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Abstract. We show that classification rules used in ordinal regression
are equivalent to a certain class of linear multi-class classifiers. This ob-
servation not only allows to design new learning algorithms for ordi-
nal regression using existing methods for multi-class classification but
it also allows to derive new models for ordinal regression. For example,
one can convert learning of ordinal classifier with (almost) arbitrary loss
function to a convex unconstrained risk minimization problem for which
many efficient solvers exist. The established equivalence also allows to in-
crease discriminative power of the ordinal classifier without need to use
kernels by introducing a piece-wise ordinal classifier. We demonstrate
advantages of the proposed models on standard benchmarks as well as
in solving a real-life problem. In particular, we show that the proposed
piece-wise ordinal classifier applied to visual age estimation outperforms
other standard prediction models.
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1 Introduction

The classification problem consists of predicting a hidden class label y ∈ Y
based on observations x ∈ X using a classifier h : X → Y. In the statistical
classification, the pairs of (x, y) are assumed to be a realization of some ran-
dom variables distributed according to P (x, y). This paper analyses a class of
classification problems fitting under the ordinal regression setting which imposes
additional assumptions on the distribution P (x, y). In particular, the labels in
Y are assumed to be ordered, w.l.o.g. we use Y = {1, . . . , Y } equipped with
a natural order, and they are modeled as a result of a course measurement of
some continuous random variable χ(x). More precisely, let as define a set of Y
intervals

U(1) = (−∞, θ1] , U(2) = (θ1, θ2], . . . , U(Y ) = (θY−1,∞) ,

determined by a sequence of non-decreasing thresholds θ1, θ2, . . . , θY−1. The
standard model of [1] assumes that we observe label y ∈ Y if a realization of
the random variable χ(x) is in the interval U(y). Thus the classes correspond to



contiguous ordered intervals on some continuous scale. Based on this assumption
various ordinal regression models have been proposed and they are routinely ap-
plied in fields like social sciences, epidemiology, information retrieval or, recently
in computer vision.

A typical problem is how to learn the classifier given a set of training ex-
amples {(x1, y1), . . . , (xm, ym)} ∈ (X ×Y)m drawn from i.i.d. random variables
distributed according to some unknown distribution P (x, y) which satisfies the
“ordering” assumption mentioned above. In this paper, we consider the formu-
lation which defines the target classifier to be the one with minimal expected
risk (also called Bayes classifier)

R(h) = Ep(x,y)

(
∆(y, h(x)

)
where ∆ : Y × Y → R+ is a given application specific loss function penalizing
responses of the classifier.

In statistics, the learning problem is typically solved by constructing a plug-
in Bayes classifier which replaces the true distribution P (x, y) by its Maximum-
Likelihood estimate. This approach requires to guess the shape of the underlying
distribution P (x, y) which can be difficult in practice. A different approach based
on the risk minimization paradigm has been put forward in the machine learning
literature. The idea is to learn the classifier directly from the examples without
the need to estimate the generating distribution [2]. This approach selects the
best classifier from a prescribed class of classifiers by minimizing a surrogate of
the expected risk R(h). The typical class of classifiers considered in the context
of ordinal regression is the linear thresholded rule

h(x;w,θ) = 1 +

Y−1∑
k=1

[[〈x,w〉 > θk]] , (1)

where x ∈ X = Rn is a vector of real-valued features, w ∈ Rn is a parameter
vector and θ = (θ1, . . . , θY−1) ∈ RY−1 a vector of thresholds. In the sequel
we refer to (1) as the ordinal (ORD) classifier. We call the vector θ admissible
iff its components are non-decreasing i.e. θ ∈ Θ = {θ′ ∈ RY−1 | θ′k ≤ θ′k+1,
k = 1, . . . , Y − 1}. The form of the ORD classifier reflects the assumption that
the classes correspond to intervals on R. It is seen that ORD classifier predicts
y iff the value 〈x,w〉 is in the interval U(y).

A Perceptron-like algorithm called PRank learning the ORD classifier in an
on-line fashion has been proposed in [3]. They formulate learning as minimiza-
tion of the empirical risk with the Mean Absolute Error (MAE) loss function
∆(y, y′) = |y− y′| (also called ranking loss) and provide mistake bounds for the
case of separable examples. The authors of [4] proposed to learn the ORD clas-
sifier by a modified Support Vector Machine algorithm originally designed for
two-class classification. The paper [5] improves the algorithms of [4] by enforc-
ing the learned thresholds to be admissible. A generic framework which allows
to convert learning of the ORD classifier to the problem of learning a two-class
linear SVM classifier (with modified example weights) have been proposed in [6].



They show that appropriately weighted SVM hinge-loss is an upper bound of
so called V-shaped loss (e.g. MAE and the 0/1-loss are V-shaped) evaluated on
the ORD classifier. The paper [7] analyses a relation between the ordinal re-
gression and the multi-class classifiers, however, by their definition the ordinal
classifier as any Bayesian classifier with the V-shaped loss function, i.e. they do
not considered ordering of the labels at all.

