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Abstract We address a problem of learning ordinal classifiers from partially
annotated examples. We introduce a V-shaped interval-insensitive loss func-
tion to measure discrepancy between predictions of an ordinal classifier and
a partial annotation provided in the form of intervals of candidate labels. We
show that under reasonable assumptions on the annotation process the Bayes
risk of the ordinal classifier can be bounded by the expectation of an associ-
ated interval-insensitive loss. The bounds justify learning the ordinal classifier
from partially annotated examples via minimization of an empirical estimate
of the interval-insensitive loss. We propose several convex surrogates of the
interval-insensitive loss which are used to formulate convex learning problems.
We described a variant of the cutting plane method which can solve large
instances of the learning problems. Experiments on a real-life application of
human age estimation show that the ordinal classifier learned from cheap par-
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tially annotated examples can achieve accuracy matching the results of the
so-far used supervised methods which require expensive precisely annotated
examples.

Keywords ordinal classification, partially annotated examples, risk mini-
mization

1 Introduction

The ordinal classification model (also ordinal regression) is used in problems
where the set of labels is fully ordered, for example, the label can be an age
category (0-9,10-19,. . .,90-99) or a respondent answer to certain question (from
strongly agree to strongly disagree). The ordinal classifiers are routinely used
in social sciences, epidemiology, information retrieval or computer vision.

Recently, many supervised algorithms have been proposed for discrimi-
native learning of the ordinal classifiers. The discriminative methods learn
parameters of an ordinal classifier by minimizing a regularized convex proxy
of the empirical risk. A Perceptron-like on-line algorithm PRank has been
proposed in [Crammer and Singer, 2001]. A large-margin principle has been
applied for learning ordinal classifiers in [Shashua and Levin, 2002]. The pa-
per [Chu and Keerthi, 2005] proposed Support Vector Ordinal Regression al-
gorithm with explicit constraints (SVOR-EXP) and the SVOR algorithm with
implicit constraints (SVOR-IMC). Unlike [Shashua and Levin, 2002], the SVOR-
EXP and SVOR-IMC guarantee the learned ordinal classifier to be statistically
plausible. The same approach have been proposed independently by [Rennie and Srebro, 2005]
who introduce so called immediate-threshold loss and all-thresholds loss func-
tions. Minimization of a quadratically regularized immediate-threshold loss
and the all-threshold loss are equivalent to the SVOR-EXP and the SVOR-
IMC formulation, respectively. A generic framework proposed in [Li and Lin, 2006],
of which the SVOR-EXP and SVOR-IMC are special instances, allows to con-
vert learning of the ordinal classifier into learning of two-class SVM classifier
with weighted examples.

Estimating parameters of a probabilistic model by the Maximum Likeli-
hood (ML) method is another paradigm that can be used to learn ordinal
classifiers. A plug-in ordinal classifier can be then constructed by substituting
the estimated model to the optimal decision rule derived for a particular loss
function (see e.g. [Debczynski et al., 2008] for a list of losses and correspond-
ing decision functions suitable for ordinal classification). Parametric probabil-
ity distributions suitable for modeling the ordinal labels have been proposed
in [McCullagh, 1980,Fu and Simpson, 2002,Rennie and Srebro, 2005]. Besides
the parametric methods, the non-parametric probabilistic approaches like the
Gaussian processes have been also applied [Chu and Ghahramani, 2005].

Properties of the discriminative and the ML based methods are complemen-
tary to each other. The ML approach can be directly applied in the presence
of incomplete annotation (e.g. when label interval is given instead of a sin-
gle label as considered in this paper) by using the Expectation-Maximization
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algorithms [Dempster et al., 1997]. However, the ML methods are sensitive
to model mis-specification which complicates their application in modeling
complex high-dimensional data. In contrast, the discriminative methods are
known to be robust against the model mis-specification while their extension
for learning from partial annotations is not trivial. To our best knowledge, the
existing discriminative approaches for ordinal classification assume the pre-
cisely annotation only, that is, each training instance is annotated by exactly
one label.

In this paper, we consider learning of the ordinal classifiers from partially
annotated examples. We assume that each training input is annotated by
an interval of candidate labels rather than a single label. This setting is
common in practice. For example, let us assume a computer vision prob-
lem of learning an ordinal classifier predicting age from a facial image (e.g.
[Ramanathan et al., 2009,Chang et al., 2011]). In this case, examples of face
images are typically downloaded from the Internet and the age of depicted peo-
ple is estimated by a human annotator. Providing a reliable year-exact age just
from a face image is difficult if not possible. It is it is more natural and easier
for humans to provide an interval of ages. The interval annotation can be also
obtained in an automated way e.g. by the method of [Kotlowski et al., 2008]
removing inconsistencies in the data.

To deal with the interval annotations, we propose an interval-insensitive
loss function which extends an arbitrary (supervised) V-shaped loss to the
interval setting. The interval-insensitive loss measures a discrepancy between
the interval of candidate labels given in the annotation and a label predicted
by the classifier. Our interval-insensitive loss can be seen as the ordinal re-
gression counterpart of the ε-insensitive loss used in the Support Vector Re-
gression [Vapnik, 1998]. We prove that under reasonable assumptions on the
annotation process, the Bayes risk of the ordinal classifier can be bounded
by the expectation of the interval-insensitive loss. The bounds justify learning
the ordinal classifier via minimization of an empirical estimate of the interval-
insensitive loss. The tightness of the bound depends on two intuitive parame-
ters characterizing the annotations process. Moreover, we show how to control
the parameters in practice by properly designing the annotation process. We
propose a convex surrogate of an arbitrary V-shaped interval-insensitive loss
which is used to formulate a convex learning problem. We also show how to
modify the existing supervised methods, the SVOR-EXP and the SVOR-IMC
algorithms, in order to minimize a convex surrogate of the interval-insensitive
loss associated with the 0/1-loss and the Mean Absolute Error (MAE) loss. We
design a variant of the cutting plane algorithm which can solve large instances
of the learning problems efficiently.

Discriminative learning from partially annotated examples has been re-
cently studied in the context of a generic multi-class classifiers [Cour et al., 2011],
the Hidden Markov Chain based classifiers [Do and Artières, 2009], generic
structured output models [Lou and Hamprecht, 2012], the multi-instance learn-
ing [Jie and Orabona, 2010] etc. All these methods translate learning to min-
imization of a partial loss evaluating discrepancy between the classifier pre-
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dictions and partial annotations. The partial loss is defined as minimal value
of a supervised loss (defined on a pair of labels, e.g. 0/1-loss) over all can-
didate labels consistent with the partial annotation. Our interval-insensitive
loss can be seen as an application of such type of partial losses in the con-
text of the ordinal classification. In particular, we analyze the partial an-
notation in the form of intervals of the candidate labels and the Mean Ab-
solute Error which is the most typical target loss in the ordinal classifica-
tion. The bounds of the Bayes risk via the expectation of the partial loss
have been studied in [Cour et al., 2011] but only for the 0/1-loss which is
much less suitable for ordinal classification. It worth mentioning that the
ordinal classification model allows for a tight convex approximations of the
partial loss in contrast to previously considered classification models which
often require hard to optimize non-convex surrogates [Do and Artières, 2009,
Lou and Hamprecht, 2012,Jie and Orabona, 2010].

