
USENIX Association 25th USENIX Security Symposium 807

Optimized Invariant Representation of Network Traffic for Detecting

Unseen Malware Variants

Karel Bartos
Cisco Systems, Inc.

Czech Technical University in Prague,

Faculty of Electrical Engineering

Michal Sofka
Cisco Systems, Inc.

Czech Technical University in Prague,

Faculty of Electrical Engineering

Vojtech Franc
Czech Technical University in Prague,

Faculty of Electrical Engineering

Abstract

New and unseen polymorphic malware, zero-day attacks,

or other types of advanced persistent threats are usually

not detected by signature-based security devices, fire-

walls, or anti-viruses. This represents a challenge to

the network security industry as the amount and vari-

ability of incidents has been increasing. Consequently,

this complicates the design of learning-based detection

systems relying on features extracted from network data.

The problem is caused by different joint distribution of

observation (features) and labels in the training and test-

ing data sets. This paper proposes a classification sys-

tem designed to detect both known as well as previously-

unseen security threats. The classifiers use statistical

feature representation computed from the network traf-

fic and learn to recognize malicious behavior. The rep-

resentation is designed and optimized to be invariant to

the most common changes of malware behaviors. This

is achieved in part by a feature histogram constructed

for each group of HTTP flows (proxy log records) of a

user visiting a particular hostname and in part by a fea-

ture self-similarity matrix computed for each group. The

parameters of the representation (histogram bins) are op-

timized and learned based on the training samples along

with the classifiers. The proposed classification system

was deployed on large corporate networks, where it de-

tected 2,090 new and unseen variants of malware sam-

ples with 90% precision (9 of 10 alerts were malicious),

which is a considerable improvement when compared to

the current flow-based approaches or existing signature-

based web security devices.

1 Introduction

Current network security devices classify large amounts

of the malicious network traffic and report the results

in many individually-identified incidents, some of which

are false alerts. On the other hand, a lot of malicious traf-

fic remains undetected due to the increasing variability

of malware attacks. As a result, security analysts might

miss severe complex attacks because the incidents are not

correctly prioritized or reported.

The network traffic can be classified at different lev-

els of detail. Approaches based on packet inspection

and signature matching [15] rely on a database of known

malware samples. These techniques are able to achieve

results with high precision (low number of false alerts),

but their detection ability is limited only to the known

samples and patterns included in the database (limited

recall). Moreover, due to the continuous improvements

of network bandwidth, analyzing individual packets is

becoming intractable on high-speed network links. It

is more efficient to classify network traffic based on

flows representing groups of packets (e.g. NetFlow [1]

or proxy logs [26]). While this approach has typically

lower precision, it uses statistical modeling and behav-

ioral analysis [8] to find new and previously unseen ma-

licious threats (higher recall).

Statistical features calculated from flows can be used

for unsupervised anomaly detection, or in supervised

classification to train data-driven classifiers of malicious

traffic. While the former approach is typically used to

detect new threats, it suffers from lower precision which

limits its practical usefulness due to large amount of false

alerts. Data-driven classifiers trained on known mali-

cious samples achieve better efficacy results, but the re-

sults are directly dependent on the samples used in the

training. Once a malware changes the behavior, the sys-

tem needs to be retrained. With continuously rising num-

ber of malware variants, this becomes a major bottleneck

in modern malware detection systems. Therefore, the ro-

bustness and invariance of features extracted from raw

data plays the key role when classifying new malware.

The problem of changing malware behavior can be

formalized by recognizing that a joint distribution of the

malware samples (or features) differs for already known

training (source) and yet unseen testing (target) data.

808 25th USENIX Security Symposium USENIX Association

This can happen as a result of target evolving after the

initial classifier or detector has been trained. In super-

vised learning, this problem is solved by domain adapta-

tion. Under the assumption that the source and target

distributions do not change arbitrarily, the goal of the

domain adaptation is to leverage the knowledge in the

source domain and transfer it to the target domain. In

this work, we focus on the case where the conditional

distribution of the observation given labels is different,

also called a conditional shift.

The domain adaptation (or knowledge transfer) can

be achieved by adapting the detector using importance

weighting such that training instances from the source

distribution match the target distribution [37]. Another

approach is to transform the training instances to the do-

main of the testing data or to create a new data represen-

tation with the same joint distribution of observation and

labels [4]. The challenging part is to design a meaning-

ful transformation that transfers the knowledge from the

source domain and improves the robustness of the detec-

tor on the target domain.

In this paper, we present a new optimized invari-

ant representation of network traffic data that enables

domain adaptation under conditional shift. The rep-

resentation is computed for bags of samples, each of

which consists of features computed from network traf-

fic logs. The bags are constructed for each user and con-

tain all network communication with a particular host-

name/domain. The representation is designed to be in-

variant under shifting and scaling of the feature values

and under permutation and size changes of the bags. This

is achieved by combining bag histograms with an invari-

ant self similarity matrix for each bag. All parameters of

the representation are learned automatically for the train-

ing data using the proposed optimization approach.

The proposed invariant representation is applied to de-

tect malicious HTTP traffic. We will show that the clas-

sifier trained on malware samples from one category can

successfully detect new samples from a different cate-

gory. This way, the knowledge of the malware behavior

is correctly transferred to the new domain. Compared

to the baseline flow-based representation or widely-used

security device, the proposed approach shows consider-

able improvements and correctly classifies new types of

network threats that were not part of the training data.

This paper has the following major contributions:

• Classifying new malware categories – we propose

a supervised method that is able to detect new types

of malware categories from a limited amount of

training samples. Unlike classifying each category

separately, which limits the robustness, we propose

an invariant training from malware samples of mul-

tiple categories.

• Bag representation of samples – Instead of classi-

fying flows individually, we propose to group flows

into bags, where each bag contains flows that are re-

lated to each other (e.g. having the same user and

target domain). Even though the concept of group-

ing flows together has been already introduced in

the previously published work (e.g. in [32]), these

approaches rely on a sequence of flow-based fea-

tures rather than on more complex representation.

• Features describing the dynamics of the samples

– To enforce the invariant properties of the represen-

tation, we propose to use a novel approach, where

the features are derived from the self-similarity of

flows within a bag. These features describe the dy-

namics of each bag and have many invariant proper-

ties that are useful when finding new malware vari-

ants and categories.

• Learning the representation from the training

data – To optimize the parameters of the representa-

tion, we propose a novel method that combines the

process of learning the representation with the pro-

cess of learning the classifier. The resulting repre-

sentation ensures easier separation of malicious and

legitimate communication and at the same time con-

trols the complexity of the classifier.

• Large scale evaluation – We evaluated the pro-

posed representation on real network traffic of mul-

tiple companies. Unlike most of the previously pub-

lished work, we performed the evaluation on highly

imbalanced datasets as they appear in practice (con-

sidering the number of malicious samples), with

most of the traffic being legitimate, to show the po-

tential of the approach in practice. This makes the

classification problem much harder. We provided a

comparison with state-of-the-art approaches and a

widely-used signature-based web security device to

show the advantages of the proposed approach.

2 Related Work

Network perimeter can be secured by a large variety

of network security devices and mechanisms, such as

host-based or network-based Intrusion Detection Sys-

tems (IDS) [36]. We briefly review both systems, focus-

ing our discussion on network-based IDS, which are the

most relevant to the presented work.

Host-based IDS systems analyze malicious code and

processes and system calls related to OS information.

Traditional and widely-used anti-virus software or spy-

ware scanners can be easily evaded by simple transfor-

mations of malware code. To address this weakness,

methods of static analysis [30], [38] were proposed.

USENIX Association 25th USENIX Security Symposium 809

Static analysis, relying on semantic signatures, concen-

trates on pure investigation of code snippets without ac-

tually executing them. These methods are more resilient

to changes in malware codes, however they can be easily

evaded by obfuscation techniques. Methods of dynamic

analysis [29], [34], [42] were proposed to deal with the

weaknesses of static analysis, focusing on obtaining re-

liable information on execution of malicious programs.

The downside of the dynamic analysis is the necessity

to run the codes in a restricted environment which may

influence malware behavior or difficulty of the analysis
and tracing the problem back to the exact code location.
Recently, a combination of static and dynamic analysis
was used to analyze malicious browser extensions [20].