The previous works in their core convert learning of the ORD classifier into
learning a set of two-class classifiers. The resulting two-class classifiers are trained
by a modified SVM algorithm [4][5][6] or Perceptron [3]. In this paper we show
that such conversions are not necessary. We prove that the ORD classifier is
equivalent to a linear multi-class classifier whose class parameter vectors are
collinear and their magnitude is linearly increasing with the label. We call the
new representation the Multi-class ORDinal (MORD) classifier. Our equivalence
proof is constructive so that we can convert any ORD classifier to the MORD
classifier and vice-versa. We show that the new representation can be beneficial
for learning. In particular, the well understood methods for learning multi-class
linear classifiers can be readily applied. We experimentally show that a generic
multi-class SVM algorithm used to learn MORD delivers the same (or slightly
better) results when compared to the specialized learning algorithms derived
for the ORD classifier. The proposed approach works for (almost) arbitrary loss
function unlike the existing methods which require V-shaped losses. In addition,
we show that the new representation allows to increase discriminative power of
the ordinal classifier without need to use kernels by introducing a piece-wise or-
dinal classifier. We demonstrate advantages of the proposed models on standard
benchmarks as well as in solving a real-life problem. We show that the proposed
piece-wise ordinal classifier applied to visual age estimation outperforms other
prediction models and is also comparable to commercial solutions.

The paper is organized as follows. The equivalence between the ORD classifier
and the linear multi-class classifiers is described in Section 2. In Section 3, we
define a new model for ordinal regression. In Section 4, we compare several
classification models for ordinal regression in an unified view. In Section 5, we
described a generic algorithm for learning the proposed models. Experiments are
presented in Section 6 and Section 7 concludes the paper.

2 Ordinal Regression as Linear Multi-class Classification

Let us consider one-dimensional observations x ∈ X = R in which case the ORD
classifier h(x) = 1 +

∑Y−1
k=1 [[x > θk]] splits the real axis into Y intervals defined

by thresholds θ1 ≤ θ2 ≤ · · · ≤ θY−1. One may think of representing the ORD
classifier in the form

h′(x) = argmax
y∈Y

f(x, y) , (2)

where f : R× Y → R is a discriminant function. If we manage to construct the
discriminant functions such that f(x, y) ≥ f(x, y′), y′ ∈ Y \{y} iff h(x) = y then
both representations will be equivalent i.e. h′(x) = h(x), x ∈ R. Let us consider



a linear discriminant function with the slope equal to y, i.e. f(x, y) = x · y + by,
in which case (2) becomes a linear multi-class classifier. It is not difficult to see
that such linear classifier also splits the real axis into intervals. Fig 1 shows an
example of the ORD classifier and its equivalent linear classifier h′(x).

θ1 θ2

3x+ b3

2x+ b2

x+ b1

Fig. 1. The figure illustrates relation between the ORD classifier h(x) = 1+
∑Y−1

k=1 [[x >
θk]] and its alternative representation h′(x) = argmaxy∈Y(x·y+by) for the (Y = 3)-class
problem. Note, that x and y-axes have different scale in order to save space.

The same idea can be applied for n-dimensional observations x ∈ X = Rn.
The multi-class linear classifier which can represent the ORD classifier (1) reads

h′(x;w, b) = argmax
y∈Y

(
〈x,w〉 · y + by

)
, (3)

where w ∈ Rn is parameter vector and b = (b1, . . . , bY ) ∈ RY is a vector of
intercepts. We denote (3) as the Multi-class ORDinal (MORD) classifier. Inside
the paper we assume that the “argmax” operator returns the minimal label in
the case of more than one maximizer.

A natural question is whether both representations are equivalent in the
sense that any ORD classifier can be represented by some MORD classifier and
vice-versa. The following theorem gives a positive answer to the question.

Theorem 1. The ORD classifier (1) and the MORD classifier (3) are equivalent
in the following sense. For any w ∈ Rn and admissible θ ∈ Θ there exists b ∈ RY

such that h(x,w,θ) = h′(x,w, b), ∀x ∈ Rn. For any w ∈ Rn and b ∈ Rn there
exists admissible θ ∈ Θ such that h(x,w,θ) = h′(x,w, b), ∀x ∈ Rn.

A proof is given in Appendix A.
Our proof is constructive in the sense that we can provide a conversion from

the ORD classifier to the MORD classifier and vice-versa. In exotic cases, which
however may appear in practice, some classes can collapse to a single point and
effectively disappear. To cover all such situations, we first define the concept of
non-degenerated classifier and then we give formulas for the conversions.



Definition 1 (Degenerated and non-degenerated classifier). We call class
y ∈ Y non-degenerated for classifier h′(x) iff Xy = interior({x ∈ X : h′(x) =
y}) 6= ∅. Classifier h′(x) is non-degenerated iff all classes are non-degenerated.
In opposite case the classifier is called degenerated.

Given a MORD classifier, the class ŷ ∈ Y is non-degenerated iff the linear
inequalities

zŷ + bŷ > z(ŷ − k) + bŷ−k, 1 ≤ k < ŷ ,
zŷ + bŷ ≥ z(ŷ + t) + bŷ+k, 1 < t ≤ Y − ŷ , (4)

are solvable w.r.t. z ∈ R. It is seen that we can check it in O(Y ) time. We refer
to the proof for more details.

