rψ
p
(f ; p′′) .

It has been shown (e.g. Zhang (2004a); Tewari and Bartlett (2007); Gao and Zhou (2011); Ra-
maswamy and Agarwal (2012)) that the question whether the statistically consistent estimator w.r.t
ψp-risk implies the consistency w.r.t the `p-risk is equivalent to the question whether the surrogate
loss is so called classification calibrated. Below we define a concept of a surrogate loss classifica-
tion calibrated with respect to a the partial loss and the consistency theorem. These definitions are
straightforward adaptations of Definition 1 and Theorem 3 from Ramaswamy and Agarwal (2012)
to our setting.

Definition 5 A surrogate loss ψp : AV×T̂ → R+ is said to be classification calibrated with respect
to the partial loss `p : AV×T → R+ overP ⊆ ∆|YV |×|AV | if there exists a function pred: T̂ → T V
such that ∀pya ∈ P :

inf
t̂∈T̂ : pred(t̂)/∈Argmin

t∈T V pT
a`pt

pTaψ
p(t̂) > inf

t̂∈T̂
pTaψ

p(t̂) .

Theorem 6 Let `p : AV × T → R+ and ψp : AV × T → R+. Then ψp is classification calibrated
with respect to the partial loss `p over P ⊆ ∆|YV |×|AV | iff there exists a function pred: T̂ → T V

such that for all distributions p(x,a) over X × AV and all sequences of random vector functions
fm : X → T̂ ,

Rψ
p
(fm; p)

P→ Rψ
p

∗ (p) implies R`
p
(pred ◦ fm; p)

P→ R`
p

∗ (p) .

Combination of Theorem 6 and Theorem 3 directly provides the following corollary:
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Corollary 7 Let `p : AV × T → R+ be additively decomposable loss function defined by (1) and
ψp : AV ×T → R+. Then ψp is classification calibrated with repect to `p over P ⊆ ∆|YV |×|AV | iff
there exists a function pred: T̂ → T V such that for all distributions p(x,y,a) over X ×YV ×AV
with the property A and all sequences of random vector functions fm : X → T̂ ,

Rψ
p
(fm; p′′)

P→ Rψ
p

∗ (p′′) implies R`(pred ◦ fm; p′)
P→ R`∗(p

′) ,

where p′(x,y) =
∑

a∈AV p(x,y,a) and p′′(x,a) =
∑

y∈YV p(x,y,a).

Corollary 7 guarantees that `-risk of a decision function h(x) = pred ◦ f(x) learned by a
statistically consistent algorithm minimizing the surrogate loss ψp, which is classification calibrated
w.r.t. the partial loss `p associated to `, converges in probability to the Bayes risk R`∗(p

′), i.e.
learning algorithm minimizing ψp is Bayes consistent. In the next section, we give some examples
of the classification calibrated surrogate partial losses.

5.1. Two examples of surrogate losses classification calibrated w.r.t partial loss

The existing algorithms for learning from missing labels, like Lou and Hamprecht (2012); Fernan-
des and Brefeld (2011); Li et al. (2013), are based on minimization of the ramp-loss and its mild
modifications. To our best knowledge, we are the first to show that the ramp-loss is classification
calibrated for learning from missing labels.

Ramp loss. The partial loss `p can be approximated by the ramp loss

ψp(a, t̂) = max
t∈T V

(
`p(a, t) + t̂t

)
− max

t∈T V
t̂t , (9)

where the surrogate decision set is T̂ ⊆ R|YV |. The function f : X → T̂ learned by minimizing
ψp(a, t̂) is converted to the decision function h(x) = pred(f(x)) via

pred(t̂) ∈ Argmax
t∈T V

t̂t .

Theorem 8 Let `p be a partial loss (2). Then the ramp loss ψp constructed from `p by (9) is
classification calibrated with respect to `p.

PROOF: Let us introduce a shortcut for a set of non-optimal decisions

T̂non = {t̂ ∈ T̂ | pred(t̂) /∈ Argmin
t∈T V

pTa`
p
t} .

Then we can write ∀p ∈ P :

inf
t̂∈T̂non

pTaψ
p(t̂) ≥ inf

t̂∈T̂non
pTa`

p

pred(t̂)
> min

t∈T V
pTa`

p
t , (10)

where the first inequality follows from the fact that the ramp loss ψp(a, t̂) upper bounds the partial
loss `p(a, pred(t)) for any a ∈ AV , t̂ ∈ T̂ (e.g. Chuong et al. (2008)). Let t∗ ∈ Argmint∈T V p

T
a`

p
t

be an optimal decision and let us define t̂
′ ∈ T̂ such that t̂

′
t∗ = 0 and t̂

′
t < K, ∀t ∈ T V \{t∗}, where

90



CONSISTENCY OF STRUCTURED OUTPUT LEARNING WITH MISSING LABELS

K = −maxa,t `
p(a, t). Then, ψp(a, t̂

′
) = `p(a, t∗) for all a ∈ AV and thus pTa`

p
t∗ = pTaψ

p(t̂
′
).