Network-based IDS systems are typically deployed on
the key points of the network infrastructure and moni-
tor incoming and outgoing network traffic by using static
signature matching [15] or dynamic anomaly detection
methods [8]. Signature-based IDS systems evaluate each
network connection according to the predefined malware
signatures regardless of the context. They are capable of
detecting well-known attacks, but with limited amount of
detected novel intrusions. On the other hand, anomaly-
based IDS systems are designed to detect wide range of
network anomalies including yet undiscovered attacks,
but at the expense of higher false alarm rates [8].

Network-based approaches are designed to detect ma-
licious communication by processing network packets
or logs. An overview of the existing state-of-the-art
approaches is shown in Table 1. The focus has been
on the traffic classification from packet traces [5], [28],
[39], [41], as this source provides detailed information
about the underlying network communication. Due to
the still increasing demands for larger bandwidth, an-
alyzing individual packets is becoming intractable on
high-speed network links. Moreover, some environments
with highly confidential data transfers such as banks or
government organizations do not allow deployment of
packet inspection devices due to the legal or privacy rea-
sons. The alternative approach is the classification based
on network traffic logs, e.g. NetFlow [1], DNS records,
or proxy logs. The logs are extracted at the transport
layer and contain information only from packet headers.

Methods introduced in [12] and [23] apply features
extracted from NetFlow data to classify network traf-
fic into general classes, such as P2P, IMAP, FTP, POP3,
DNS, IRC, etc. A comparison and evaluation of these ap-
proaches can be found in a comprehensive survey [24].
A combination of host-based statistics with SNORT rules
to detect botnets was introduced in [16]. The authors
showed that it is possible to detect malicious traffic using
statistical features computed from NetFlow data, which
motivated further research in this field. An alternative
approach for classification of botnets from NetFlow fea-

tures was proposed in [6]. The authors of [33] have used
normalized NetFlow features to cluster flow-based sam-
ples of network traffic into four predefined categories.
As opposed to our approach, the normalization was per-
formed to be able to compare individual features with
each other. In our approach, we extended this idea and
use normalization to be able to compare various malware
categories. While all these approaches represent rele-
vant state-of-the-art, network threats evolve so rapidly
that these methods are becoming less effective due to the
choice of features and the way they are used.

One of the largest changes in the network security
landscape is the fact that HTTP(S) traffic is being used
not only for web browsing, but also for other types of
services and applications (TOR, multimedia streaming,
remote desktop) including lots of malicious attacks. Ac-
cording to recent analysis [18], majority of malware sam-
ples communicate via HTTP. This change has drawn
more attention to classifying malware from web traf-
fic. In [25], the authors proposed an anomaly detec-
tion system composed of several techniques to detect at-
tacks against web servers. They divide URIs into groups,
where each group contains URIs with the same resource
path. URIs without a query string or with return code
outside of interval [200, 300] are considered as irrele-
vant. The system showed the ability to detect unseen
malware samples and the recall will be compared with
our proposed approach in Section 8. In [40], the au-
thors introduced a method for predicting compromised
websites using features extracted from page content and
Alexa Web Information Service.

Having sufficient amount of labeled malware samples
at disposal, numerous approaches proposed supervised
learning methods to achieve better efficacy. Clasifying
DGA malware from DNS records based on connections
to non-existent domains (NXDomains) was proposed in
[2]. Even though several other data sources were used
to detect malware (such as malware executions [3] or
JavaScript analysis [22]), the most relevant work to our
approach uses proxy logs [9], [17], [27], [44], [32].

In all these methods, proxy log features are extracted
from real legitimate and malicious samples to train a
data-driven classifier, which is used to find new mali-
cious samples from the testing set. There are five core
differences between these approaches and our approach:
(1) we do not classify individual flows (in our case proxy
log records), but sets of related flows called bags, (2)
we propose a novel representation based on features de-
scribing the dynamics of each bag, (3) the features are
computed from the bags and are invariant against various
changes an attacker could implement to evade detection,
(4) parameters of the proposed representation are learned
automatically from the input data to maximize the detec-
tion performance, (5) the proposed classification system

810 25th USENIX Security Symposium USENIX Association

Approach Type Method Features Target class
Testing Data Malicious Mal:All

Type Year All samples samples ratio

Wang [41] U anomaly detection packet payload worms, exploits packets 2003 531,117 N/A N/A
Kruegel [25] U anomaly detection URL query parameters web malware proxy logs 2003 1,212,197 11 1:100k
Gu [16] U clustering host statistics+SNORT botnet NetFlow 2007 100,000k 5,842k 1:17
Bilge [6] S random forest flow size, time botnets NefFlow 2011 78,000,000 36 1:2.2M
Antonakakis [2] S multiple NXDomains dga malware DNS data 2011 360,700 8008 1:45
Bailey [3] S hierarch. clustering state changes malware executions 2007 4,591 4,591 1:1
Kapravelos [22] S similarity of trees abstract syntax tree web malware JavaScript 2012 20,918,798 186,032 1:112
Choi [9] S SVM + RAkEL URL lexical, host, dns malicious flows proxy logs 2009 72,000 32,000 1:2
Zhao [44] S active learning URL lexical + host malicious flows proxy logs 2009 1,000,000 10,000 1:100
Huang [17] S SVM URL lexical phishing proxy logs 2011 12,193 10,094 1:1
Ma [27] S multiple URL lexical + host malicious flows proxy logs 2011 2,000,000 6,000 1:333
Invernizzi [18] U graph clustering proxy log fields mw downloads proxy logs 2012 1,219 324 1:4
Soska [40] S random forests content of web pages infected websites web pages 2014 386,018 49,347 1:8
Nelms [32] S heuristics web paths mw downloads proxy logs 2014 N/A 150 N/A
Our approach S learned repr.+SVM learned bag dynamics malicious flows proxy logs 2015 15,379,466 43,380 1:355

Table 1: Overview of the existing state-of-the-art approaches focusing on classification of malicious traffic (U = unsu-
pervised, S = supervised). In contrast to the existing work, our approach proposes novel and optimized representation
of bags, describing the dynamics of each legitimate or malicious sample. The approach is evaluated on latest real
datasets with a realistic ratio of malicious and background flows (proxy log records).

was deployed on corporate networks and evaluated on
imbalanced datasets (see Table 1) as they appear in prac-
tice to show the expected efficacy on these networks.

3 Formalization of the Problem

The paper deals with the problem of creating a robust
representation of network communication that would be
invariant against modifications an attacker can imple-
ment to evade the detection systems. The representa-
tion is used to classify network traffic into positive (ma-
licious) or negative (legitimate) category. The labels for
positive and negative samples are often very expensive to
obtain. Moreover, sample distribution typically evolves
in time, so the probability distribution of training data
differs from the probability distribution of test data. This
complicates the training of classifiers which assume that
the distributions are the same. In the following, the prob-
lem is described in more detail.

Each sample is represented as an n-dimensional fea-
ture vector x ∈ R

n. Samples are grouped into bags, with
every bag represented as a matrix X = (x1, . . . ,xm) ∈
R

n×m, where m is the number of samples in the bag and
n is the number of features. The bags may have different
number of samples. A single category yi can be assigned
to each bag from the set Y = {y1, . . . ,yN}. Only a few
categories are included in the training set. The proba-
bility distribution on training and testing bags for cate-
gory y j will be denoted as PL(X |y j) and PT (X |y j), re-
spectively. Moreover, the probability distribution of the
training data differs from the probability distribution of
the testing data, i.e. there is a domain adaptation problem
[7] (also called a conditional shift [43]):

PL(X |y j) �= PT (X |y j), ∀y j ∈ Y . (1)

The purpose of the domain adaptation is to apply
knowledge acquired from the training (source) domain
into test (target) domain. The relation between PL(X |yi)
and PT (X |yi) is not arbitrary, otherwise it would not be
possible to transfer any knowledge. Therefore there is a
transformation τ , which transforms the feature values of
the bags onto a representation, in which PL(τ(X)|yi) ≈
PT (τ(X)|yi). The goal is to find this representation, al-
lowing to classify individual bag represented as X into
categories Y = {y1, . . . ,yN} under the above mentioned
conditional shift.