Conversion formulas. Given parameters of the ORD classifier w ∈ Rn, θ ∈ Θ,
the equivalent MORD classifier has parameters w and b given by

b1 = 0 and by = −
y−1∑
i=1

θi, y = 2, . . . , Y. (5)

The conversion from the MORD classifier to the ORD classifier is done dif-
ferently for the non-generated and the degenerated classifier. Given parameters
of a non-degenerated MORD classifier w ∈ Rn and b ∈ RY , we can compute
thresholds θ ∈ Θ of the equivalent ORD classifier by

θy = by − by+1, y = 1, . . . , Y − 1 . (6)

Given parameters of a degenerated MORD classifier w ∈ Rn and b ∈ RY ,
we compute thresholds θ ∈ Θ of the equivalent ORD classifier by

θyi
= · · · = θyi+1−1 =

byi−byi+1

(yi+1−yi)
, i = 1, . . . , p, (7)

where yi ∈ Y, i = 1, . . . , p is an increasing subsequence of non-degenerated
classes.

Finally, let us note that the MORD classifier is represented by n + Y pa-
rameters insted of n + Y − 1 parameters of the ORD classifier. However, the
parameters of the MORD classifier are unconstrained which makes the MORD
representation attractive for learning because no additional constraints on the
intercepts θ ∈ Θ are not needed.

3 Piece-wise Ordinal Regression Classifier

The discriminative power of the ORD classifier can be limiting in some cases.
Mapping the observations into higher dimensional space via usage of kernel func-
tions is one way to make the linear ORD classifier more discriminative. Though
the “kernalization” of the ORD classifier is straightforward it is not suitable in
all cases. For example, the kernels are prohibitive in applications which require
processing of large amounts of training examples and/or if a real-time response



of the classifier is the must. Instead, we proposed to stay in the original feature
space where we construct a combined classifier from a set of simpler component
classifiers. In our case, the component classifiers will be the MORD classifiers,
each responsible for a subset of labels.

Let Z > 1 be a number of cut labels (ŷ1, ŷ2, . . . , ŷZ) ∈ YZ such that ŷ1 = 1,
ŷZ = Y and ŷz ≤ ŷz+1, z ∈ Z = {1, . . . , Z − 1}. The cut labels define a
partitioning of Y into Z subsets Yz = {y ∈ Y | ŷz ≤ y ≤ ŷz+1}, z ∈ Z. We
will model dependence between the observation x and a subset of labels Yz by
a component classifier

hz(x) = argmax
y∈Yz

fz(x, y) (8)

where fz : Rn × Yz → R is a discriminant function. We define a combined clas-
sifier whose discriminant function is composed of discriminant functions of the
component classifiers as follows

h′′(x) = argmax
z∈Z

max
y∈Yz

fz(x, y) . (9)

We set the discriminant functions to be

fz(x, y) =
〈
x,wz(1− α(y, z)) +wz+1α(y, z)

〉
+ by (10)

where

α(y, z) =
y − ŷz

ŷz+1 − ŷz
and W = [w1, . . . ,wZ ] ∈ Rn×Z , b ∈ RY are parameters. With these definitions
it can be shown that: i) the component classifiers (8) are the ORD classifiers and
ii) the combined classifier (9) is well defined because all its neighboring discrim-
inant functions are consistent at the cut labels, i.e. fz(x, ŷz+1) = fz+1(x, ŷz+1),
z ∈ Z, holds. The claim i) is seen after substituting (10) into (8) which after
some algebra yields

hz(x) = argmax
y∈Yz

(
〈x,wz+1 −wz〉α(y, z) + by

)
and since α(y, z) is linearly increasing with y, Theorem 1 guarantees that hz(x)
is the MORD classifier equivalent to the ORD classifier. The claim ii) follows
from the fact that α(ŷz+1, z) = 1 and α(ŷz+1, z+ 1) = 0, and thus fz(x, ŷz+1) =
〈x,wz+1〉+ bŷz+1

= fz+1(x, ŷz+1).
We can explicitly write the component classifier, which we call the Piece-Wise

Multi-class ORDinal (PW-MORD) classifier, as follows

h′′(x,W , b) = argmax
z∈Z

argmax
y∈YZ

(
〈x,wz(1−α(y, z)) +wz+1α(y, z)〉+ by

)
. (11)

Figure 2 visualizes the ORD (=MORD) and the PW-MORD classifier on a
toy data. It is seen that the distribution of the data cannot be well described by
the ORD classifier while the PW-MORD composed of 3 ORD classifiers provides
much better model in this case.
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Fig. 2. The figure shows the partitioning of 2-dimensional feature space realized by the
ORD classifier and the PW-MORD classifier with Z = 3 components. The cut labels
for the PW-MORD classifier where set to {1, 4, 7, 10}.

4 Unified View of Classifiers for Ordinal Regression

Let us consider the linear multi-class classifier

h(x,W , b) = argmax
y∈Y

(
〈x,

Z∑
z=1

β(y, z)wz〉+ by

)
(12)

where W = [w1, . . . ,wZ ] ∈ Rn×Z , b = [b1; . . . ; bY ] ∈ RY are parameters and
β : Y × {1, . . . , Z} → R are fixed numbers. We are going to describe several
instances of the classifier (12) which can be useful models for ordinal regression.