The paper is organized as follows. Formulation of the learning problem
and its solution via minimization of the interval insensitive loss is presented in
section 2. Algorithms approximating minimization of the interval-insensitive
loss by convex optimization problems are proposed in section 3. A cutting
plane based method solving the convex programs is described in section 4.
Section 5 presents experimental and section 6 concludes the paper.

2 Learning ordinal classifier from weakly annotated examples

2.1 Learning from completely annotated examples

Let X ⊂ Rn be a space of input observations and Y = {1, . . . , Y } a set of
hidden labels endowed with a natural order. We consider learning of an ordinal
classifier h : X → Y of the form

h(x;w,θ) = 1 +

Y−1∑
k=1

[[〈x,w〉 > θk]] (1)

where w ∈ Rn and θ ∈ Θ = {θ′ ∈ RY−1 | θ′y ≤ θ′y+1, y = 1, . . . , Y −
1} are admisible parameters. The operator [[A]] evaluates to 1 if A holds,
otherwise it is 0. The classifier (1) splits the real line of projections 〈x,w〉
into Y consecutive intervals defined by thresholds θ1 ≤ θ2 ≤ · · · ≤ θY−1. The
observation x is assigned a label correspoding to the interval to which the
projection 〈w,x〉 falls to. The classifier (1) is a sutiable model if the label
can be thought of as a rough measurement of a continuous random variable
ξ(x) = 〈x,w〉+ noise [McCullagh, 1980]. An example of the ordinal classifier
applied to a toy 2D problem is depicted in Figure 1.

There exist several discriminative methods for learning parameters (w,θ)
of the classifier (1) from examples, e.g. [Crammer and Singer, 2001,Shashua and Levin, 2002,
Chu and Keerthi, 2005,Li and Lin, 2006]. To our best knowledge, all the exist-
ing methods are fully supervised algorithms which require a set of completely



V-shaped Interval Insensitive Loss for Ordinal Classification 5

1

1 1

1

1
1

32

2

2

2

2
3

3

3

3 3

4

4

4

4
4

4

θ1

θ2
θ3

〈w, x〉

Fig. 1: The figure vizualizes division of the 2-dimensional feature space into
four classes realized by an instance of the ordinal classifier (1).

annotated training examples

{(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m (2)

typically assumed to be drawn from i.i.d. random variables with some un-
known distribution p(x, y). The goal of the supervised learning algorithm is
formulated as follows. Given a loss function ∆ : Y × Y → R and the training
examples (2), the task is to learn the ordinal classifier h whose Bayes risk

R(h) = E(x,y)∼p(x,y)∆(y, h(x;w,θ)) (3)

is as small as possible. The loss functions most commonly used in practice
are the Mean Absolute Error (MAE) ∆(y, y′) = |y − y′| and the 0/1-loss
∆(y, y′) = [[y 6= y′]]. The MAE and 0/1-loss are examples of so called V-shaped
losses.

Definition 1 (V-shaped loss). A loss ∆ : Y ×Y → R is V-shaped if ∆(y, y) =
0 and ∆(y′′, y) ≥ ∆(y′, y) holds for all triplets (y, y′, y′′) ∈ Y3 such that
|y′′ − y′| ≥ |y′ − y|.

That is, the value of a V-shaped loss grows monotonically with the distance be-
tween the predicted and the true label. In this paper we constrain our analysis
to the V-shaped losses.

Because the expected risk R(h) is not accessible directly due to the un-
known distribution p(x, y), the discriminative methods like [Shashua and Levin, 2002,
Chu and Keerthi, 2005,Li and Lin, 2006] minimize a convex surrogate of the
empirical risk augmented by a quadratic regularizer. We follow the same frame-
work but with novel surrogate loss functions suitable for learning from partially
annotated examples.
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2.2 Learning from partially annotated examples

Analogically to the supervised setting we assume that the observation x ∈ X
and the corresponding hidden label y ∈ Y are generated from some unknown
distribution p(x, y). However, in contrast to the supervised setting the training
set do not contain a single label for each instance. Instead, we assume that
an annotator provided with the observation x, and possibly with the label
y, returns a partial annotation in the form of an interval of candidate labels
[yl, yr] ∈ P. The symbol P = {[yl, yr] ∈ Y2 | yl ≤ yr} denotes a set of all
possible partial annotations. The partial annotation [yl, yr] means that the true
label y is from the interval [yl, yr] = {y ∈ Y | yl ≤ y ≤ yr}. We shell assume
that the annotator can be modeled by a stochastic process determined by a
distribution p(yl, yr | x, y). That is, we are given a set of partially annotated
examples

{(x1, [y1l , y
1
r ]), . . . , (xm, [yml , y

m
r ])} ∈ (X × P)m (4)

assumed to be generated from i.i.d. random variables with the distribution

p(x, yl, yr) =
∑
y∈Y

p(yl, yr | x, y) p(x, y)

defined over X × P. The learning algorithms described below do not require
the knowledge of p(x, y) and p(yl, yr | x, y). However, it is clear that the
annotation process given by p(yl, yr | x, y) cannot be arbitrary in order to make
learning possible. For example, in the case when p(yl, yr | x, y) = p(yl, yr) the
annotation would carry no information about the true label. Therefore we will
later assume that the annotation is consistent in the sense that y /∈ [yl, yr]
implies p(yl, yr | x, y) = 0. The consistency of the annotation proces is a
standard assumption used e.g. in [Cour et al., 2011].

The goal of learning from the partially annotated examples is formulated
as follows. Given a (supervised) loss function ∆ : Y × Y → R and partially
annotated examples (4), the task is to learn the ordinal classifier (1) whose
Bayes risk R(h) defined by (3) is as small as possible. That is, the objective
remains the same as in the supervised setting but the information about the
labels containted in the training set is reduced to intervals.

2.3 Interval insensitive loss

We define an interval-insensitive loss function in order to measure discrepancy
between the interval annotation [yl, yr] ∈ P and the predictions made by the
classifier h(x;w,θ) ∈ Y.

Definition 2 (Interval insensitive loss) Let ∆ : Y × Y → R be a supervised
V-shaped loss. The interval insensitive loss ∆I : P × Y → R associated with
∆ is defined as

∆I(yl, yr, y) = min
y′∈[yl,yr]

∆(y′, y) =

 0 if y ∈ [yl, yr] ,
∆(y, yl) if y ≤ yl ,
∆(y, yr) if y ≥ yr .

(5)
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The interval-insensitive loss ∆I(yl, yr, y) does not penalize predictions which
are in the interval [yl, yr]. Otherwise the penalty is either ∆(y, yl) or ∆(y, yr)
depending which border of the interval [yl, yr] is closer to the prediction y.
In the special case of the Mean Absolute Error (MAE) ∆(y, y′) = |y − y′|,
one can think of the associated interval-insensitive loss ∆I(yl, yr, y) as the
discrete counterpart of the ε-insensitive loss used in the Support Vector Re-
gression [Vapnik, 1998].