Numerous methods for transfer learning have been
proposed (since the traditional machine learning meth-
ods cannot be used effectively in this case), including
kernel mean matching [14], kernel learning approaches
[11], maximum mean discrepancy [19], or boosting [10].
These methods try to solve a general data transfer with
relaxed conditions on the similarity of the distributions
during the transfer. The downside of these methods is
the necessity to specify the target loss function and avail-
ability of large amount of labeled data.

This paper proposes an effective invariant representa-
tion that solves the classification problem with a covari-
ate shift (see Equation 1). Once the data are transformed,
the new feature values do not rely on the original distri-
bution and they are not influenced by the shift. The pa-
rameters of the representation are learned automatically
from the data together with the classifier as a joint opti-
mization process. The advantage of this approach is that
the parameters are optimally chosen during training to
achieve the best classification efficacy for the given clas-
sifier, data, and representation.

USENIX Association 25th USENIX Security Symposium 811

4 Invariant Representation

The problem of domain adaptation outlined in the pre-

vious section is addressed by the proposed representa-

tion of bags. The new representation is calculated with a

transformation that consists of three steps to ensure that

the new representation will be invariant under scaling

and shifting of the feature values and under permutation

and size changes of the bags.

4.1 Scale Invariance

As stated in Section 3, the probability distribution of bags

from the training set can be different from the test set. In

the first step, the representation of bags is transformed

to be invariant under scaling of the feature values. The

traditional representation X of a bag that consists of a set

of m samples {x1, . . . ,xm} can be written in a form of a

matrix:

X =





x1

...

xm



 =





x11 x12 . . . x1n

...

xm1 xm2 . . . xmn



 , (2)

where xlk denotes k-th feature value of l-th sample. This

form of representation of samples and bags is widely

used in the research community, as it is straightforward

to use and easy to compute. It is a reasonable choice in

many applications with a negligible shift in the source

and target probability distributions. However, in the net-

work security domain, the dynamics of the network en-

vironment causes changes in the feature values and the

shift becomes more prominent. As a result, the perfor-

mance of the classification algorithms using the tradi-

tional representation is decreased.

In the first step, the representation is improved by

making the matrix X to be invariant under scaling of the

feature values. Scale invariance guarantees that even if

some original feature values of all samples in a bag are

multiplied by a common factor, the values in the new

representation remain unchanged. To guarantee the scale

invariance, the matrix X is scaled locally onto the interval

[0,1] as follows:

X̃ =





x̃11 . . . x̃1n

...

x̃m1 . . . x̃mn



 x̃lk =
xlk − minl(xlk)

maxl(xlk) − minl(xlk)
(3)

4.2 Shift Invariance

In the second step, the representation is transformed to

be invariant against shifting. Shift invariance guaranties

that even if some original feature values of all samples

in a bag are increased/decreased by a given amount, the

values in the new representation remain unchanged. Let

us define a translation invariant distance function d :R×
R → R for which the following holds: d(u,v) = d(u +
a,v + a).

Let xpk, xqk be k-th feature values of p-th and q-th

sample from bag matrix X . Then the distance between

these two values will be denoted as d(xpk,xqk) = sk
pq.

The distance d(xpk,xqk) is computed for pairs of k-th

feature value for all sample pairs, ultimately forming a

so called self-similarity matrix Sk. Self-similarity matrix

is a symmetric positive semidefinite matrix, where rows

and columns represent individual samples and (i, j)-th

element corresponds to the distance between i-th and j-

th sample. Self-similarity matrix has been already used

thanks to its properties in several applications (e.g. in

object recognition [21] or music recording [31]). How-

ever, only a single self-similarity matrix for each bag has

been used in these approaches. This paper proposes to

compute a set of similarity matrices, one for every fea-

ture. More specifically, a per-feature set of self-similarity

matrices S = {S1
,S2

, . . . ,Sn} is computed for each bag,

where

Sk =





sk
11 sk

12 . . . sk
1m

...

sk
m1 sk

m2 . . . sk
mm



 . (4)

The element sk
pq = d(xpk,xqk) is a distance between fea-

ture values xpk and xqk of k-th feature. This means that

the bag matrix X with m samples and n features will be

represented with n self-similarity matrices of size m×m.

The matrices are further normalized by local feature scal-

ing described in Section 4.1 to produce a set of matrices

S̃ .

The shift invariance makes the representation robust

to the changes where the feature values are modified by

adding or subtracting a fixed value. For example, the

length of a malicious URL would change by including

an additional subdirectory in the URL path. Or, the num-

ber of transfered bytes would increase when an addi-

tional data structure is included in the communication

exchange.

4.3 Permutation and Size Invariance

Representing bags with scaled matrices {X̃} and sets of

locally-scaled self-similarity matrices {S̃ } achieves the

scale and shift invariance. Size invariance ensures that

the representation is invariant against the size of the bag.

In highly dynamic environments, the samples may occur

in a variable ordering. Permutation invariance ensures

that the representation should also be invariant against

any reordering of rows and columns of the matrices. The

final step of the proposed transformation is the transi-

tion from the scaled matrices X̃ , S̃ (introduced in Sec-

812 25th USENIX Security Symposium USENIX Association

tions 4.1 and 4.2 respectively) to normalized histograms.

For this purpose, we define for each bag:

zX
k := vector of values from k-th column of matrix X̃

zS
k :=column-wise representation of upper triangular

matrix created from matrix S̃k ∈ S̃ .

This means that zX
k ∈ R

m is a vector created from val-

ues of k-th feature of X̃ , while zS
k ∈ R

r,r = (m − 1) · m
2

is a vector that consists of all values of upper triangular

matrix created from matrix S̃k. Since S̃k is a symmetric

matrix with zeros along the main diagonal, zS
k contains

only values from upper triangular matrix of S̃k.

A normalized histogram of vector z=(z1, . . . ,zd)∈R
d

is a function φ : Rd ×R
b+1 → R

b parametrized by edges

of b bins θ = (θ0, . . . ,θb) ∈ R
b+1 such that φ(z;θ) =

(φ(z;θ0,θ1), . . . ,φ(z;θb−1,θb)) where

φ(z,θi,θi+1) =
1

d

d

∑
j=1

[[z j ∈ [θi−1,θi)]]

is the value of the i-th bin corresponding to a portion of

components of z falling to the interval [θi−1,θi).
Each column k of matrix X̃ (i.e. all bag values of k-th

feature) is transformed into a histogram φ(zX
k ,θX

k) with

predefined number of b bins and θX
k bin edges. Such his-

tograms created from the columns of matrix X̃ will be

denoted as feature values histograms, because they carry

information about the distribution of bag feature values.

On the other hand, histogram φ(zS
k ,θ S

k) created from

values of self-similarity matrix S̃ j ∈ S̃ will be called fea-

ture differences histograms, as they capture inner feature

variability within bag samples.
Overall, each bag is represented as a concatenated fea-

ture map φ(X̃ ;S̃ ;θ) : Rn×(m+r) → R
2·n·b as follows:

(

φ(zX
1 ,θX

1), . . . ,φ(z
X
n ,θX

n),φ(z
S
1 ,θS

1), . . . ,φ(z
S
n ,θS

n)
)

(5)

where n is the number of the original flow-based fea-

tures, m is the number of flows in the bag, and b is the

number of bins. The whole transformation from input

network flows to the final feature vector is depicted in

Figure 1. As you can see, two types of invariant his-

tograms are created from values of each flow-based fea-

ture. At the end, both histograms are concatenated into

the final bag representation φ(X̃ ;S̃ ;θ).