1. Rounded linear-regression rule

h(x,w, b) = max(1,min(Y, round(〈w,x〉+ b))) (13)

is the most simplest model for the ordinal regression obtained by clipping a
rounded response of the standard linear regression rule to the interval [1, Y ]. It
is easy to show that (13) is an instance of (12) recovered after setting Z = 1,
β(1, y) = 2y, y ∈ Y, and fixing the components of the intercept vector b to
by = 2by − y2. Using the conversion formula (6) we can show that the rounded
linear-regression rule is equivalent to the ORD classifier with equal width of the
decision intervals, namely, with θk+1 − θk = 2, k = 1, . . . , Y − 2.

2. Multi-class linear classifier

h(x,W , b) = argmax
y∈Y

(
〈wy,x〉+ by

)
(14)

is recovered after setting Z = Y and β(y, z) = [[y = z]], y ∈ Y, z ∈ {1, . . . , Z}. It
is the most generic (and also most discriminative) form of (12) which completely
ignores ordering of the labels.



3. The proposed MORD classifier (3) is recovered after setting Z = 1, W = w1,
and β(y, 1) = y, y ∈ Y. We showed that the MORD classifier is equivalent to
the standard ORD classifier (1) most frequently used in the ordinal regression.

4. The proposed PW-MORD classifier (11) is recovered after setting β(y, z)
according to

β(y, z) = 1− α(y, z) for z = 1, . . . , Z − 1 , y ∈ Yz ,
β(y, z) = α(y, z − 1) for z = 2, . . . , Z , y ∈ Yz ,
β(y, z) = 0 otherwise.

(15)

The PW-MORD is composed from Z − 1 MORD classifiers each modeling a
subset of labels (see Section 3). The PW-MORD is most flexible as it allows to
smoothly control its the complexity by a single parameter Z. It is easy to see
that for Z = 2 the PW-MORD is equivalent to the MORD (=ORD) classifier
while for Z = Y it becomes the Multi-class linear classifier.

5 Generic Learning Algorithm for Ordinal Regression

In this section we consider problem of learning parameters of the generic lin-
ear multi-class classifier (12) from given example set {(x1, y1), . . . , (xm, ym)} ∈
(Rn × Y)m. We propose to use a generic and well understood framework orig-
inally developed for the structured output learning [8]. Following [8], we define
an approximate empirical risk

R(W , b) =
1

m

m∑
i=1

max
y∈Y

[
∆(y, yi) +

〈
xi,
∑
z∈Z

β(y, z)wz

〉
(y− yi) + by − byi

]
, (16)

where ∆ : Y × Y → R is any loss function satisfying

∆(y, y) = 0 ,∀y ∈ Y and ∆(y, y′) > 0 ,∀(y, y′) ∈ Y2 such that y 6= y′ .
(17)

This risk approximation uses the idea of the margin-rescaling loss functions [8]
applied on the classifier (12). It is easy to prove that R(w, b) is a convex upper
bound on the true empirical risk

Remp(W , b) =
1

m

m∑
i=1

∆(yi, h(xi,W , b)) .

We can formulate learning of the classifier (12) as the following convex uncon-
strained minimization problem

(W ∗, b∗) = argmin
W∈Rn,b∈RY

[
λ

2

(
‖W ‖2 + ‖b‖2

)
+R(W , b)

]
. (18)

where ‖·‖ denotes the Frobenius norm and λ > 0 is a prescribed (regularization)
constant used to control over-fitting. The setting with λ = 0, referred to as the



empirical risk minimization learning, means that we simply try to find the clas-
sifier with minimal upper bound R(W , b) on the empirical risk Remp(W , b), in
other words the one which performs best on training examples measured in terms
of the prescribed loss ∆(y, y′). The setting λ > 0, referred to as the regularized
risk minimization learning, is equivalent to minimizing the risk R(W , b) w.r.t.
parameters constrained to be inside a ball with radius inversely proportional to
λ. The latter setting can be also interpreted as trying to maximize a generalized
margin between the training examples and the classifier.

A big effort has been put by the ML community into development of effi-
cient solvers for the problem (18). For example, a generic bundle method for
risk minimization [9] or its accelerated variant [10] can be readily applied to
solve (18).

Let us compare our framework with the existing algorithms for learning the
ORD classifier. The existing algorithms consider a limited set of loss functions
∆(y, y′). The most generic approach of [6] derives an upper bound for so called
V-shaped losses: a loss is called V-shaped if it satisfies (17) and in addition

∆(y, y′) ≥ ∆(y, y′ + 1) if y′ ≤ y and ∆(y, y′) ≤ ∆(y, y′ + 1) if y′ ≥ y .
(19)

The V-shaped loss (19) subsumes the most frequently used losses, i.e. the MAE
loss ∆(y, y′) = |y − y′| and the 0/1-loss ∆(y, y′) = [[y 6= y]], yet it is not as
generic as the loss (17) applicable in our framework. Next limitation of the
existing algorithms is that they have to care about feasibility of the thresholds
θ ∈ Θ because they work directly on the parameters of the ORD classifier. This
requires to either introduce additional constraints on the thresholds θ ∈ Θ or to
impose additional constraints on the loss function, namely, that the loss must be
convex [6]. For instance, the 0/1-loss is not convex hence the learning algorithms
require extra inequality constraints (like the SVOR-EXP algorithm of [5]) which
may complicate the optimization. Note that in our approach the problem (18)
remains unconstrained irrespectively to the selected loss.