Having defined the interval-insensitive loss, we can approximate minimiza-
tion of the Bayes risk R(h) defined in (3) by minimization of the expectation
of the interval-insensitive loss

RI(h) = E(x,yl,yr)∼p(x,yl,yr)∆I(yl, yr, h(x;w,θ)) . (6)

In the sequel we denote RI(h) as the partial risk. The question is how well the
partial risk RI(h) approximates the Bayes risk R(h) being the target quantity
to be minimized. In the rest of this section we first analyze this question for the
0/1-loss addopting results of [Cour et al., 2011] and then we present a novel
bound for the MAE loss. In particular, we show that in both case the Bayes
risk R(h) can be upper bounded by a linear function of the partial risk RI(h).

In the sequel we will assume that the annotated process governed by the
distribution p(yl, yr | x, y) is consistent in the following sense:

Definition 3 (Consistent annotation process) Let p(yl, yr | x, y) be a prop-
erly defined distribution over P for any (x, y) ∈ X×Y. The annotation process
governed by p(yl, yr | x, y) is consistent if any y ∈ Y, [yl, yr] ∈ P such that
y /∈ [yl, yr] implies p(yl, yr | x, y) = 0.

The consistent annotation process guarantees that the true label is always
contained among the candidate labels in the annotation.

We first apply the excess bound for the 0/1-loss function which has been
studied in [Cour et al., 2011] for a generic partial annotations, i.e. when P is
not necessarily the set of label intervals. The tightness of the resulting bound
depends on the annotation process p(yl, yr | x, y) characterized by so called
ambiguity degree ε which, if addopted to our interval-setting, is defined as

ε = max
x,y,z 6=y

p(z ∈ [yl, yr] | x, y) = max
x,y,z

∑
[yl,yr]∈P

[[yl ≤ z ≤ yr]] p(yl, yr | x, y) .

(7)
In words, the ambiguity degree ε is the maximum probability of an extra label
z co-occurring with the true label y in the annotation interval [yl, yr], over all
labels and observations.

Theorem 1 Let p(yl, yr | x, y) be a distribution describing a consistent an-
notation process with the ambiguity degree ε defined by (7). Let R0/1(h) be

the Bayes risk (3) instantiated for the 0/1-loss and let R
0/1
I (h) be the partial

risk (6) instantiated for the interval insensitive loss associated to the 0/1-loss.
Then the upper bound

R0/1(h) ≤ 1

1− εR
0/1
I (h)
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holds true for any h ∈ X → Y.

Theorem 1 is a direct application of Proposition 1 from [Cour et al., 2011].
Next we will introduce a novel upper bound for the MAE loss used in a

majority of applications of the ordinal classifier. We again consider consis-
tent annotation processes. We will characterize the annotation process by two
numbers describing an amount of uncertainty in the training data. First, we
use α ∈ [0, 1] to denoted the lower bound of the portion of exactly annotated
examples, that is, examples annotated by an interval [yl, yr], yl = yr, having
just a single label. Second, we use β ∈ {0, . . . , Y − 1} to denote the maximal
uncertainty in annotation, that is, β+1 is the maximal width of the annotation
interval which can appear in the training data with non-zero probability.

Definition 4 (αβ-precise annotation process) Let p(yl, yr | x, y) be a properly
defined distribution over P for any (x, y) ∈ X × Y. The annotation process
governed by p(yl, yr | x, y) is αβ-precise if

α ≤ p(y, y | x, y) and β ≥ max
[yl,yr]∈P

[[p(yl, yr | x, y) > 0]] (yr − yl)

hold for any (x, y) ∈ X × Y.

To illustrate the meaning of the parameters α and β let us consider the extreme
cases. If α = 1 of β = 0 then all examples are annotated exactly, that is, we
are back in the standard supervised setting. If β = Y − 1 then in the worst
case the annotation brings no information about the hidden label because the
intervals contain the whole Y. With the definition of αβ-precise annotation we
can upper bound the Bayes risk in terms of the partial risk as follows:

Theorem 2 Let p(yl, yr | x, y) be a distribution describing a consistent αβ-
precise annotation process. Let RMAE(h) be the Bayes risk (3) instantiated
for the MAE-loss and let RMAE

I (h) be the partial risk (6) instantiated for the
interval insensitive loss associated to the MAE-loss. Then the upper bound

RMAE(h) ≤ RMAE
I (h) + (1− α)β (8)

holds true for any h ∈ X → Y.

Proof of Theorem 2 is deferred to the appendix.
The bound (8) is obtained by the worst case analysis hence it may become

trivial in some cases, for example, if all examples are annotated with large
intervals because then α = 0 and β is large. The experimental study presented
in section 5 nevertheless shows that the partial risk RI is a good proxy even for
cases when the bound upper bound is big. This suggests that better bounds
might be derive, for example, when additional information of p(yl, yr | x, y) is
available.

In order to improve the performance of the resulting classifier via the
bound (8) one needs to control the parameters α and β. A possible way which
allows to set the parameters (α, β) exactly is to control the annotation pro-
cess. For example, given a set of unannotated randomly drawn input samples
{x1, . . . ,xm} ∈ Xm we can proceed as follows:
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1. We generate a vector of binary variables π ∈ {0, 1}m according to Bernoulli
distribution with probability α that the variable is 1.

2. We instruct the annotator to provide just a single label for each input
example with index from {i ∈ {1, . . . ,m} | πi = 1} while the remaining
inputs (with πi = 0) can be annotated by intervals but not larger than
β+1 labels. That means that approximately m ·α inputs will be annotated
exactly and m · (1− α) with intervals.

This simple procedure ensures that the annotation process is αβ-precise though
the distribution p(yl, yr | x, y) itself is unknown and depends on the annotator.

3 Algorithms

In the previous section we argue that the partial risk defined as an expecta-
tion of the interval insensitive loss is a reasonable proxy of the target Bayes
risk. In this section we design algorithms learning the ordinal classifier via
minimization of the regularized of the empirical risk which is known to be
a reasonable proxy of the expected risk. Similarly to the supervised case we
cannot minimize the empirical risk directly due to a discrete domain of the
interval insensitive loss. For this reason we derive several convex surrogates
which allow to translates the risk minimization to tractable convex problems.

We first show how to modify two state-of-the-art supervised methods in or-
der to learn from partially annotated examples. Namely, we extend the Support
Vector Ordinal Regression algorithm with explicit constraints (SVOR-EXP)
and the Support Vector Ordinal Regression algorithm with implicit constraints
(SVOR-IMC). The extended interval-insensitive variants are named II-SVOR-
EXP and II-SVOR-IMC, respectively. The II-SVOR-EXP is a method min-
imizing a convex surrogate of the interval-insensitive loss associated to the
0/1-loss while the II-SVOR-IMC is designed for the MAE loss.

We also show how to construct a convex surrogate of the interval-insensitive
loss associated to an arbitrary V-shaped loss. The generic surrogate is used to
define the V-shaped interval insensitive loss minimization algorithm (VILMA).
We also prove that the VILMA subsumes the II-SVOR-IMC (and the SVOR-
IMC) as a special case.