5 Learning Optimal Histogram Represen-

tation

The bag representation φ(X̃ ;S̃ ;θ) proposed in Section 4

has the invariant properties, however it heavily depends

on the number of bins b and their edges θ defining the

��������

			

����
����������

			

			

����
����������

������

			

������

�
��

�
�
�
��
�
�
�
�

�

�

�����
��
�����

��������������

�����������
���

���
��

			
�

�����
�

�����
�����

������
��

�

			

�
�
�

��
�
��

�
��

��
�
��

�
��

			

�����
��
�����

������
��

���������������

�����
��
����

Figure 1: Graphical illustration of the individual steps

that are needed to transform the bag (set of flows with the

same user and hostname) into the proposed invariant rep-

resentation. First, the bag is represented with a standard

feature vector (1). Then feature values histograms of lo-

cally scaled feature values are computed for each feature

separately (2). Next, the locally-scaled self-similarity

matrix is computed for each feature (3) to capture inner

differences. This matrix is then transformed into feature

differences histogram (4), which is invariant on the num-

ber or the ordering of the samples within the bag. Finally,

feature values and feature differences histograms of all

features are concatenated into resulting feature vector.

width of the histogram bins. These parameters that were

manually predefined in Section 4 C influence the clas-

sification performance. Incorrectly chosen parameters b

and θ leads to suboptimal efficacy results. To define the

parameters optimally, we propose a novel approach of

learning these parameters automatically from the training

data in such a way to maximize the classification separa-

bility between positive and negative samples.

When creating histograms in Section 4 C, the input

instances are vectors zX
k and zS

k , where k ∈ {1, . . . ,n}.

The algorithm transforms the input instances into a con-

catenated histogram φ(X̃ ;S̃ ;θ). To keep the nota-

tion simple and concise, we will denote the input in-

stances simply as z = (z1, . . . ,zn) ∈ R
n×m (instead of

z = (zX
1 , . . . ,zX

n ,zS
1 , . . . ,zS

n)), which is a sequence of n

vectors each of dimension m.

The input instance z is represented via a feature

map φ : Rn×m → R
n·b defined as a concatenation of the

normalized histograms of all vectors in that sequence,

that is, φ(z;θ) = (φ(z1;θ 1), . . . ,θ(zn;θ n)), where θ =
(θ 1, . . . ,θ n) denotes bin edges of all normalized his-

tograms stacked to a single vector.

We aim at designing a classifier h : Rn×m × R
n+1 ×

R
n(b+1) → {−1,+1} working on top of the histogram

representation, that is

814 25th USENIX Security Symposium USENIX Association

Figure 2 shows how the two Sality samples are repre-

sented with the proposed approach. First, the input flows
are grouped into two bags (one bag for each Sality sam-
ple), because all flows of each bag have the same user and
the same hostname (1). For the sake of simplicity, only
URLs of the corresponding flows are displayed. Next,
88 flow-based feature vectors are computed for each bag
(2). To simplify illustration, we use only a single fea-
ture – URL length. After this step, each Sality sample
is represented with one feature vector of flow-based val-
ues. Existing approaches use these vectors as the input
for the subsequent detection methods. As we will show
in Section 7, these feature values are highly variable for
malware categories. Classification models trained with
such feature values loose generalization capability.

To enhance the robustness of the flow-based features,
the proposed approach computes histograms of feature
values φ(zX

k ,θ
X
k) and feature differences φ(zS

k ,θ S
k) (3)

as described in Section 4.3. To make the illustration sim-
ple, only four bins for each histogram were used. Finally,
all histograms are concatenated into the final feature vec-
tor (4). It can be seen that even though the malware
samples are from two different versions, they have the
same histogram of feature differences φ(zS

k ,θ S
k). Since

the histogram of feature values φ(zX
k ,θ

X
k) is not invariant

against shift, half of the values of φ(zX
k ,θ

X
k) are different.

The number of histogram bins and their sizes are then
learned from the data by the proposed algorithm (see
Section 5). The proposed representation describes inner
dynamics of flows from each bag, which is a robust indi-
cator of malware samples, as we will show in the analy-
sis of various malware families in Section 8. In contrast
to the existing methods that use flow-based features or
general statistics such as mean or standard deviation, the
proposed representation reflects properties that are much
more difficult for an attacker to evade detection.

7 Evasion Possibilities

This section discusses evasion options for an attacker
when trying to evade a learning-based classification sys-
tem. According to the recent work [35], the essential
components for an evasion are: (1) the set of features
used by the classifier, (2) the training dataset used for
training, (3) the classification algorithm with its parame-
ters. Without the knowledge of the features, the attacker
is faced with major challenges and there is not any known
technique for addressing them [35].

Acquire knowledge of classification algorithm with its
parameters or the training data is hard if not impossi-
ble. Therefore, in the following analysis, we assume that
only the features are known to the attacker. When clas-
sifying HTTP traffic from proxy logs, it is actually not
difficult to create a set of common features widely used

in practice. These features are the baseline flow-based
features, such as those described in Table 3. When the
attacker performs a mimicry attack, selected features of
malicious flows are modified to mimic legitimate traffic
(or flows marked as benign by the classifier).

In the following, we will analyze the case when the
attacker performs a mimicry attack to evade detection
by modifying flow attributes, such as URLs, bytes, and
inter-arrival times. Other flow attributes can be altered in
a similar way with analogical results. All modifications
are divided into two groups, depending on whether the
proposed representation is invariant against them.

The proposed representation is invariant to the follow-
ing changes.

• Malicious code, payload, or obfuscation – The ad-
vantage of all network-based security approaches is
that they extract features from headers of network
communication rather than from the content. As
a result, any changes to the payload including the
usage of pluggable transports designed to bypass
Deep Packet Inspection (DPI) devices will have no
effect on the features. Some pluggable transports
(e.g. ScrambleSuit) are able to change its net-
work fingerprint (packet length distribution, num-
ber of bytes, inter-arrival times, etc.). Since the pro-
posed representation mainly relies on the dynamics
of URLs of flows in the bag, such changes will not
negatively impact the efficacy, which is a great ad-
vantage against DPI devices.

• Server or hostname – The representation operates
at the level of bags, where each bag is a set of flows
with the same user and hostname/domain. If an at-
tacker changes an IP address or a hostname of the
remote server (because the current one has been
blacklisted), the representation will create a new
bag with similar feature values as in the previous
bag with the original IP address or hostname, which
is a great advantage against feeds and blacklists that
need to be updated daily and are always behind.

• URL path or filename – Straightforward and easy
way of evading existing classifiers using flow-based
features or URL patterns is the change in path or
filename from sample to sample. Since the variabil-
ity of these features remains constant within each
bag, these changes will also have no effect on the
proposed representation.

• Number of URL parameters, their names or val-

ues – This is an alternative to URL path changes.

• Encoded URL content – Hiding information in the
URL string represents another way to exfiltrate sen-
sitive data. When the URL is encrypted and en-
coded (e.g. with base64), it changes the URL length

USENIX Association 25th USENIX Security Symposium 815

and may globally influence other features as well.
As the proposed representation is invariant against
shifting, changing the URL length will not change
the histograms of feature differences.

• Number of flows – Another option for an attacker
to hide in the background traffic is increasing or re-
ducing the number of flows related to the attack.
Such modification of the attack does not affect the
representation, as long as there are enough flows to
create the feature vectors.

• Time intervals between flows – This feature has
been used in many previous approaches for its de-
scriptive properties. It is an alternative way to
the proposed representation how to model a rela-
tionship between individual flows. Our analysis
revealed that current malware samples frequently
modify the inter-arrival time to remain hidden in the
background traffic – see Figure 3 for details. There-
fore, we do not rely on this unstable feature that can
be also influenced by network delays or failures.

• Ordering of flows – An attacker can easily change
the ordering of flows to evade detection based on
patterns or predefined sequences of flows. For the
proposed representation the ordering of flows does
not matter.

The proposed representation is not invariant to the fol-
lowing changes.

• Static behavior – The representation does not
model malware behaviors, where all flows associ-
ated with a malware are identical. Such behavior
has no dynamics and can be classified with flow-
based approaches with comparable results. In our
dataset, only 10% of flows were removed because
of this constrain.

• Multiple behaviors in a bag – In case more behav-
iors are associated with a bag, such as when a target
hostname is compromised and communicates with
a user with legitimate and malicious flows at once,
the representation does not guarantee the invariance
against the attacker’s changes. Such bags contain a
mixture of legitimate and malicious flows and their
combination could lead to a different representation.
Note that there wasn’t any malware sample in our
data that would satisfy this condition, since the le-
gitimate traffic has to be authentic (not artificially
injected) to confuse the representation.