The generality of our framework, however, does not automatically imply
that the risk approximation (16) is better (tighter) than those used in existing
methods. We experimentally show that in the case of the MAE loss, i.e. the
most frequently used one, the proposed approximation (16) provides slightly
but consistently better approximation than the existing ones.

6 Experiments

In this section we empirically compare the proposed methods with existing algo-
rithms. In Section 6.1 we present experiments on standard benchmarks. Experi-
ments on real-life problem of visual age estimation are described in Section 6.2.

In our experiments we compare the following methods:

1. MORD. Proposed classifier (3) trained by (18) using the MAE loss.
2. PW-MORD. Proposed classifier (11) trained by (18) using the MAE loss.



3. LinReg. Rounded linear regressor (13) trained by (18) using the MAE loss.
4. LinClass. Standard multi-class linear classifier (14) trained by (18) using the

MAE loss. It is an instance of the Structured Output Classifier [8]. Note that
LinClass is up to the loss very similar to the standard multi-class SVM.

5. SVOR-EXP. Support Vector Ordinal Regression with explicit constraints [5].
6. SVOR-IMC. Support Vector Ordinal Regression with implicit constraints [5].

The SVOR-IMC and SVOR-EXP are instances of a generic framework of [6]
developed for learning the ORD classifier (1). It was shown that the algorithms
minimize a convex upper bound on the MAE-loss (SVOR-IMC) and the 0/1-
loss (SVOR-EXP), respectively. Other methods for learning the ORD classifier
have been proposed like SVM-based algorithms of [4] or the Support Vector
Regression [2]. However, they are consistently outperformed by the SVOR-EXP
and SVOR-IMC hence we compare only against the latter two.

We consider the MAE ∆(y, y′) = |y − y′| as the desired metric because it is
by far the most frequently used loss in the ordinal regression context as well as
it is suitable for the real-life problem we consider.

All tested algorithms are instances of the regularized risk minimization frame-
work (18). Note that SVOR-IMC and SVOR-EXP were originally formulated as
quadratic programs but can be easily converted to (18). In the case of SVOR-IMC
the problem (18) uses additional constraints θ ∈ Θ. The learning problem (18)
is specified up to the regularization constant λ tuned on validation data from a
fixed set of values Λ. In particular, we set Λ = {1, 0.1, 0.01, 0.001, 0}. We used
two optimization algorithms to solve (18). For λ > 0 we used the Bundle Meth-
ods for Risk Minimization (BMRM) [9]. For λ = 0 we used the Analytic Center
Cutting Plane Method (ACCPM) proposed in [11]. To avoid implementation
bias, we wrote all algorithms by ourselves using mainly Matlab and C only to
program a QP solver called inside the BMRM algorithm. In both cases we set
the solvers to find the ε-optimal solution of the learning objective, in particular,
we stopped the solver if the objective was below factor of 1.01 of the optimal
value (we use the Lagrange dual to get the optimality certificate).

6.1 Standard Benchmarks

We performed experiments with seven data sets 1 used in [5][6]. We followed
exactly the same evaluation protocol. The data were produced by discretising
metric regression problems into Y = 10 bins. Data are randomly partitioned
to train/test part. The partitioning was repeated 20 times. The features are
normalized to have zero mean and unit variance coordinate wise. The reported
results are averages and standard deviations computed over the 20 partitions.
The feature dimension and train/test ratios are listed in Table 1.

We performed two experiments. The goal of the first experiment is to assess
the ability of the proposed training algorithm (18) to minimize the empirical

1 The link http://www.dcc.fc.up.pt/~ltorgo/Regression/census.tar.gz to the
eight dataset “Census” was broken hence we could not include it.



n train/test TrnRisk MORD SVOR-IMC SVOR-EXC

Pyrimidines 27 50/24 MAE 0.433 (0.093) 0.482 (0.104) 0.491 (0.125)
0/1 0.343 (0.064) 0.391 (0.069) 0.329 (0.078)

MachineCPU 6 150/59 MAE 0.914 (0.052) 0.920 (0.046) 0.972 (0.068)
0/1 0.602 (0.035) 0.611 (0.027) 0.594 (0.029)

Boston 13 300/206 MAE 0.812 (0.043) 0.823 (0.047) 0.869 (0.050)
0/1 0.558 (0.026) 0.573 (0.027) 0.551 (0.028)

Abalone 8 1000/3177 MAE 1.412 (0.038) 1.422 (0.041) 1.632 (0.063)
0/1 0.734 (0.015) 0.748 (0.017) 0.715 (0.016)

Bank 32 3000/5192 MAE 1.421 (0.021) 1.429 (0.021) 1.913 (0.051)
0/1 0.700 (0.006) 0.716 (0.007) 0.690 (0.005)