Therefore we have mint∈T V p
T
a`

p
t ≥ inf t̂∈T̂ p

T
aψ

p(t̂) which after combining with (10) gives

inf
t̂∈T̂non

pTaψ
p(t̂) > inf t̂∈T̂ p

T
aψ

p(t̂) .

Next, we give another example of classification calibrated surrogate loss which can be con-
structed from arbitrary single-label calibrated losses.

Additive surrogate loss. Given partial loss `p composed of label losses `v, v ∈ V , according
to (2) can be always approximated by the following additive surrogate loss

ψp(a, t̂) =
∑
v∈V

[[|av| = 1]]ψv(av, t̂v) , (11)

where T̂ ⊆ R|T V |, t̂ ∈ T̂ is a concatenation of |V| vectors t̂v ∈ T̂v ⊆ R|T | and ψv : Y × T̂v → R+

are some surrogate single label losses. The function f : X → T̂ is converted to the decision function
h(x) = pred(f(x)) via pred(t̂) = (predv(t̂v) | v ∈ V) with predv(t̂v) ∈ Argmaxt∈T t̂v,t , where
t̂v,t denotes t-th component of the vector tv.

Theorem 9 Let ψv : Y × T̂v → R+, v ∈ V , be a set of single label losses classification calibrated
w.r.t. to some `v : Y × T → R+. Then, the loss ψp composed of ψv, v ∈ V , according to (11) is
classification calibrated w.r.t. the partial loss `p composed of `v, v ∈ V .

PROOF: Let us introduce a shortcut for a set of non-optimal decisions for v ∈ V :

T̂non = {t̂ ∈ T̂ | pred(t̂) /∈ Argmin
t∈T V

pTa`
p
t}

and
T̂ vnon = {t̂ ∈ T̂ v | predv(t̂) /∈ Argmin

t∈T
pTa,v`

p
v,t} .

Then we can write inf
t̂∈T̂non

pTaψ
p(t̂) = inf

t̂∈T̂non

∑
v∈V

pTvψ
p
a,v(t̂v) =

∑
v∈V

inf
t̂v∈T̂ v

non

pTa,vψ
p
v(t̂v) >∑

v∈V
inf

t̂v∈T̂ v
pTa,vψ

p
v(t̂v) = inf

t̂∈T̂

∑
v∈V

pTa,vψ
p
v(t̂v) = inf

t̂∈T̂
pTaψ

p(t̂) , where strict inequality follows from

the fact that for every v ∈ V the inequality inf
t̂v∈T̂ v

non

pTa,vψ
p
v(t̂v) > inf

t̂v∈T̂ v
pTa,vψ

p
v(t̂v) holds.

Theorem 9 shows that the additive surrogate loss (11) preserves the property of classification
calibration. This allows to convert any set of single label classification calibrated losses to the loss
calibrated w.r.t. the partial loss `p.

In the case of binary labels, Y = {−1,+1}, a classification calibrated surrogate partial loss
ψp can be obtained by using the hinge-loss known to be calibrated Zhang (2004a), i.e. ψv(y, t̂) =
max{0, 1 − yt̂}, v ∈ V . This surrogate partial loss has been proposed in Yu et al. (2014) for
learning from missing labels. To our best knowledge the additive classification calibrated losses (11)
constructed for the case |Y| > 2 has not been proposed so far.
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6. Conclusions

We have defined conditions on the data generating model of partial annotations and proved that
under these conditions minimization of the partial loss provides structured predictor whose expected
risk converges in probability to the Bayes risk defined by an associated complete loss. Using the
general framework of Ramaswamy and Agarwal (2012) we have defined the concept of a surrogate
classification calibrated partial loss whose minimization preserves the statistical consistency and at
the same time can be easier for optimization. We gave concrete examples of surrogate classification
calibrated partial losses. Namely, we showed that the ramp-loss and the additive loss composed of
any set of classification calibrated single label losses are both calibrated w.r.t the partial loss. Hence,
the algorithms based on their minimization (e.g. proposed in Lou and Hamprecht (2012); Fernandes
and Brefeld (2011); Li et al. (2013); Yu et al. (2014)) are statistically consistent.
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Appendix A. Proofs

In this section we give detailed proofs mentioned in Section 4. We start with showing positiveness of
functionsHp(ε) andH(ε). To show this first we need to show that set of all conditional distributions
p(y,a | x) is a compact set.