• Encrypted HTTPS traffic – Most features pre-
sented in this paper are computed from URLs or
other flow fields, that are not available in encrypted
HTTPS traffic. In this case, only a limited set

Category Samples Signatures
Flows Bags Recall

Training Positives 132,756 5,011 0.15
Click-fraud mw 12,091 819 0.29
DGA malware 8,629 397 0.58
Dridex 8,402 264 0.12
IntallCore 17,317 1,332 0.00
Monetization 3,107 135 0.00
Mudrop 37,142 701 0.00
Poweliks 11,648 132 0.00
Zeus 34,420 1,275 0.19
Testing Positives 43,380 2,090 0.02
Training Negatives 862,478 26,825
Testing Negatives 15,379,466 240,549

Table 2: Number of flows and bags of malware cate-
gories and legitimate background traffic used for train-
ing and testing the proposed representation and classifier.
Right-most column shows the amount of bags that were
found and blocked by an existing signature-based device.
Majority of the malicious bags from the test were missed,
as the device, relying on a static database of signatures,
was not able to catch evolving versions and new types of
the malicious behaviors.

of flow-based features can be used, which reduces
the discriminative properties of the representation.
However, majority of malware communication is
still over HTTP protocol, because switching to
HTTPS would harm the cyber-criminals’ revenues
due to problems with signed certificates [18].

• Real-time changes and evolution – In case a mal-
ware sample for a given user and hostname would
start changing its behavior dynamically and fre-
quently, the bag representation will vary in time.
Such inconsistency would decrease the efficacy re-
sults and enlarge the time to detect. However, creat-
ing such highly dynamic malware behavior requires
a considerable effort, therefore we do not see such
samples very often in the real network traffic.

We conclude our analysis with the observation, that
attackers change flow features very frequently (see Fig-
ure 3). The goal of the proposed representation is to be
invariant against most of the changes to successfully de-
tect new, previously unseen malware variants.

8 Experimental Evaluation

The proposed approach was deployed on the top of proxy
logs exporters in companies of various types and sizes
to detect unseen malware samples. The system archi-
tecture is shown in Figure 4. Collector connected to a

816 25th USENIX Security Symposium USENIX Association

Normalized Entropy of Feature Values for 32 Malware Categories

Features
1 2 3 4 5 6 7 8 9 10 11 12 13 14

M
a

lw
a

re
 C

a
te

g
o

ri
e

s

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Flow-based features (columns) are chang-

ing for most of the malware categories (rows). The

figure uses normalized entropy to show the variability

of each feature within each malware category. Yellow

color denotes that the feature value is changed very of-

ten, while blue color means that the feature has the

same values for all samples of the given category. Fea-

tures: 1-URL, 2-interarrival time, 3-URL query values,

4-URL path, 5-number of flows, 6-number of down-

loaded bytes, 7-server IP address, 8-hostname, 9-URL

path length, 10-URL query names, 11-filename, 12-

filename length, 13-number of URL query parameters,

14-number of uploaded bytes. Malware categories:

1-Click-fraud (amz), 2-Asterope family 1, 3-Asterope

family 2, 4-Beden, 5-Click-fraud, 6-DGA, 7-Dridex, 8-

Exfiltration, 9-InstallCore, 10-Mudrop Trojan Dropper,

11-Monetization, 12-Zeus, 13-Mudrop, 14-MultiPlug,

15-mixture of unknown malware, 16-Click-fraud (track-

ing), 17-Poweliks family 1, 18-Poweliks family 2, 19-

Qakbot Trojan, 20-Rerdom Trojan, 21-Ramnit worm,

22-RVX, 23-Sality, 24-Threats related to a traffic direc-

tion system (TDS) 1, 25-TDS 2, 26-TDS 3, 27-Tinba

Trojan, 28-C&C tunneling, 29-Upatre, 30-Vawtrak, 31-

Vittalia, 32-Zbot. Details about the malware categories

are given in Section 8.

proxy server stores incoming and outgoing network traf-

fic in form of proxy log records. The proxy logs represent

information about individual HTTP/HTTPS connections

or flows. Each 5-minute interval, the proxy logs are sent

to the detection engine, where the proposed method de-

tects the malicious behaviors. Report created from the

malicious behaviors is then displayed on a console to an

operator. The next section provides the specification of

datasets and malware categories, followed by the results

from the experimental evaluation. Next section provides

the specification of datasets and malware categories, fol-

lowed by the results from the experimental evaluation.

8.1 Specification of the Datasets

The data was obtained from several months (January -

July 2015) of real network traffic of 80 international

����������	
��

�����������

���������
�
�����	����

��������

���������
������

���������
�������

��������

� �����
�

Figure 4: Overview of the system architecture. Collector

connected to a proxy server stores incoming and outgo-

ing network traffic in form of proxy log records. Each

5-minute interval, the proxy logs are sent to the detec-

tion engine and the results are displayed to an operator

on the reporting console.

companies of various sizes in form of proxy logs [26].

The logs contain HTTP/HTTPS flows, where one flow is

one connection defined as a group of packets from a sin-

gle host and source port with a single server IP address,

port, and protocol. Summary of the datasets used in the

evaluation is described in Table 2.

Malware samples will be referred as positive bags,

where one positive bag is a set of records (connections)

with the same source towards the same destination. The

bags not labeled as malicious are considered as legiti-

mate/negative. Each bag should contain at least 5 flows

to be able to compute a meaningful histogram representa-

tion. Training dataset contains 5k malicious (8 malware

families) and 27k legitimate bags, while testing dataset

is consist of 2k malicious (≫ 32 malware families) and

241k legitimate bags (more than 15 million flows). Posi-

tive samples for training were acquired using many types

of publicly available feeds, services, and blacklists, while

the results on the testing data were analyzed manually by

security experts. Each HTTP flow consists of the follow-

ing fields: user name, srcIP, dstIP, srcPort, dstPort, pro-

tocol, number of bytes, duration, timestamp, user agent,

and URL. From these flow fields, we extracted 115 flow-

based features typically used in the prior art (Table 3).

This means that training and testing data are com-

posed of completely different malware bags from dif-

ferent malware families, which makes the classification

problem much harder. This scenario simulates the fact

that new types of threats are created to evade detection.

The benchmarking signature-based network security de-

vice (widely used in many companies) was able to de-

tect only 2% of the malicious bags from the testing set.

Training a classifier for each category separately is an

easier task, however such classifiers are typically over-

fitted to a single category and cannot detect further vari-

ations without retraining.

USENIX Association 25th USENIX Security Symposium 817

Dimension 1

-100 -80 -60 -40 -20 0 20 40 60 80 100

D
im

e
n

s
io

n
 2

-80

-60

-40

-20

0

20

40

60

80
Projection of Feature Vectors of the Flow-Based Representation into 2D

Legitimate
Malicious

Figure 5: Graphical projection of feature vectors of the

baseline flow-based representation into two dimensions
using t-SNE transformation. Feature vectors from 32
different malware categories are displayed. Due to high
variability of flow-based feature values, legitimate and
malicious samples are scattered without any clear sep-
aration. The results show that the flow-based represen-
tation is suitable for training classifiers specialized on a
single malware category, which often leads to classifiers
with high precision and low recall.

Dimension 1

-60 -40 -20 0 20 40 60 80

D
im

e
n

s
io

n
 2

-50

-40

-30

-20

-10

0

10

20

30

40

50
Projection of Feature Vectors of the Proposed Representation into 2D

Malicious
Legitimate

Figure 6: Graphical projection of feature vectors of the
proposed representation into two dimensions using t-
SNE transformation. Thanks to the invariant properties,
malicious bags from various categories are grouped to-
gether, as they have similar dynamics modeled by the
representation. Most of the legitimate bags are concen-
trated on the left-hand side, far from the malicious bags.
This shows that training a classifier with the proposed
representation will achieve higher recall with compara-
ble precision.

Features applied on URL, path, query, filename
length; digit ratio
lower/upper case ratio; ratio of digits
vowel changes ratio
ratio of a character with max occurrence
has a special character
max length of consonant/vowel/digit stream
number of non-base64 characters
has repetition of parameters
Other Features
number of bytes from client to server
number of bytes from server to client
length of referer/file extension
number of parameters in query
number of ’/’ in path/query/referer

Table 3: List of selected flow-based features extracted
from proxy logs. We consider these features as base-
line (as some features were used in previously published
work), and compare it with the proposed representation.