Computer 21 4000/4192 MAE 0.632 (0.010) 0.632 (0.010) 0.653 (0.012)
0/1 0.477 (0.006) 0.480 (0.006) 0.477 (0.008)

California 8 5000/15640 MAE 1.178 (0.013) 1.182 (0.014) 1.233 (0.014)
0/1 0.692 (0.008) 0.697 (0.007) 0.681 (0.008)

Table 1. Comparison of the MORD, SVOR-IMC and SVOR-EXC in terms of the
ability to minimize the empirical risk measured in terms of the MAE and 0/1-loss. The
columns 2 and 3 show data dimension and training/testing split ratio, respectively.

risk if compared to the existing algorithms SVOR-IMC and SVOR-EXC. Note
that all the tested methods learn exactly the same ORD classifier by minimizing
a convex approximation of the empirical risk whose direct optimization is not
tractable. SVOR-IMC and SVOR-EXC use a specific risk approximation tailored
for the ORD classifier. Our method makes it possible to train the ORD classifier
using the standard margin-rescaling. In this experiment we set λ = 0, i.e. we
minimized just the risk approximation which we want to assess. Table 1 summa-
rizes the results. It is seen that our method slightly but consistently (up to one
near draw for “Computer” data) outperforms the SVOR-IMC approximation in
terms of the MAE loss for which both methods were intended. The results of
SVOR-EXC optimizing the 0/1-loss are included just for completeness.

The goal of the second experiment is to assess the ability to minimize the
test risk (generalization error). We compare the proposed methods PW-MORD
against the standard models. We considered the PW-MORD with Z = 2, 3, 4 and
the cut labels set symmetrically, i.e. {1, 10}, {1, 5, 10} and {1, 4, 7, 10}. Note that
PW-MORD with Z=2 corresponds to the MORD classifier hence not included in
testing. The optimal complexity of the PW-MORD classifier, i.e. the number Z,
as well as the regularization constant λ ∈ {1, 0.1, 0.01, 0.001, 0} for all methods
were selected based on 5-fold cross-validation estimate of the MAE (on training
split). Table 2 summarizes the results. In most cases the PW-MORD classifier
outperformed the competitors in terms of the target MAE metric. We attribute
this fact to its flexible complexity and the ability of the proposed training al-
gorithm to well approximate the loss function (see previous experiment). The
PW-MORD was outperformed only by the LinReg on the “Pyrimids” data and
by the LinCls on the “California” data. This is result is not surprising because
the “Pyrimids” data have very few training examples hence the simplest regres-



sion model best avoids over-fitting. On the other hand, the “California” data
are low dimensional with high number of training examples and thus LinCls, the
most flexible model, can best describe the data without overfitting, i.e. the or-
dering prior imposed by the other models is not needed here. A surprising result
is that the winner in terms of the MAE loss is in most cases the best method for
the 0/1-loss, i.e. it is better than the SVOR-EXC algorithm directly optimizing
the 0/1-loss. Currently we do not have a good explanation of this observation.

TstRisk LinCls LinReg PW-MORD (Z) SVOR-IMC SVOR-EXC

Pyrimidines MAE 1.59 (0.25) 1.37 (0.27) 1.50 (0.38) 4 1.52 (0.29) 1.63 (0.28)
0/1 0.76 (0.10) 0.76 (0.10) 0.74 (0.09) 0.79 (0.07) 0.80 (0.08)

MachineCPU MAE 1.00 (0.15) 1.03 (0.10) 0.95 (0.12) 2 0.95 (0.11) 1.01 (0.13)
0/1 0.65 (0.06) 0.70 (0.06) 0.62 (0.06) 0.63 (0.06) 0.65 (0.05)

Boston MAE 0.94 (0.07) 0.95 (0.06) 0.86 (0.05) 3 0.91 (0.06) 0.97 (0.08)
0/1 0.62 (0.03) 0.64 (0.03) 0.58 (0.03) 0.61 (0.03) 0.62 (0.04)

Abalone MAE 1.42 (0.02) 1.51 (0.01) 1.41 (0.02) 4 1.47 (0.01) 1.68 (0.04)
0/1 0.73 (0.01) 0.79 (0.01) 0.73 (0.01) 0.76 (0.01) 0.73 (0.01)

Bank MAE 1.45 (0.01) 1.51 (0.01) 1.45 (0.01) 4 1.45 (0.01) 1.94 (0.05)
0/1 0.70 (0.01) 0.77 (0.01) 0.70 (0.01) 0.72 (0.01) 0.69 (0.00)

Computer MAE 0.62 (0.01) 0.72 (0.01) 0.61 (0.01) 4 0.63 (0.01) 0.65 (0.01)
0/1 0.47 (0.00) 0.56 (0.01) 0.47 (0.01) 0.48 (0.01) 0.48 (0.00)

California MAE 1.12 (0.00) 1.21 (0.01) 1.14 (0.00) 4 1.18 (0.01) 1.23 (0.01)
0/1 0.67 (0.00) 0.71 (0.00) 0.68 (0.00) 0.70 (0.00) 0.68 (0.00)

Table 2. Comparison of various classification models in terms of the test risk measured
in terms of the MAE and the 0/1-loss. The column (Z) shows the best complexity of
the PW-MORD classifier selected in the cross-validation stage.