3.1 Interval insensitive SVOR-EXP algorithm

The original SVOR-EXP algorithm [Chu and Keerthi, 2005] learns parameters
of the ordinal classifier (1) from completely annotated examples {(x1, y1), . . . , (xm, ym)} ∈
(Rn × Y)m by solving the following convex problem

(w∗,θ∗) = argmin
w∈Rn,θ∈Θ

[
λ

2
‖w‖2 +

m∑
i=1

`EXP(xi, yi,w,θ)

]
(9)

where

`EXP(x, y,w,θ) = max(0, 1− 〈x,w〉+ θyi) + max(0, 1 + 〈x,w〉 − θy)
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and θ0 = −∞, θY =∞ are auxiliary constants used for notational convenience.
In the original paper [Chu and Keerthi, 2005], the SVOR-EXP algorithm is
formulated as an equivalent quadratic program which can be easily obtained
from (9). We rather use the formulation (9) because it shows the optimized
surrogate loss in its explicit form. The surrogate `EXP(w,θ,x, y) is a convex
upper bound of the 0/1-loss

∆0/1(y, h(x;w,θ)) = [[y 6= h(x;w,θ)]] = [[〈x,w〉 < θy−1]] + [[〈x,w〉 ≥ θy]] ,

obtained by replacing the step functions [[t ≤ 0]] with the hinge-loss max(0, 1−
t).

We apply the same idea to approximate the interval insensitive loss∆
0/1
I (yl, yr, y)

associated with the 0/1-loss. According to the definition (5) we have

∆
0/1
I (yl, yr, h(x;w,θ)) = min

y′∈[yl,yr]
[[y′ 6= h(x;w,θ)]]

= [[〈x,w〉 < θyl−1]] + [[〈x,w〉 ≥ θyr ]] .

By replacing the step functions with the hinge-losses we get the surrogate

`EXP
I (x, yl, yr,w,θ) = max(0, 1− 〈x,w〉+ θyl−1) + max(0, 1 + 〈x,w〉 − θyr )

which is a convex upper bound of ∆
0/1
I (yl, yr, h(x;w,θ)). For visualization see

Figure 2.
We can modify the SVOR-EXP algorithm for learning from partially anno-

tated examples by replacing the loss `EXP(x, y,w,θ) in the definition of (9) by
its interval insensitive counterpart `EXP

I (x, yl, yr,w,θ). We denote the modi-
fied variant as the II-SVOR-EXP algorithm.

3.2 Interval insensitive SVOR-IMC algorithm

The original SVOR-IMC algorithm [Chu and Keerthi, 2005] learns parameters
of the ordinal classifier (1) from completely annotated examples {(x1, y1), . . . , (xm, ym)} ∈
(Rn × Y)m by solving the following convex optimization problem

(w∗,θ∗) = argmin
w∈Rn,θ∈Θ

[
λ

2
‖w‖2 +

m∑
i=1

`IMC(xi, yi,w,θ)

]
(10)

where

`IMC(x, y,w,θ) =

y−1∑
y′=1

max(0, 1−〈x,w〉+θy′−1)+

Y−1∑
y′=y

max(0, 1+〈x,w〉−θy′)

and using the convention
∑n
i=m ai = 0 if m > n. As in the previous case, the

problem (10) is an equivalent reformulation of the quadratic program defining
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Fig. 2: The left figure shows the interval insensitive loss

∆
0/1
I (x, yl, yr, h(x;w,θ)) associated with the 0/1-loss and its surrogate

`EXP
I (x, yl, yr,w,θ)). The right figure shows the interval insensitive loss
∆MAE
I (x, yl, yr, h(x;w,θ)) associated with the MAE and its surrogate

`IMC
I (x, yl, yr,w,θ)). The value of the losses is shown as a function of the dot

product 〈x,w〉 for θ1 = 1, θ2 = 2, . . . , θY−1 = Y − 1 and yl = 4, yr = 6.

the SVOR-IMC algorithm in [Chu and Keerthi, 2005]. It is seen that the sur-
rogate `IMC(x, y,w,θ) is a convex upper bound of the MAE loss which can
be written as

∆MAE(y, h(x;w,θ)) = |y−h(x;w,θ)| =
y−1∑
y′=1

[[〈x,w〉 < θy]]+

Y−1∑
y′=y

[[〈x,w〉 ≥ θy]].

The surrogate is obtained by replacing the step functions in the sums with the
hinge loss. Analogically, we can derive a convex surrogate of the interval insen-
sitive loss associated with the MAE. By definition (5), the interval insensitive
loss associated with MAE reads

∆MAE
I (yl, yr, h(x;w,θ)) = min

y′∈[yl,yr]
|y′ − h(x;w,θ)|

=

yl−1∑
y′=1

[[〈x,w〉 < θy]] +
Y−1∑
y′=yr

[[〈x,w〉 ≥ θy]] .

Replacing the step functions by the hinge loss we obtain a convex surrogate

`IMC
I (x, yl, yr,w,θ) =

yl−1∑
y′=1

max(0, 1−〈x,w〉+θy′−1)+

Y−1∑
y′=yr

max(0, 1+〈x,w〉−θy),

which is obviously an upper bound of ∆MAE
I (yl, yr, h(x;w,θ)). See Figure 2

for visualization.
Given the partially annotated examples {(x1, [y1l , y

1
r ]), . . . , (xm, [yml , y

m
r ])} ∈

(X ×P)m, we can learn parameters of the ordinal classifier (1) by solving (10)
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with `IMC
I (x, yl, yr,w,θ) substituted for `IMC(x, y,w,θ). We denote the vari-

ant optimizing `IMC
I (x, yl, yr,w,θ) as the II-SVOR-IMC algrithm. Due to the

equality `IMC
I (x, y, y,w,θ) = `IMC(x, y,w,θ) it is clear that the proposed

II-SVOR-IMC subsumes the original SVOR-IMC as a special case.

3.3 VILMA: V-shaped interval insensitive loss minimization algorithm

In this section we propose a generic method for learning the ordinal classi-
fiers with arbitrary interval insensitive V-shaped loss. We start by introducing
an equivalent parametrization of the ordinal classifier (1) originally proposed
in [Antoniuk et al., 2013]. The ordinal classifier (1) can be re-parametrized
as a multi-class linear classifier, in the sequel denoted as multi-class ordinal
(MORD) classifier, which reads

h′(x;w, b) = argmax
y∈Y

(
〈x,w〉 · y + by

)
(11)

where w ∈ Rn and b = (b1, . . . , bY ) ∈ RY are parameters. Note that the
MORD classifier has n + Y parameters and any pair (w, b) ∈ (Rn × RY ) is
admissible. In contrast, the original ordinal classifier (1) has n+Y −1, however,
the admissible parameters must satisfy (w,θ) ∈ (Rn × Θ). The following
theorem states that both parametrizations are equivalent.

Theorem 3 The ordinal classifier (1) and the MORD classifier (11) are equiv-
alent in the following sense. For any w ∈ Rn and admissible θ ∈ Θ there exists
b ∈ RY such that h(x,w,θ) = h′(x,w, b), ∀x ∈ Rn. For any w ∈ Rn and
b ∈ Rn, there exists admissible θ ∈ Θ such that h(x,w,θ) = h′(x,w, b),
∀x ∈ Rn.

Proof of Theorem 3 is given in [Antoniuk et al., 2013] as well as conversion
formulas between the two parametrizations.

The MORD parametrization allows to adopt techniques known for linear
classifiers. Namely, we can replace the interval insensitive loss by a convex
surrogate similar to the margin-rescaling loss known from the structured out-
put leaning [Tsochantaridis et al., 2005]. Given a V-shaped supervised loss
∆ : Y×Y → R, we propose to approximate the value of the associated interval
insensitive loss ∆I(yl, yr, h

′(x;w, b)) by a surrogate loss `I : X×P×Rn×RY →
R

`I(x, yl, yr,w, b) = max
y≤yl

[
∆(y, yl) + 〈x,w〉(y − yl) + by − byl

]
+ max
y≥yr

[
∆(y, yr) + 〈x,w〉(y − yr) + by − byr

]
.

(12)

It is seen that for fixed (x, yl, yr) the function `I(x, yl, yr,w, b) is a sum of two
point-wise maxima over linear functions hence it is convex in the parameters
(w, b). The following proposition states that the surrogate is also an upper
bound of the interval insensitive loss.
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Proposition 1 For any x ∈ Rn, [yl, yr] ∈ P, w ∈ Rn and b ∈ RY the
inequality

∆I(yl, yr, h
′(x;w, b)) ≤ `I(x, yl, yr,w, b)

holds where h′(x;w, b) denotes response of the MORD classifier (11).

Proof of Proposition 1 is deferred to the appendix.
As an example let us consider the surrogate (12) instantiated for the MAE,

then

`MAE
I (x, yl, yr,w, b) = max

y≤yl

[
yl − y + 〈x,w〉(y − yl) + by − byl

]
+ max
y≥yr

[
y − yr + 〈x,w〉(y − yr) + by − byr

]
.

(13)

Given partially annotated training examples {(x1, [y1l , y
1
r ]), . . . , (xm, [yml , y

m
r ])} ∈

(X ×P)m, we can learn parameters (w, b) of the MORD classifier (11) by solv-
ing the following unconstrained convex problem

(w∗, b∗) = argmin
w∈Rn,b∈RY

[
λ

2
‖w‖2 +

1

m

m∑
i=1

`I(x
i, yil , y

i
r,w, b)

]
(14)

where λ ∈ R++ is a regularization constant. In the sequal we denote the
method based on solving (14) as the V-shape Interval insensitive Loss Mini-
mization Algorithm (VILMA).

It is interesting to compare the VILMA instantiated for the MAE with
the II-SVOR-IMC algorithm which optimizes a different surrogate of the same
loss. Note that the II-SVOR-IMC learns the parameters (w,θ) of the ordinal
classifier (1) while the VILMA parameters (w, b) of the MORD rule (11). The
following proposition states that the surrogate losses of the algorithms are
equivalent.

Proposition 2 Let w ∈ Rn,θ ∈ Θ, b ∈ RY be a triplet of vectors such that
h(x;w,θ) = h′(x;w, b) holds for all x ∈ X where h(x;w,θ) denotes the ordi-
nal classifier (1) and h′(x;w, b) the MORD classifier (11). Then the equality

`IMC
I (x, yl, yr,w,θ) = `MAE

I (x, yl, yr,w, b)

holds true for any x ∈ X and [yl, yr] ∈ P.

Proof is given in the appendix.
The corollary of Proposition 2 is that the II-SVOR-IMC and the VILAM

with MAE loss return the same classification rules although differently parametrized.
To sum up, the VILMA has the following properties:

– It is applicable for arbitrary V-shaped loss.
– It subsumes the II-SVOR-IMC and the original SVOR-IMC as special

cases.
– It converts learning into an unconstrained convex optimization in con-

trast to the II-SVOR-EXP and the II-SVOR-IMC which maintain the con-
straints θ ∈ Θ.
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4 Double-loop Cutting Plane Solver

The proposed method VILMA translates learning into a convex optimization
problem (14) that can be re-written as

(w∗, b∗) = argmin
w∈Rn,b∈RY

[
λ

2
‖w‖2 +Remp(w, b)

]
(15)

where Remp(w, b) = 1
m

∑m
i=1 `I(x

i, yi,w, b) is non-differentiable convex func-
tion w.r.t. variablesw and b. Thanks to the form `I(x

i, yi,w, b) defined in (12)
the task (15) can be reformulated as a quadratic program with n + m + Y
variables and Y ·m constraints. The size of the QP rules out the off-the-shelf
optimization methods. The common strategy in machine learning is to solve
the problem approximately, for example, by the stochastic gradient methods.
The stochastic methods are applicable on large problems but they require fine
tuning of free parameters of the solver. Another method frequently used for
the convex optimization is the cutting plane algorithm (CPA) [Teo et al., 2010,
Franc et al., 2012]. The CPA provides a certificate of the optimality and has
no free parameters to be tuned. The CPA solves efficiently

w∗ = argmin
w∈Rn

F (w) where F (w) =
λ

2
‖w‖2 +G(w) (16)

and G : Rn → R is a convex function. In contrast to (15), the objective of (16)
contains a quadratic regularization of all variables. It is well known that the
CPA applied directly to the un-regularized problem like (15) exhibits a strong
zig-zag behavior leading to a large number of iterations. An ad-hod solution
would be to impose an additional regularization on b which, however, can
significantly spoil the results as demonstrated in section 5.2. In the rest of this
section we first outline the CPA algorithm for the problem (16) and then show
how it can be used to solve the problem (15).

The problem (16) can be approximated by its reduced problem

wt ∈ argmin
w∈Rn

Ft(w) where Ft(w) =
λ

2
‖w‖2 +Gt(w) . (17)

The reduced problem (17) is obtained from (16) by substituting a cutting-
plane model Gt(w) for the convex function G(w) while the regularizer remains
unchanged. The cutting plane model reads

Gt(w) = max
i=0,...,t−1

[
G(wi) + 〈G′(wi),w −wi〉

]
(18)

where G′(w) ∈ Rn is a sub-gradient of G at point w. Thanks to the convexity
of G(w), the objective Ft(w) of the reduced problem is a piece-wise linear
underestimator of F (w). The CPA is outlined in Algorithm 1. Starting from
w0 ∈ Rn, the CPA computes a new iterate wt by solving the reduced prob-
lem (17). In each iteration t, the cutting-plane model (18) is updated by a new
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Algorithm 1: Cutting Plane Algorithm
Input: ε > 0, w0 ∈ Rn, t← 0
Output: vector wt being ε-precise solution of (16)
repeat

t← t+ 1
Compute G(wt−1) and G′(wt−1)
Update the model Gt(w)← maxi=0,...,t−1G(wi) + 〈G′(wi,w −wi〉
Solve the reduced problem wt ← argminw Ft(w) where
Ft(w) = λΩ(w) +Rt(w)

until F (wt)− Ft(wt) ≤ ε;

cutting plane computed at the intermediate solution wt leading to a progres-
sively tighter approximation of F (w). The CPA halts if the gap between F (wt)
and Ft(wt) gets below a prescribed ε > 0, meaning that F (wt) ≤ F (w∗) + ε.
The CPA halts after O( 1

λε ) iterations at most [Teo et al., 2010].
We can convert (15) to (16) by setting

G(w) = Remp(w, b(w)) where b(w) = argmin
b∈RY

Remp(w, b) . (19)

It is clear that if w∗ is a solution of (16) with G(w) defined by (19) then
(w∗, b(w∗)) is a solution of (15). Because Remp(w, b) is jointly convex inw and
b the functionG in (19) is convex inw (see e.g. [Boyd and Vandenberghe, 2004]).
Hence we can apply the CPA to solve (18) preserving all its convergence guar-
antees. To this end, we have to provide a first-order oracle computing G(w)
and the sub-gradient G′(w). Knowning b(w) the subgradient can be computed
as

G′(w) =
1

m

m∑
i=1

xi(ŷil + ŷir − yil − yir) (20)

where

ŷil = argmax
y≤yil

[
∆(y, yil) + 〈w,xi〉y − by(w)

]
,

ŷir = argmax
y≥yir

[
∆(y, yir) + 〈w,xi〉y − by(w)

]
.

To sum up, the CPA transforms solving (15) to a sequence of two simpler
problems:

1. The reduced problem (17) which is a quadratic program that can be solved
efficiently via its dual formulation [Teo et al., 2010]. The dual QP has only
t variables where t is the number of iterations of the CPA. Since the CPA
rarely needs more than a few hundred iterations the off-the-shelf QP solvers
can be used.

2. The problem (19) providing b(w) needed to computeG(w) = Remp(w, b(w))
and the sub-gradient G′(w) via (20). The problem (19) has only Y (the
number of labels) variables. Hence it can be approached by off-the-shelf
convex solver like the Analytic Center Cutting Plane algorithm [Gondzio et al., 1996].
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Because we use another cutting plane method in the inner loop to implement
the first-order oracle, we call the proposed solver as the double-loop CPA.

Finally, we point out that the convex problems associated with the II-
SVOR-EXP and the II-SVOR-IMC can be solved by a similar method. The
only change is in using additional constraints θ ∈ Θ in (15) which propagate
to the problem (19).

5 Experiments

We evaluate the proposed methods on a real-life computer vision problem of
estimating age of a person from his/her facial image. The age estimation is
a prototypical problem calling for the ordinal classification and for learning
from the interval annotations. The set of labels corresponds to individual ages
which form an ordered set. Training examples of the facial images are cheap,
for example, they can be downloaded from the Internet. Obtaining the ground
truth age for the facial images is often very complicated for obvious reasons.
The typical solution used in practice is to endow the collected images with age
estimated manually by a human annotator. Annotating large image databases
with year-precise estimate of the age is not only tedious but often results in
inconsistent estimates. On the other hand, providing the interval annotations
is more natural for humans and clearly such annotation will be more consistent.

The experiments have two parts. First, in section 5.2, we present results
on the precisely annotated examples. By conducting these experiments we i)
set a baseline for the later experiments on the partially annotated examples,
ii) numerically verify that the VILMA subsumes the SVOR-IMC algorithm as
a special case and iii) justify usage of the proposed double-loop CPA. Second,
in section 5.3 we thoroughly analyze the performance of the VILMA on the
partially annotated examples. We emphasize that all tested algorithms are
designed to optimize the MAE loss which is the standard accuracy measure
for the age estimation systems.

5.1 Databases and implementation details

We use two large face databases with year-precise annotation of the age:

1. MORPH database [Ricanek and Tesafaye, 2006] is the standard bench-
mark for age estimation. It contains 55,134 face images with exact age
annotation ranging from 16 to 77 years. Because the age category 70+
is severely under-represented (only 9 examples in total) we removed faces
with age higher than 70. The database contains frontal police mugshots
taken under controlled conditions. The images have resolution 200×240
pixels and are mostly of very good quality.

2. WILD database is a collection of there public databases: Labeled Faces in
the Wild [Huang et al., 2007], PubFig [Kumar et al., 2009] and PAL [Minear and Park, 2004].
The images are annotated by several independent persons. We selected a
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subset of near-frontal images (yaw angle in [−30◦, 30◦]) containing 34,259
faces in total with the age from 1 to 80 years. The WILD database con-
tains challenging “in-the-wild” images exhibiting a large variation in the
resolution, illumination changes, race and background clutter.

The faces were split randomly three times into training, validation and testing
part in the ratio 60/20/20. We made sure that images of the same identity
never appear in different parts simultaneously.

Preprocessing . The feature representation of the facial images were computed
as follow. We first localized the faces by a commercial face detector 1 and con-
sequently applied a Deformable Part Model based detector [Uřičář et al., 2012]
to find facial landmarks like the corners of eyes, mouth and tip of the nose. The
found landmarks were used to transform the input face by an affine transform
into its canonical pose. Finally, the canonical face of size 60 × 40 pixels was
described by multi-scale LBP descriptor [Sonnenburg and Franc, 2010] result-
ing in n = 159, 488-dimensional binary sparse vector serving as an input of
the ordinal classifier.

Implementation of the solver. We implemented the double-loop CPA and the
standard CPA in C++ by modifying the code from the Shogun machine learn-
ing library [Sonnenburg et al., 2010]. To solve internal problem (19) we used
the Oracle Based Optimization Engine (OBOE) implementation of the Ana-
lytic Center Cutting Plane algorithm implemented as part of COmputational
INfrastructure for Operations Research project (COIN-OR) [Gondzio et al., 1996].

5.2 Supervised setting

The purpose of experiments in this section is three fold. First, to present the
results for the standard supervised setting which is later used as a baseline.
Second, to numerically verify Proposition 2 which states that the VILMA
subsumes the SVOR-IMC as a special case if instantiated for the MAE loss.
Third, to show that imposing an extra quadratic regularization on the biases
b of the MORD rule (11) severly harms the results which justifies using the
proposed double-loop CPA.

We used images with the year-precise age annotations from the MORPH
database. We constructed a sequence of training sets with the number of exam-
ples m varying from m = 3, 300 to m = 33, 000 (the total number of training
example in the MORPH). For each training set we learned the ordinal clas-
sifier with the regularization parameters set to λ ∈ {1, 0.1, 0.01, 0.001}. The
classifier corresponding to λ with the smallest validation error was applied
on the testing examples. This process was applied for three random splits.
We report the averages and the standard deviations of the MAE computed

1 Courtesy of Eydea Recognition Ltd, www.eyedea.cz
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on the test examples over the three splits. The same evaluation procedure
was applied for the three algorithms: i) the proposed method VILMA, ii) the
standard SVOR-IMC and iii) the VILMA-REG which learns by solving (14)
but using the regularization λ

2 (‖w|2 + ‖b‖2) instead of λ
2 ‖w‖2. We used the

double-loop CPA for the VILMA and the SVOR-IMC and the standard CPA
for the VILMA-REG. Table 1 summarizes the results.

We observe that the prediction error steeply decreases with adding new pre-
cisely annotated examples. The MAE for the largest training set is 4.55±0.02
which closely matches the state-of-the-art methods like [Guo and Mu, 2010]
reporting MAE 4.45 on the same database. The next section shows that simi-
lar results can be obtained with cheaper partially annotated examples.

Although the VILMA and the SVOR-IMC learn different parametrizations
of the ordinal classifier the resulting rules are equivalent up a numerical error as
predicted by Proposition 2. We did the same experiment applying the VILMA
and the II-SVOR-IMC on the partially annotated examples as described in the
next section. The results of both methods were the same up a numerical error.
Therefore in the next section we include the results only for the VILMA.

The test MAE of the classifier learned by the VILMA-REG is almost dou-
bled compared to the classifier learned by VILMA via the double-loop CPA.
This shows that pushing the biases b towards zero by the quadratic regular-
izer which is necessary in the standard CPA has a detrimental effect on the
accuracy.

m = 3300 m = 6600 m = 13000 m = 23000 m = 33000
VILMA 5.56± 0.02 5.12± 0.02 4.83± 0.02 4.66± 0.01 4.55± 0.02
SVOR-IMC 5.56± 0.03 5.14± 0.02 4.83± 0.01 4.68± 0.03 4.54± 0.01
VILMA-REG 9.57± 0.03 9.21± 0.06 9.07± 0.05 9.04± 0.05 9.06± 0.02

Table 1: The test MAE of the ordinal classifier learned from the precisely an-
notated examples by the VILMA, the standard SVOR-IMC and the VILMA-
REG using the λ

2 (‖w‖2 +‖b‖) regularizer. The results are shown for the train-
ing sets generated from the MORPH database by randomly selecting different
number of examples m.

5.3 Learning from partially annotated examples

The goal is to evaluate the VILMA algorithm when it is applied to learn-
ing from partially annotated examples. The MORPH and WILD contain the
year-precise annotation of the age which is necessary to make the comparison
with supervised methods. We generated the partial annotation in a way which
simulates a practical setting:

– mP randomly selected examples were annotated precisely.
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– mI randomly selected examples were annotated by intervals. The admis-
sible intervals were chosen to partition the set of ages and to have the
same width (up to border cases). The interval width was varied from
u ∈ {5, 10, 20}. The interval annotation was obtained by rounding the true
age to the admissible intervals. For example, in case of (u = 5)-years wide
intervals the true ages y ∈ {1, 2, . . . , 5} were transformed to the interval
annotation [1, 5], the ages y ∈ {6, 7, . . . , 10} to [6, 10] and so on.

The described annotation process is approximately αβ-precise with α = mP

mP+mI

and β = u − 1 ∈ {4, 9, 19}. We varied mP ∈ {3300, 6600} and mI from 0 to
mtotal −mP where mtotal is the total number of the training examples .

For each training set we run the VILMA with the regularization constant
λ set to {1, 0.1, 0.01, 0.001} and selected the best value according to the MAE
error computed on the validation examples. The best model was then evaluated
on the test part. This process was repeated for the three random splits. The
reported errors are the averages and the standard deviations of the MAE
computed on the test examples. The results are summarized in Figure 3 and
Table 2.

We observe that adding the partially annotated examples monotonically
improves the accuracy. This observation holds true for all tested combinations
of mI , mP , u and both databases. This observation is of great practical im-
portance. It suggests that adding cheap partially annotated examples only
improves and never worsens the accuracy of the ordinal classifier.

It is seen that the improvement caused by adding the partially annotated
examples can be substantial. Not surprisingly the best results are obtained for
the annotation with the 5-years wide intervals. In this case, the performance of
the classifier learned from partial annotations closely matches the supervised
setting. In particular, the loss in accuracy observed for the WILD database
is on the level of the standard deviation. Even in the most challenging case,
the 20-years wide intervals, the results are practically useful. For example,
to get classifier with ≈ 9 MAE on the WILD database one can either learn
from ≈ 12, 000 precisely annotated examples or instead from 6, 600 precisely
annotated plus 14, 400 partially annotated with 20-years wide intervals.

Let γ(α, β) = R̂MAE(hα,β) − R̂MAE(h∗) be the loss in the test accuracy
caused by learning from the partially annotated examples generated by αβ-
precise annotation process instead of learning by the supervised algorithm.
The values of γ(α, β) are shown in Figure 4. We see that the loss in accuracy
grows proportionally with the interval width u = 1 + β and with the portion
of partially annotated examples 1−α. This observation complies with the the-
oretical upper bound γ(α, β) ≤ (1−α)β following from Theorem 2. Although
the slope of the real curve γ(α, β), if seen as a function of 1 − α, is much
smaller than β, the tendency is approximately linear at least in the regime
1− α ∈ [0, 0.5].
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Fig. 3: The figures show test MAE for the ordinal classifiers learned by the
VILMA from different training sets. The x-axis corresponds to the total num-
ber of examples in the training set. In the case of partial annotation, x-axis
corresponds mP +mI where mP is the number of partial and mI the number
of precisely annotated examples, respectively. The figures (a)(c) show results
for mP = 3300 and figures (b)(d) for mP = 6600, respectively. In the su-
pervised case, the x-axis is just the number of precisely annotated examples.
Each figure shows one curve for the supervised setting plus three curves cor-
responding to the partial setting with different width u ∈ {5, 10, 20} of the
annotation intervals. The results for MORPH database are in figures (a)(b)
and the results for WILD in (c)(d).

6 Conclusions

We have proposed a V-shape interval-insensitive loss function suitable for risk
minimization based learning of ordinal classifiers from partially annotated ex-
amples. We proved that under reasonable assumption on the annotation pro-
cess the Bayes risk of the ordinal classifier can be bounded by the expectation
of the associated interval-insensitive loss. We proposed a convex surrogate
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MORPH
m = 3300 m = 6600 m = 13000 m = 23000 m = 33000

Supervised 5.56± 0.02 5.12± 0.02 4.83± 0.02 4.66± 0.01 4.55± 0.02
3.3K-5 5.56± 0.02 5.21± 0.04 4.89± 0.03 4.70± 0.01 4.62± 0.01
3.3K-10 5.56± 0.03 5.25± 0.02 5.15± 0.05 4.97± 0.01 4.90± 0.04
3.3K-20 5.56± 0.03 5.32± 0.03 5.26± 0.06 5.06± 0.04 4.97± 0.01
6.6K-5 — 5.12± 0.02 4.86± 0.02 4.69± 0.00 4.61± 0.00
6.6K-10 — 5.13± 0.02 4.96± 0.03 4.81± 0.01 4.84± 0.04
6.6K-20 — 5.13± 0.02 5.03± 0.02 4.86± 0.04 4.86± 0.01

WILD
m = 3300 m = 6600 m = 11000 m = 16000 m = 21000

Supervised 10.40± 0.03 9.60± 0.03 9.14± 0.02 8.89± 0.02 8.68± 0.02
3.3K-5 10.40± 0.03 9.69± 0.02 9.23± 0.05 8.89± 0.02 8.71± 0.02
3.3K-10 10.40± 0.03 9.76± 0.02 9.42± 0.04 9.09± 0.02 8.99± 0.02
3.3K-20 10.40± 0.03 9.88± 0.03 9.67± 0.04 9.51± 0.00 9.40± 0.01
6.6K-5 — 9.60± 0.03 9.22± 0.06 8.89± 0.02 8.71± 0.02
6.6K-10 — 9.60± 0.03 9.22± 0.02 9.04± 0.03 8.90± 0.02
6.6K-20 — 9.60± 0.03 9.35± 0.06 9.14± 0.03 9.04± 0.02

Table 2: The summarizes test MAE of the ordinal classifier learned from the
training set with m examples. The upper row shows results of the supervised
setting when all m examples are precisely annotated. The bottom rows show
results of learning from mp precisely annotated examples and mI = m−mP

examples annotated by intervals of width u. For example, the row 3.3K-5
contains results for mP = 3300, u = 5 and m shown in corresponding column.

of the interval-insensitive loss associated to an arbitrary supervised V-shaped
loss. We derived a generic V-shaped Interval insensitive Loss Minimization Al-
gorithm (VILMA) which translates learning to a convex optimization problem.
We also derived other convex surrogate losses by extending the existing state-
of-the-art SVOR-EXP and SVOR-IMC algorithm. We showed that VILMA
subsumes the SVOR-IMC as a special case. We have proposed a cutting plane
method which can solve large instances of the convex learning problems. The
experiments conducted on a real-life problem of human age estimation show
that the proposed method has strong practical potential. The results show
that the ordinal classifier with accuracy closely matching the state-of-the-art
results can be obtained by learning from cheap partial annotations in contrast
to so far used supervised methods which require expensive precisely annotated
examples.
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Fig. 4: The figures show γ(α, β) = R̂MAE(hα,β)− R̂MAE(h∗) which is the loss
in accuracy caused by training from partially annotated examples generated
by αβ-precise annotation process relatively to the supervised case. The value
of γ(α, β) is shown for different β (note that u = β + 1 is the interval width)
as a function of the portion of the partially annotated examples 1 − α. The
figure (a) and (b) contains the results obtained on the MORPH and the WILD
database, respectively.

Appendix

Proof of Theorem 2

We will prove the bound (8) for each observation x ∈ X separately, that is,
we prove

RMAE(h | x) ≤ RMAE
I (h | x) + (1− α)β , (21)

where RMAE(h | x) = Ey∼p(y|x)|y − h(x)| and

RMAE
I (h | x) = E[yl,yr]∼p(yl,yr|x) min

y′∈[yl,yr]
|y′ − h(x)| .

It is clear that (21) satisfied for all x ∈ X implies (8). Let us define a function
which measures a discrepancy between the MAE and the its interval insensitive
counterpart:

δ(h(x), y, yl, yr) = |y−h(x)|− min
y′∈[yl,yr]

|y′−h(x)| =

 |h(x)− y| if h(x) ∈ [yl, yr] ,
y − yl if h(x) < yl ,
yr − y if h(x) > yr .

(22)
Let us denote a set of intervals of unit length as P1 = {[yl, yr] ∈ P|yl = yr}.
Recall also that due to the assumption that p(yl, yr | x, y) is consistent and αβ-
precise then we have p(y, y | x, y) = α and

∑
[yl,yr]∈P1

p(yl, yr | x, y) = (1−α).
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With these definitions we can write the following chain of equations:

RMAE
I (h | x) =

∑
y∈Y

∑
[yl,yr]∈P

p(y | x)p(yl, yr | x, y) min
y′∈[yl,yr]

|y′ − h(x)|

=
∑
y∈Y

p(y | x)

[
α|y − h(x)|+

∑
[yl,yr]/∈P1

p(yl, yr | x, y) min
y′∈[yl,yr]

|y′ − h(x)|
]

=
∑
y∈Y

p(y | x)

[
α|y − h(x)|+

∑
[yl,yr]/∈P1

p(yl, yr | x, y)
(
|y − h(x)| − δ(h(x), y, yl, yr)

)]
=
∑
y∈Y

p(y | x)

[
|y − h(x)| −

∑
[yl,yr]/∈P1

p(yl, yr | x, y)δ(h(x), y, yl, yr)
)]

= RMAE(h | x)−
∑
y∈Y

∑
[yl,yr]/∈P1

p(y | x)p(yl, yr | x, y)δ(h(x), y, yl, yr) .

(23)
By (22) we have that δ(h(x), y, yl, yr) ≤ β for all x ∈ X , y ∈ Y, [yl, yr] ∈ P
and hence∑

y∈Y

∑
[yl,yr]/∈P1

p(y | x)p(yl, yr | x, y)δ(h(x), y, yl, yr) ≤ (1− α)β . (24)

The bound (21) to be proved is obtained immediately by combing (23) and (24).

Proof of Proposifion 1

Let us first consider triplet of labels (y, yl, yr) such that y /∈ [yl, yr]. In this case,
the left max-term maxy≤yl

[
∆(y, yl)+

〈
x,w

〉
(y−yl)+by−byl

]
is an instance of

margin-rescaling loss instantiatred for the suppervised loss ∆(y, yl) defined on
labels y ∈ [1, yl−1]. The margin-rescaling loss is known to be an upper bound
of the respective suppervised loss (for proof see [Tsochantaridis et al., 2005])
and, in turn, it is also an upper bound of ∆I(yl, yr, y). Analogically, we can
see that the right max-term maxy≥yr

[
∆(y, yr) +

〈
x,w

〉
(y − yr) + by − byr

]
is margin-rescaling upper bound of the loss ∆(y, yr) on labels y ∈ [yr + 1, Y ]
and, in turn, also upper bound of ∆I(yl, yr, y). The V-shaped loss ∆(y, y′) is
non-negative by definition and hence both max-terms are non-negative and
their sum upper bounds the value of ∆I(yl, yr, y) for y /∈ [yl, yr]. In the case
when y ∈ [yl, yr] the value of ∆I(yl, yr, y) is defined to be zero and hence it is
also upper bounded by the sum of the non-negative max-terms.

Proof of Proposition 2

First let us prove
yl−1∑̂
y=1

max(0, 1−
〈
x,w

〉
+θŷ) = max

y≤yl

[
yl−y+

〈
x,w

〉
(y−yl)+

by−byl
]
. Since θy , y = 1, . . . , Y is nondecreasing sequence, sum

yl−1∑̂
y=1

max(0, 1−
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〈
x,w

〉
+ θŷ) equals to max

y≤yl

[
max(0,

yl−1∑̂
y=y

1 −
〈
x,w

〉
+ θŷ)

]
. Simplifying it

we get max
y≤yl

[
max(0, yl − y +

〈
x,w

〉
(y − yl) +

yl−1∑̂
y=y

θŷ)
]

or taking into ac-

count conversion formulas between MORD and ORD non-degenerated clas-

sifiers [Antoniuk et al., 2013] b1 = 0, by = −
y−1∑̂
y=1

θŷ, we can conclude that this

sum is basically nothing else than max
y≤yl

[
max(0, yl−y+

〈
x,w

〉
(y−yl)+by−byl)

]
.

Since yl − y +
〈
x,w

〉
(y − yl) + by − byl ≥ 0 ,∀y = 1, . . . , Y we can simply

omit internal maximum and write max
y≤yl

[
yl − y+

〈
x,w

〉
(y− yl) + by − byl

]
in-

stead. To summarise, we just have shown that
yl−1∑̂
y=1

max(0, 1−
〈
x,w

〉
+ θŷ) =

max
y≤yl

[
yl−y+

〈
x,w

〉
(y−yl)+ by− byl

]
. Following same login one can conclude

that
Y−1∑
ŷ=yr

max(0, 1 +
〈
x,w

〉
− θŷ) = max

y≥yr

[
y − yr +

〈
x,w

〉
(y − yr) + by − byr

]
. An analogical technique can be used for degenerated ordinal classifiers.
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