Table 4 from Appendix A describes an important fact
about the URLs from individual malicious bags. As you
can see, URLs within each malicious bag are similar to
each other (as opposed to most of legitimate bags). This
small non-zero variability of flow-based feature values is
captured by the proposed representation using both types
of histograms. The variability is very general but also

descriptive feature, which increases the robustness of the
representation to further malware changes and variants.

8.2 Evaluation on Real Network Traffic

This section shows the benefits of the proposed approach
of learning the invariant representation for two-class
classification problem in network security. Feature vec-
tors described in Section 8.1 correspond to input feature
vectors {x1, . . . ,xm} defined in Section 3. These vectors
are transformed into the proposed representation of his-
tograms φ(X̃ ;S̃ ;θ), as described in Section 4. We have
evaluated two types of invariant representations. One
with predefined number of equidistant bins (e.g. 16, 32,
etc.) computed as described in Section 4, and one when
the representation is learned together with the classifier
to maximize the separability between malicious and le-
gitimate traffic (combination of Section 4 and 5). For the
representation learning, we used 256 bins as initial (and
most detailed) partitioning of the histograms. During the
learning phase, the bins were merged together, creating
12.7 bins per histogram on average.

Both approaches are compared with the baseline flow-
based representation used in previously published work,
where each sample corresponds to a feature vector com-
puted from one flow. Results of a widely used signature-
based security device are also provided (see Table 2)
to demonstrate that the positive samples included in the
evaluation pose a real security risk, as majority of them

USENIX Association 25th USENIX Security Symposium 819

False Positive Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curve for Test Data

flow-based
bag mean
bag variance
bag combined
optimized bag combined

False Positive Rate
10 -5 10 -4 10 -3 10 -2 10 -1 100

Tr
ue

 P
os

iti
ve

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curve for Test Data - Log Scale

flow-based
bag mean
bag variance
bag combined
optimized bag combined

Figure 10: ROC curves of SVM classifier on test data for five types of representations (logarithmic scale on the right).

Flow-based representation shows very unsatisfactory results showing that flow-based approach cannot be applied in

practice to detect unseen malware variants. The combination of feature values with feature differences histogram (bag

combined) led to significantly better efficacy results. These results were further exceeded when the parameters of the

invariant representation were learned automatically from the training data (optimized bag combined).

plexity of the classifier.

Figures 8 and 9 show the bins and weights learned

from the training set of real network traffic. The blue ver-

tical lines represent learned weights associated with 256

bins of a histogram computed on a single input feature.

The red lines show new bins derived from the weights by

merging those neighboring bins which have the weights

with the same sign. Figure 8 shows the weights and the

derived bins for a standard SVM which has no incentive

to have similar weights. The histogram derived from the

SVM weights reduces the number of bins from 256 to

130. Figure 9 shows the results for the proposed method

which enforces the similar weights for neighboring bins.

In this case, the weights exhibit a clear structure and the

derived histogram has only 18 bins. The decision bound-

ary is in this case smoother and the classifier trained from

this representation will be more robust.

Next, a two-class SVM classifier was evaluated on five

representations: baseline flow-based, per-feature his-

tograms of values φ(zX
k ,θ

X
k) (bag mean), per-feature his-

tograms of feature differences φ(zS
k ,θ S

k) (bag variance),

the combination of both (bag combined), and the combi-

nation of both with bin optimization (optimized bag com-

bined). The training and testing datasets were composed

of bags described in Table 2.

The results on testing data are depicted in Figure 10.

Note that positive bags in the testing set are from dif-

ferent malware categories than bags from the training

set, which makes the classification problem much harder.

The purpose of this evaluation is to compare flow-based

representation, which is used in most of previously pub-

lished work, with the proposed invariant representation.

Flow-based representation shows very unsatisfactory re-

sults, mainly due to the fact that the classifier was based

only on the values of flow-based features that are not

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision-Recall Curve for Testing Data

bag combined (256 bins)
bag combined (128 bins)
bag combined (64 bins)
bag combined (16 bins)
bag combined (8 bins)
optimized bag combined

Figure 11: Precision-recall curve of SVM classifier

trained on the proposed representation with different

number of histogram bins for each feature. All classifiers

are outperformed by the classifier, where the parameters

of the invariant representation are learned automatically

from the data (optimized bag combined). The classifier

achieved 90% precision (9 of 10 alerts were malicious)

and 67% recall on previously unseen malware families.

robust across different malware categories (as shown in

Section 7). The classifier based on combined bag rep-

resentation performed significantly better. These results

were further exceeded when the parameters of the invari-

ant representation were learned automatically from the

training data (optimized bag combined), which is shown

in Figure 10 with logarithmic scale.

Precision-recall curve is depicted in Figure 11 to com-

pare the efficacy results of classifiers based on the pro-

posed representation with predefined number of bins per

feature (8, 16, 64, 128, and 256 bins) with the same rep-

resentation, but when the parameters are learned from the

training data (using bin optimization from Section 5).

820 25th USENIX Security Symposium USENIX Association

Overall, the results show the importance of combin-

ing both types of histograms introduced in Section 4 to-

gether, allowing the representation to be more descrip-

tive and precise without sacrificing recall. But most im-

portantly, when the parameters of the representation are

trained to maximize the separability between malicious

and legitimate samples, the resulting classifier performs

in order of a magnitude better than a classifier with man-

ually predefined parameters.

9 Conclusion

This paper proposes a robust representation suitable for

classifying evolving malware behaviors. It groups sets

of network flows into bags and represents them using a

the combination of invariant histograms of feature val-

ues and feature differences. The representation is de-

signed to be invariant under shifting and scaling of the

feature values and under permutation and size changes

of the bags. The proposed optimization method learns

the parameters of the representation automatically from

the training data, allowing the classifiers to create robust

models of malicious behaviors capable of detecting pre-

viously unseen malware variants and behavior changes.

The proposed representation was deployed on corpo-

rate networks and evaluated on real HTTP network traf-

fic with more than 43k malicious samples and more than

15M samples overall. The comparison with a baseline

flow-based approach and a widely-used signature-based

web security device showed several key advantages of

the proposed representation. First, the invariant proper-

ties of the representation result in the detection of new

types of malware. More specifically, the proposed clas-

sifier trained on the optimized representation achieved

90% precision (9 of 10 alerts were malicious) and de-

tected 67% of malware samples of previously unseen

types and variants. Second, multiple malware behav-

iors can be represented in the same feature space while

current flow-based approaches necessitate training a sep-

arate detector for each malware family. This way, the

proposed system considerably increases the capability of

detecting new variants of threats.

References

[1] Cisco netflow. http://www.cisco.com/warp/public/732/tech/netflow.

[2] ANTONAKAKIS, M., PERDISCI, R., NADJI, Y., VASILOGLOU,

N., ABU-NIMEH, S., LEE, W., AND DAGON, D. From throw-

away traffic to bots: Detecting the rise of dga-based malware. In

Proceedings of the 21st USENIX Conference on Security Sympo-

sium (Berkeley, CA, USA, 2012), Security’12, USENIX Associ-

ation, pp. 24–24.

[3] BAILEY, M., OBERHEIDE, J., ANDERSEN, J., MAO, Z., JAHA-

NIAN, F., AND NAZARIO, J. Automated classification and anal-

ysis of internet malware. In Recent Advances in Intrusion Detec-

tion, C. Kruegel, R. Lippmann, and A. Clark, Eds., vol. 4637 of

Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2007, pp. 178–197.

[4] BEN-DAVID, S., BLITZER, J., CRAMMER, K., PEREIRA, F.,

ET AL. Analysis of representations for domain adaptation. Ad-

vances in neural information processing systems 19 (2007), 137.

[5] BERNAILLE, L., TEIXEIRA, R., AKODKENOU, I., SOULE, A.,

AND SALAMATIAN, K. Traffic classification on the fly. ACM

SIGCOMM ’06 36, 2 (Apr. 2006), 23–26.

[6] BILGE, L., BALZAROTTI, D., ROBERTSON, W., KIRDA, E.,

AND KRUEGEL, C. Disclosure: Detecting botnet command and

control servers through large-scale netflow analysis. In Proceed-

ings of the 28th Annual Computer Security Applications Confer-

ence (New York, NY, USA, 2012), ACSAC ’12, ACM, pp. 129–

138.