6.2 Visual Age Prediction

We consider problem of predicting an apparent age of a person from an image
of his/her face. We experimented on a dataset containing 37,668 face images ob-
tained by putting together standard face-recognition benchmarks (Feret, PAL,
LFW, BioID, FaceTracer, xm2vts) and completing the rest by images down-
loaded from the Internet. Images were manually annotated by age which was in
range from 0 to 100 years. The database has equal ratio of male and females.
Each face was registered by a landmark detector [12], normalized to a canonical
image 30 × 20 by affine transform and described by pyramid-of-LBP descrip-
tor [13]. Each face is represented by n = 159, 488-dimensional sparse binary
vector. We randomly split the data into training/validation/test part in ration
60/20/20. The validation part is used to tune the regularization constant. The
reported results are averages and standard deviations of test errors computed
over 3 splits.

We compared the linear multi-class SVM classifier (LinCls), the standard
ordinal regression model implemented via the MORD representation and the



PW-MORD classifier. In the case of LinCls we had to discretize the age into
10 equal bins because modeling all 101 classes would not be feasible (only rep-
resentation of the classifier would require 120MB). We used PW-MORD with
Z=11 and set the cut labels to equally cover the range of 101 years. Thus the
PW-MORD classifier models each decade by a single linear ordinal regression
classifier. We also compared against a commercial face recognition system de-
veloped by FACE.COM 2. Results are summarized in Table 3 reporting the
target MAE loss as well as the error levels. The proposed PW-MORD signifi-
cantly outperformed all competing ordinal regression models by significant mar-
gin. The MORD classifier (=standard ORD model) is apparently not sufficiently
discriminative. On the other hand, training full multi-class classier for all 101
classes is not feasible. The PW-MORD model also compares favorably with the
FACE.COM system. Namely, in terms of MAE metric the FACE.COM is slightly
better, however, the PW-MORD provides substantially better results for lower
error levels what is typically preferred in practice.

TstRisk LinCls PW-MORD MORD FaceCom

MAE 11.19 (0.16) 7.92 (0.06) 14.53 (0.13) 7.89 (NA)

Occurrence in [%]
Error level LinCls PW-MORD MORD FaceCom

5 44.8 52.9 28.3 47.4
10 65.2 74.5 47.8 73.7
20 84.6 91.1 74.4 93.3
30 91.7 97.2 88.9 98.2
40 94.8 99.2 95.6 99.5
50 96.4 99.8 98.4 99.9
60 97.8 99.9 99.6 100.0
70 98.9 100.0 99.9 100.0

Table 3. Comparison of various classifiers on the visual age estimation problem. The
upper table shows the test MAE, i.e. average prediction error in years. The bottom
table shows error levels for the tested classifiers, e.g. the first row tells the percentage
of examples with MAE not greater than 5 years.

7 Conclusions

We have shown equivalence between the classification rule used in ordinal regres-
sion and a class of linear multi-class classifiers. The established equivalence has
the following benefits. First, it allows to better understand various classification

2 FACE.COM (www.face.com) provided a free access server with face recognition tech-
nology. We passed our data though the server between July 15 and August 15, 2012.
Recently, the company has been acquired by Facebook and the server closed.



models. Second, it provides a path to develop new learning algorithms for ordi-
nal regression borrowing from well understand multi-class classification. Third,
it allows to design new models for ordinal regression with higher discriminative
power. Experiments on standard benchmarks as well as a real-life problem of
visual age estimation demonstrate usefulness of the proposed method.
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11. Antoniuk, K., Franc, V., Hlaváč, V.: Learning markov networks by analytic center
cutting plane method. In: Proceedings of International Conference on Pattern
Recognition (ICPR). (2012) 2250–2253

12. Uřičář, M., Franc, V., Hlaváč, V.: Detector of facial landmarks learned by the
structured output SVM. In: Proceedings of the International Conference on Com-
puter Vision Theory and Applications (VISAPP). (2012) 547–556

13. Sonnenburg, S., Franc, V.: Coffin: A computational framework for linear svms.
In: Proceedings of the 27th Annual International Conference on Machine Learning
(ICML 2010), Madison, USA, Omnipress (June 2010)



Appendix A: Proof of Theorem 1

Let us prove the first part of theorem stating that for any w ∈ Rn and admissible
θ ∈ Θ there exists b ∈ RY such that h(x,w,θ) = h′(x,w, b), ∀x ∈ Rn. In
particular we show that b ∈ RY given by the formula (5) satisfies theorem.