Lemma 10 For any x ∈ X a set Px containing all distributions p(y,a | x) = p(y | x)p(a | y,x)
induced from a distribution p(x,y,a) with the property A is a compact set.

PROOF: Using p(y,a | x) = p(y | x)p(a | y,x), (4) and (6) we see that for any x ∈ X ,
pya(x) is a composition of functions with vector variables py(x) and pa(x), i.e. pya(x) =
F(py(x),pz(x)). The function F : ∆|YV | × ∆|ZV | → ∆|YV |×|AV | is continuous on a compact
set {py(x) ∈ ∆|YV | | p(y | x) ≥ ρ} × {pz(x) ∈ ∆|ZV | | p(z | x) ≥ ρ}. Thus, Px , {pya(x) =
F(py(x),pz(x)) | p(y | x) ≥ ρ, p(z | x) ≥ ρ,py(x) ∈ ∆|YV |,pz(x) ∈ ∆|ZV |} is a compact set.

Lemma 11 Functions min
t′∈T V

pTa`
p
t′ and min

t′∈T V
pTy `t′ are continuous functions w.r.t. pya ∈ ∆|YV |×|AV |.

PROOF: Since p(y | x) =
∑

a p(y,a | x) and p(a | x) =
∑

y p(y,a | x) the functions py and pa
are continuous functions of pya. Hence, both functions mint′∈T V p

T
a`

p
t′ and mint′∈T V p

T
y `t′ are

continuous since each of them is a composition of minimum over set of continuous functions.

Now we are going to give a proof of positives of function Hp(ε) for any positive ε.

Lemma 12 Let Hp(ε,pya) : R×∆|YV |×|AV | → R be a function defined as follows

minimize
t∈T V

pa
T `pt − min

t′∈T V
pa

T `pt′

subject to py
T `t − min

t′∈T V
py

T `t′ ≥ ε.
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where loss functions `(y, t) and `p(a, t) are defined by (1), (2). Then for any compact subset
P ⊆ ∆|YV |×|AV | and for any ε > 0 there exists δ > 0 such that ∀pya ∈ P holds Hp(ε,pya) > δ,
i.e. Hp(ε) = infpya∈P H

p(ε,pya) > δ.

PROOF: We prove the lemma by contradiction. Assume that (16) does not hold, then ∃ε > 0, and
a sequence (tm,pmya) with tm ∈ T V and pmya ∈ P such that pm T

y `tm − min
t′∈T V

pm T
y `t′ ≥ ε and

lim
m→∞

pma `
p
tm − min

t′∈T V
pma `

p
t′ = 0. Since P is compact, we can choose sub-sequence (which we

still denoted as a whole sequence for simplicity) such that lim
m→∞

pmya = p∗ya ∈ P . Hence, from

lemma (11) it follows that lim
m→∞

pma `
p
tm − min

t′∈T V
p∗a`

p
t′ = 0 and lim

m→∞
pmy `tm − min

t′∈T V
p∗y`t′ ≥ ε.

Sequence (tm) consists of elements from exponentially large but a finite set, therefore there exists
element of sequence t∗ ∈ T V such that the sequence contains infinite number of copies of t∗. Let
us choose this subsequence (which we again denoted as a whole sequence) such that lim

m→∞
tm =

t∗. Note that lim
m→∞

pmya = p∗ya stays same. Then it follows that p∗a`
p
t∗ − min

t′∈T V
p∗a`

p
t′ = 0 and

p∗y`t∗ − min
t′∈T V

p∗y`t′ ≥ ε, ε > 0. We have thus obtained contradiction, i.e. we have found a model

p∗ ∈ P for which lemma (4) does not hold.

Lemma 13 If ∀ε > 0, Hp(ε) , inf
pay∈Px

Hp(ε,pay) > 0 for the loss functions `(y, t) and `p(a, t)

defined by (1), (2) then there exists a nonnegative concave function ξ : R → R+, right continuous
at 0 with ξ(0) = 0, such that ∀ h : X → T V and for all distributions with property A it holds that

Ep(x)py(x)T `h(x)−Ep(x) min
t′∈T V

py(x)T `t′ ≤ ξ
(
Ep(x)pa(x)T `ph(x) − Ep(x) min

t′∈T V
pa(x)T `pt′

)
.

Main idea of proof of Lemma 13 is analogical to the proof of Corollary 26 in Zhang (2004b).
Thus, we provide proof only for Lemma 13 together with two auxiliary lemmas needed for its proof
and proof of “flipped” version of this lemma we leave for the reader.

Lemma 14 Let µ(ε) : R → R+ be a convex function such that µ(ε) ≤ Hp(ε). Then for any
classifier h(x) : X → T we have

µ(Ep(x)py(x)T `h(x) − Ep(x) min
t′∈T V

py(x)T `t′) ≤ Ep(x)pa(x)T `ph(x) − Ep(x) min
t′∈T V

pa(x)T `pt′

PROOF: Using Jensen’s inequality together with inequality Hp(pTy `t − min
t′∈T V

pTy `t′) ≤ pTa`
p
t −

min
t′∈T V

pTa`
p
t′ we have µ(Ep(x)py(x)T `h(x) − Ep(x) min

t′∈T V
py(x)T `t′) ≤ Ep(x)µ(py(x)T `h(x) −

min
t′∈T V

py(x)T `t′) ≤ Ep(x)Hp(py(x)T `h(x) − min
t′∈T V

py(x)T `t′) ≤ Ep(x)(pa(x)T `ph(x) −

min
t′∈T V

pa(x)T `pt′) .

Lemma 15 Let ζ∗(ε) = sup
a≥0,b
{aε + b | ∀z ≥ 0, az + b ≤ Hp(z)}, then ζ∗ is a convex function. It

has the following properties:
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• ζ∗(ε) ≤ Hp(ε),

• ζ∗(ε) is non-decreasing,

• for all convex functions ζ(·) such that ζ(ε) ≤ Hp(ε), ζ(ε) ≤ ζ∗(ε).

• Assume that ∃a > 0 and b ∈ R such that aε + b ≤ Hp(ε) and ∀ε > 0, Hp(ε) > 0. Then
∀ε > 0, ζ∗(ε) > 0.

Lemma 15 is a proposition 25 from Zhang (2004b) for the function Hp(ε), thus we omit its
proof here. Now we are ready to prove Lemma 13.
PROOF: Consider ζ∗(ε) in Lemma 15, Let ξ(δ) = sup{ε : ε ≥ 0, ζ∗(ε) ≤ δ}. Then ζ∗(ε) ≤ δ
implies ε ≤ ξ(δ). Therefore desired inequality comes from Lemma 14.

Given δ1, δ2 ≥ 0 : from ζ∗(
ξ(δ1)+ξ(δ2)

2 ) ≤ δ1+δ2
2 we know that ξ(δ1)+ξ(δ2)2 ≤ ξ( δ1+δ22 ). Thus,

ξ(ε) is concave function.
We now only need to show that ξ(ε) is continuous at 0. From the boundedness of `(y, t), we

know that Hp(z) = +∞ when z > max
y∈YV ,t∈T V

`(y, t). Therefore ∃a > 0 and b ∈ R such that

aε+ b ≤ Hp(ε). Now pick up any ε′ > 0, and let δ′ = ζ∗(ε′)
2 , we know from Lemma 15 that δ′ > 0.

This implies that ξ(δ) < ε′ when δ′ < δ.

Here we just give formulation of “flipped” version of Lemma 13 and its auxiliary Lemma 16.
To prove Lemma 17 we need modified Lemma 14 and 15 for the function from Lemma 16 which is
straightforward to do, thus we leave it for the reader.

Lemma 16 Let H(ε,pya) : R×∆|YV |×|AV | → R be a function defined as follows

minimize
t∈T V

py
T `t − min

t′∈T V
py

T `t′

subject to pa
T `pt − min

t′∈T V
pa

T `pt′ ≥ ε.

where loss functions `(y, t) and `p(a, t) are defined by (1), (2). Then for any compact subset
P ⊆ ∆|YV |×|AV | and for any ε > 0 there exists δ > 0 such that ∀pya ∈ P holds H(ε,pya) > δ,
i.e. H(ε) = inf

pya∈P
H(ε,pya) > δ.

PROOF: The proof is analogous to the proof of Lemma 12.

Lemma 17 If ∀ε > 0, H(ε) , inf
pay∈Px

H(ε,pay) > 0 for the loss functions `(y, t) and `p(a, t)

defined by (1), (2) then there exists a nonnegative concave function ζ : R → R+, right continuous
at 0 with ζ(0) = 0, such that ∀ h : X → T V and for all distributions with property A it holds that

Ep(x)pa(x)T `ph(x)−Ep(x) min
t′∈T V

pa(x)T `pt′ ≤ ζ
(
Ep(x)py(x)T `h(x) − Ep(x) min

t′∈T V
py(x)T `t′

)
.

Proof of Lemma 17 is similar to proof of Lemma 13.
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