[7] BLITZER, J., MCDONALD, R., AND PEREIRA, F. Domain adap-

tation with structural correspondence learning. In Proceedings of

the 2006 conference on empirical methods in natural language

processing (2006), Association for Computational Linguistics,

pp. 120–128.

[8] CHANDOLA, V., BANERJEE, A., AND KUMAR, V. Anomaly

detection: A survey. ACM Comput. Surv. 41 (July 2009), 15:1–

15:58.

[9] CHOI, H., ZHU, B. B., AND LEE, H. Detecting malicious web

links and identifying their attack types. In Proceedings of the 2Nd

USENIX Conference on Web Application Development (Berkeley,

CA, USA, 2011), WebApps’11, USENIX Association, pp. 11–

11.

[10] DAI, W., YANG, Q., XUE, G.-R., AND YU, Y. Boosting for

transfer learning. In Proceedings of the 24th international con-

ference on Machine learning (2007), ACM, pp. 193–200.

[11] DUAN, L., TSANG, I. W., AND XU, D. Domain transfer mul-

tiple kernel learning. Pattern Analysis and Machine Intelligence,

IEEE Transactions on 34, 3 (2012), 465–479.

[12] ERMAN, J., ARLITT, M., AND MAHANTI, A. Traffic classifi-

cation using clustering algorithms. In Proceedings of the 2006

SIGCOMM Workshop on Mining Network Data (New York, NY,

USA, 2006), MineNet ’06, ACM, pp. 281–286.

[13] FALLIERE, N. Sality: Story of a peer-to-peer viral network. Rap-

port technique, Symantec Corporation (2011).

[14] GRETTON, A., SMOLA, A., HUANG, J., SCHMITTFULL, M.,

BORGWARDT, K., AND SCHÖLKOPF, B. Covariate shift by ker-

nel mean matching. Dataset shift in machine learning 3, 4 (2009),

5.

[15] GRIFFIN, K., SCHNEIDER, S., HU, X., AND CHIUEH, T.-C.

Automatic generation of string signatures for malware detec-

tion. In Proceedings of the 12th International Symposium on Re-

cent Advances in Intrusion Detection (Berlin, Heidelberg, 2009),

RAID ’09, Springer-Verlag, pp. 101–120.

[16] GU, G., PERDISCI, R., ZHANG, J., LEE, W., ET AL. Botminer:

Clustering analysis of network traffic for protocol-and structure-

independent botnet detection. In USENIX Security Symposium

(2008), vol. 5, pp. 139–154.

[17] HUANG, H., QIAN, L., AND WANG, Y. A svm-based technique

to detect phishing urls. Information Technology Journal 11, 7

(2012), 921–925.

[18] INVERNIZZI, L., MISKOVIC, S., TORRES, R., SAHA, S., LEE,

S., MELLIA, M., KRUEGEL, C., AND VIGNA, G. Nazca: De-

tecting malware distribution in large-scale networks. In Proceed-

ings of the Network and Distributed System Security Symposium

(NDSS) (2014).

USENIX Association 25th USENIX Security Symposium 821

[19] IYER, A., NATH, S., AND SARAWAGI, S. Maximum mean dis-

crepancy for class ratio estimation: Convergence bounds and ker-

nel selection. In Proceedings of the 31st International Conference

on Machine Learning (ICML-14) (2014), pp. 530–538.

[20] JAGPAL, N., DINGLE, E., GRAVEL, J.-P., MAVROMMATIS, P.,

PROVOS, N., RAJAB, M. A., AND THOMAS, K. Trends and

lessons from three years fighting malicious extensions. In 24th

USENIX Security Symposium (USENIX Security 15) (Washing-

ton, D.C., Aug. 2015), USENIX Association, pp. 579–593.

[21] JUNEJO, I. N., DEXTER, E., LAPTEV, I., AND PEREZ, P. View-

independent action recognition from temporal self-similarities.

Pattern Analysis and Machine Intelligence, IEEE Transactions

on 33, 1 (2011), 172–185.

[22] KAPRAVELOS, A., SHOSHITAISHVILI, Y., COVA, M.,

KRUEGEL, C., AND VIGNA, G. Revolver: An automated

approach to the detection of evasive web-based malware. In

USENIX Security (2013), Citeseer, pp. 637–652.

[23] KARAGIANNIS, T., PAPAGIANNAKI, K., AND FALOUTSOS, M.

Blinc: Multilevel traffic classification in the dark. In Proceedings

of the 2005 Conference on Applications, Technologies, Architec-

tures, and Protocols for Computer Communications (New York,

NY, USA, 2005), SIGCOMM ’05, ACM, pp. 229–240.

[24] KIM, H., CLAFFY, K., FOMENKOV, M., BARMAN, D.,

FALOUTSOS, M., AND LEE, K. Internet traffic classification de-

mystified: Myths, caveats, and the best practices. In Proceedings

of the 2008 ACM CoNEXT Conference (New York, NY, USA,

2008), CoNEXT ’08, ACM, pp. 11:1–11:12.

[25] KRUEGEL, C., AND VIGNA, G. Anomaly detection of web-

based attacks. In Proceedings of the 10th ACM Conference on

Computer and Communications Security (New York, NY, USA,

2003), CCS ’03, ACM, pp. 251–261.

[26] LOU, W., LIU, G., LU, H., AND YANG, Q. Cut-and-pick trans-

actions for proxy log mining. In Advances in Database Tech-

nology EDBT 2002, C. Jensen, S. altenis, K. Jeffery, J. Pokorny,

E. Bertino, K. Bhn, and M. Jarke, Eds., vol. 2287 of Lecture Notes

in Computer Science. Springer Berlin Heidelberg, 2002, pp. 88–

105.

[27] MA, J., SAUL, L. K., SAVAGE, S., AND VOELKER, G. M.

Learning to detect malicious urls. ACM Trans. Intell. Syst. Tech-

nol. 2, 3 (May 2011), 30:1–30:24.

[28] MOORE, D., SHANNON, C., BROWN, D. J., VOELKER, G. M.,

AND SAVAGE, S. Inferring internet denial-of-service activity.

ACM Trans. Comput. Syst. 24, 2 (May 2006), 115–139.

[29] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring multiple

execution paths for malware analysis. In Security and Privacy,

2007. SP ’07. IEEE Symposium on (May 2007), pp. 231–245.

[30] MOSER, A., KRUEGEL, C., AND KIRDA, E. Limits of static

analysis for malware detection. In Computer Security Applica-

tions Conference, 2007. ACSAC 2007. Twenty-Third Annual (Dec

2007), pp. 421–430.

[31] MÜLLER, M., AND CLAUSEN, M. Transposition-invariant self-

similarity matrices. In In Proceedings of the 8th International

Conference on Music Information Retrieval (ISMIR) (2007),

pp. 47–50.

[32] NELMS, T., PERDISCI, R., ANTONAKAKIS, M., AND

AHAMAD, M. Webwitness: Investigating, categorizing, and mit-

igating malware download paths. In 24th USENIX Security Sym-

posium (USENIX Security 15) (Washington, D.C., Aug. 2015),

USENIX Association, pp. 1025–1040.

[33] PORTNOY, L., ESKIN, E., AND STOLFO, S. Intrusion detection

with unlabeled data using clustering. In In Proceedings of ACM

CSS Workshop on Data Mining Applied to Security (DMSA-2001

(2001), pp. 5–8.

[34] RIECK, K., HOLZ, T., WILLEMS, C., DSSEL, P., AND LASKOV,

P. Learning and classification of malware behavior. In Detec-

tion of Intrusions and Malware, and Vulnerability Assessment,

D. Zamboni, Ed., vol. 5137 of Lecture Notes in Computer Sci-

ence. Springer Berlin Heidelberg, 2008, pp. 108–125.

[35] RNDIC, N., AND LASKOV, P. Practical evasion of a learning-

based classifier: A case study. In Security and Privacy (SP), 2014

IEEE Symposium on (May 2014), pp. 197–211.

[36] SCARFONE, K., AND MELL, P. Guide to intrusion detection

and prevention systems (idps) recommendations of the national

institute of standards and technology. Nist Special Publication

800, 94 (2007).

[37] SHIMODAIRA, H. Improving predictive inference under covari-

ate shift by weighting the log-likelihood function. Journal of sta-

tistical planning and inference 90, 2 (2000), 227–244.

[38] SONG, D., BRUMLEY, D., YIN, H., CABALLERO, J., JAGER,

I., KANG, M., LIANG, Z., NEWSOME, J., POOSANKAM, P.,

AND SAXENA, P. Bitblaze: A new approach to computer secu-

rity via binary analysis. In Information Systems Security, R. Sekar

and A. Pujari, Eds., vol. 5352 of Lecture Notes in Computer Sci-

ence. Springer Berlin Heidelberg, 2008, pp. 1–25.

[39] SONG, H., AND TURNER, J. Toward advocacy-free evaluation of

packet classification algorithms. Computers, IEEE Transactions

on 60, 5 (May 2011), 723–733.

[40] SOSKA, K., AND CHRISTIN, N. Automatically detecting vul-

nerable websites before they turn malicious. In 23rd USENIX Se-

curity Symposium (USENIX Security 14) (San Diego, CA, Aug.

2014), USENIX Association, pp. 625–640.

[41] WANG, K., AND STOLFO, S. Anomalous payload-based net-

work intrusion detection. In Recent Advances in Intrusion Detec-

tion, E. Jonsson, A. Valdes, and M. Almgren, Eds., vol. 3224 of

Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2004, pp. 203–222.

[42] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,

E. Panorama: Capturing system-wide information flow for mal-

ware detection and analysis. In Proceedings of the 14th ACM

Conference on Computer and Communications Security (New

York, NY, USA, 2007), CCS ’07, ACM, pp. 116–127.

[43] ZHANG, K., SCHÖLKOPF, B., MUANDET, K., AND WANG, Z.

Domain adaptation under target and conditional shift. In Proceed-

ings of the 30th International Conference on Machine Learning

(ICML-13) (2013), S. Dasgupta and D. Mcallester, Eds., vol. 28,

JMLR Workshop and Conference Proceedings, pp. 819–827.

[44] ZHAO, P., AND HOI, S. C. Cost-sensitive online active learning

with application to malicious url detection. In Proceedings of

the 19th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (New York, NY, USA, 2013), KDD

’13, ACM, pp. 919–927.

A Examples of Bags

822 25th USENIX Security Symposium USENIX Association

Asterope

hxxp://194.165.16.146:8080/pgt/?ver=1.3.3398&id=126&r=12739868&os=6.1—2—8.0.7601.18571&res=4—1921—466&f=1

hxxp://194.165.16.146:8080/pgt/?ver=1.3.3398&id=126&r=15425581&os=6.1—2—8.0.7601.18571&res=4—1921—516&f=1

hxxp://194.165.16.146:8080/pgt/?ver=1.3.3398&id=126&r=27423103&os=6.1—2—8.0.7601.18571&res=4—1921—342&f=1

hxxp://194.165.16.146:8080/pgt/?ver=1.3.3753&id=126&r=8955018&os=6.1—2—8.0.7601.18571&res=4—1921—319&f=1

Click-fraud, malvertising-related botnet

hxxp://directcashfunds.com/opntrk.php?tkey=024f9730e23f8553c3e5342568a70300&Email=name.surname@company.com

hxxp://directcashfunds.com/opntrk.php?tkey=c1b6e3d50632d4f5c0ae13a52d3c4d8d&Email=name.surname@company.com

hxxp://directcashfunds.com/opntrk.php?tkey=7c9a843ce18126900c46dbe4be3b6425&Email=name.surname@company.com

hxxp://directcashfunds.com/opntrk.php?tkey=c1b6e3d50632d4f5c0ae13a52d3c4d8d&Email=name.surname@company.com

DGA

hxxp://uvyqifymelapuvoh.biz/s531ka.ji5

hxxp://uvyqifymelapuvoh.biz/rl59c281.x19

hxxp://uvyqifymelapuvoh.biz/seibpn6.2m0

hxxp://uvyqifymelapuvoh.biz/3854f.u17

Dridex

hxxp://27.54.174.181/8qV578&$o@HU6Q6S/gz$J0l=iTTH 28%2CM/we20%3D

hxxp://27.54.174.181/C4GyRx%7E@RY6x /M&N=sq/bW ra4OTJ

hxxp://27.54.174.181/gPvh+=GO/9RPPfk0%2CzXOYU%20/Vq8Ww/+a m%7Ez

hxxp://27.54.174.181/qE0my4KIz48Cf3H8wG%7Evpz=iJ%26fqMl%24m/46JoELp=GJww%3D%26Ib+Ar.y3 iu%2D1E/sso

InstallCore Monetization

hxxp://rp.any-file-opener.org/?pcrc=1559319553&v=2.0 hxxp://utouring.net/search/q/conducing

hxxp://rp.any-file-opener.org/?pcrc=1132521307&v=2.0 hxxp://utouring.net/go/u/1/r/1647

hxxp://rp.any-file-opener.org/?pcrc=1123945956&v=2.0 hxxp://utouring.net/go/u/0/r/2675

hxxp://rp.any-file-opener.org/?pcrc=1075608192&v=2.0 hxxp://utouring.net/search/f/1/q/refiles

Poweliks

hxxp://31.184.194.39/query?version=1.7&sid=793&builddate=114&q=nitric+oxide+side+effects&ua=Mozilla%2F5 . . . &lr=7&ls=0

hxxp://31.184.194.39/query?version=1.7&sid=793&builddate=114&q=weight+loss+success+stories&ua=Mozilla%2F5 . . . &lr=0&ls=0

hxxp://31.184.194.39/query?version=1.7&sid=793&builddate=114&q=shoulder+pain&ua=Mozilla%2F5 . . . &lr=7&ls=2

hxxp://31.184.194.39/query?version=1.7&sid=793&builddate=114&q=cheap+car+insurance&ua=Mozilla%2F5 . . . &lr=7&ls=2

Zeus

hxxp://130.185.106.28/m/IbQFdXVjiriLva4KHeNpWCmThrJBn3f34HNwsLVVsUmLXtsumSSPe/zzXtIu9SzwjI9zKlxdE . . . 3RqvGzKN5

hxxp://130.185.106.28/m/IbQJFUVjgZn4vx4KHeNpWCmThrJBn3f34HNwsLVVsUmLfkoPaSS+S+zzXtIu9SzwjI9zKlxdE . . . 3vKwmk0oUi

hxxp://130.185.106.28/m/IbQJFUVjiJwJBX4KHeNpWCmThrJBn3f34HNwsLVVsUmKH7ue2STvSkzzXtIu9SzwjI9zKlxdE . . . 3vKwmk0oUi

hxxp://130.185.106.28/m/IbQNtVVji5/7Yp4KHeNpWCmThrJBn3f34HNwsLVVsUmLz4sO6YRvOjzzXtIu9SzwjI9zKlxdE . . . 3zB9057quqv

Legitimate traffic 1

hxxp://www.cnn.com/.element/ssi/auto/4.0/sect/MAIN/markets wsod expansion.html

hxxp://www.cnn.com/.a/1.73.0/assets/sprite-s1dced3ff2b.png

hxxp://www.cnn.com/.element/widget/video/videoapi/api/latest/js/CNNVideoBootstrapper.js

hxxp://www.cnn.com/jsonp/video/nowPlayingSchedule.json?callback=nowPlayingScheduleCallbackWrapper& =1422885578476

Legitimate traffic 2

hxxp://ads.adaptv.advertising.com/a/h/7g doK40WLPMYHbkD9G2u7HSXjqzIaa7Bqhslod+u7iQl . . . &context=fullUrl%3Dpandora.com

hxxp://ads.adaptv.advertising.com/crossdomain.xml

hxxp://ads.advertising.com/411f1e96-3bde-4d85-b17e-63749e5f0695.js

hxxp://ads.adaptv.advertising.com/applist?placementId=297920&key=&d.vw=1&orgId=8656&hostname=data.rtbfy.com

Table 4: Example URLs of flows from several malicious bags and from two legitimate bags. The URLs within each

malicious bag are similar to each other while the URLs within legitimate bags differ. The small non-zero variability

of flow-based feature values is captured by the proposed representation using histograms of features and feature self-

similarity matrices. Such transformation of the feature values makes the representation robust to malware changes and

unseen variants.