First, suppose the ORD classifier h(x;w,θ) outputs y ∈ Y for some x ∈ X ,
i.e. θy ≥ 〈w,x〉 > θy−1 holds1. The MORD classifier h′(x,w, b) outputs the
same y iff the system of inequalities

〈w,x〉y + by > 〈w,x〉(y − k) + by−k, 1 ≤ k < y,
〈w,x〉y + by ≥ 〈w,x〉(y + t) + by+t, 1 ≤ t ≤ Y − y (20)

holds. The system (20) can be rewitten as2

〈w,x〉k >
y−1∑

i=y−k
θi, 1 ≤ k < y,

〈w,x〉t ≤
y+t−1∑
i=y

θi, 1 ≤ t ≤ Y − y.
(21)

The validity of (21) follows from

〈w,x〉k > θy−1k ≥
y−1∑

i=y−k
θi, 1 ≤ k < y,

〈w,x〉t ≤ θyt ≤
y+t−1∑
i=y

θi, 1 ≤ t ≤ Y − y ,
(22)

where the first inequality (on both lines) is induced by θy ≥ 〈w,x〉 > θy−1 and
the second inequality (also on both lines) is due to θ1 ≤ θ2 ≤ · · · ≤ θY−1.

Second, suppose the MORD classifier h′(x,w, b) outputs y ∈ Y for some
x ∈ X , which means that

〈w,x〉y + by > 〈w,x〉(y − 1) + by−1,
〈w,x〉y + by ≥ 〈w,x〉(y + 1) + by+1,

(23)

which is equivalent to

by − by+1 ≥ 〈w,x〉 > by−1 − by . (24)

Finally, after combining (24) with (5) we obtain θy ≥ 〈w,x〉 > θy−1, which
implies that the ORD classifier h(x,w,θ) outputs the same y.

Let us make an observation before proving the second part of the theorem. Let
y1, . . . , yp, denote an increasing subsequence of the non-degenerated classes of the

1 The inequalities are different in the case of y ∈ {1, Y }, however, the analysis remains
similar thus it is omited here.

2 We use convention that a sum is zero if its upper index is less than the lower one.



MORD classifier h′(x,w, b). For arbitrary xyi ∈ Xyi = {x ∈ Rn | h′(x,w, b) =
yi}, i = 1, . . . , p, it holds that

〈w,xyi
〉yi + byi

> 〈w,xyi−1
〉yi−1 + byi−1

,
〈w,xyi

〉yi + byi
≥ 〈w,xyi+1

〉yi−1 + byi+1
,

(25)

It follows that

byi−byi+1

yi+1−yi
≥ 〈w,xyi

〉 > byi−1
−byi

yi−yi−1
, i = 1, . . . , p− 1.

Thus, for any MORD classifier h′(x,w, b) with non-degenerated classes y1, . . . , yp,
it holds that

byp−1
−byp

yp−yp−1
> · · · > byi−1

−byi
yi−yi−1

> · · · > by1−by2
y2−y1

. (26)

We are now ready to proof the second part of the theorem stating that for any
w ∈ Rn, b ∈ RY and the admissible vector θ ∈ Θ computed by the formula (7)
the equality h(x,w,θ) = h′(x,w, b) holds ∀x ∈ Rn. It is enough to show that for
arbitrary x ∈ X the ORD classifier h(x,w,θ) outups yi iff the MORD classifier
h′(x,w, b) outputs the same output yi.

First, suppose the MORD classifier h′(x;w, b) outputs yi ∈ Y for some x ∈
X . We want to show that the ORD classifier h(x;w,θ) outputs the same label
yi. We shall analyse only the cases 1 < i < p, however, the prove for i ∈ {1, p}
is similar and hence omitted. The equality h′(x,w, b) = yi implies that

〈w,x〉yi + byi
> 〈w,x〉yi−1 + byi−1

,
〈w,x〉yi + byi

≥ 〈w,x〉yi+1 + byi+1
,

(27)

which is equivalent to
byi−byi+1

yi+1−yi
≥ 〈w,x〉 > byi−1

−byi
yi−yi−1

and after combining with (7)

we see that the ORD classifier h(x,w,θ) outputs the same yi.
Second, suppose the ORD classifier h(x,w,θ) outputs yi for some arbitrary

x ∈ X , i.e.
byi−byi+1

yi+1−yi
≥ 〈w,x〉 > byi−1

−byi
yi−yi−1

holds. To show that MORD classifier

h′(x;w,θ) outputs the same yi it is enough to prove that the system

〈w,x〉yi + byi
> 〈w,x〉yj + byj

, ∀yj < yi, (28)

〈w,x〉yi + byi
≥ 〈w,x〉yj + byj

, ∀yj > yi (29)

holds. Indeed, from inequality 〈w,x〉 > byi−1
−byi

yi−yi−1
after some algebra and apply-

ing (26) (after third line) we have

〈w,x〉(yi − yj) > (yi − yj)
byi−1

−byi
yi−yi−1

= (−yj + yj+1 − yj+1 + · · ·+ yi−1 − yi−1 + yi)
byi−1

−byi
yi−yi−1

= (yj+1 − yj)
byi−1

−byi
yi−yi−1

+ · · ·+ (yi − yi−1)
byi−1

−byi
yi−yi−1

> (yj+1 − yj)
byj−byj+1

yj+1−yj
+ · · ·+ (yi − yi−1)

byi−1
−byi

yi−yi−1

= byj
− byj+1

+ byj+1
− · · · − byi−1

+ byi−1
− byi

= byj
− byi

,

from which the inequalities (28) follow for ∀yj < yi. The proof of the inequali-
ties (29) is analogical. �


