
Optimization for Machine Learning

Editors:

Suvrit Sra suvrit@gmail.com

Max Planck Insitute for Biological Cybernetics

72076 Tübingen, Germany

Sebastian Nowozin nowozin@gmail.com

Microsoft Research

Cambridge, CB3 0FB, United Kingdom

Stephen J. Wright swright@cs.uwisc.edu

University of Wisconsin

Madison, WI 53706

This is a draft containing only sra chapter.tex and an abbreviated front

matter. Please check that the formatting and small changes have been performed

correctly. Please verify the affiliation. Please use this version for sending us future

modifications.

The MIT Press

Cambridge, Massachusetts

London, England

ii

Contents

1 Cutting plane methods in machine learning 1

1.1 Introduction to cutting plane methods 3

1.2 Regularized risk minimization 7

1.3 Multiple kernel learning . 13

1.4 MAP inference in graphical models 19

1 Cutting plane methods in machine learning

Vojtěch Franc xfrancv@cmp.felk.cvut.cz

Czech Technical University in Prague

Technická 2, 166 27 Prague 6

Czech Republic

Sören Sonnenburg Soeren.Sonnenburg@tu-berlin.de

Berlin Institute of Technology

Franklinstr. 28/29

10587 Berlin, Germany

Tomáš Werner werner@cmp.felk.cvut.cz

Czech Technical University in Prague

Technická 2, 166 27 Prague 6

Czech Republic

Cutting plane methods are optimization techniques that incrementally con-

struct an approximation of a feasible set or an objective function by linear

inequalities, called cutting planes. Numerous variants of this basic idea are

among standard tools used in convex nonsmooth optimization and integer

linear programing. Recently, cutting plane methods have seen growing inter-

est in the field of machine learning. In this chapter, we describe the basic

theory behind these methods and we show three of their successful applica-

tions to solving machine learning problems: regularized risk minimization,

multiple kernel learning, and MAP inference in graphical models.

Many problems in machine learning are elegantly translated to convex

optimization problems, which, however, are sometimes difficult to solve

efficiently by off-the-shelf solvers. This difficulty can stem from complexity

of either the feasible set or of the objective function. Often, these can be

accessed only indirectly via an oracle. To access a feasible set, the oracle

either asserts that a given query point lies in the set or finds a hyperplane

2 Cutting plane methods in machine learning

that separates the point from the set. To access an objective function, the

oracle returns the value and a subgradient of the function at the query point.

Cutting plane methods solve the optimization problem by approximating

the feasible set or the objective function by a bundle of linear inequalities,

called cutting planes. The approximation is iteratively refined by adding

new cutting planes, computed from the responses of the oracle.

Cutting plane methods have been extensively studied in literature. We

refer to Boyd and Vandenberge (2008) for an introductory yet comprehensive

overview. For the sake of self consistency, we review the basic theory in

Section 1.1. Then, in three separate sections, we describe their successful

applications to three machine learning problems.

The first application, Section 1.2, is on learning linear predictors from

data based on regularized risk minimization (RRM). RRM often leads to a

convex but nonsmooth task, which cannot be efficiently solved by general-

purpose algorithms, especially for large-scale data. Prominent examples of

RRM are support vector machines, logistic regression, and structured output

learning. We review a generic risk minimization algorithm proposed by Teo

et al. (2007, 2010), inspired by a variant of cutting plane methods known

as proximal bundle methods. We also discuss its accelerated version (Franc

and Sonnenburg, 2008, 2010; Teo et al., 2010), which is among the fastest

solvers for the large-scale learning.

The second application, Section 1.3, is multiple kernel learning (MKL).

While classical kernel-based learning algorithms use a single kernel, it is

sometimes desirable to use multiple kernels (Lanckriet et al., 2004b). Here,

we focus on the convex formulation of the MKL problem for classification as

first stated in (Zien and Ong, 2007; Rakotomamonjy et al., 2007). We show

how this problem can be efficiently solved by a cutting plane algorithm

recycling standard SVM implementations. The resulting MKL solver is

equivalent to the column generation approach applied to the semi-infinite

programming formulation of the MKL problem proposed by Sonnenburg

et al. (2006a).

The third application, Section 1.4, is maximum a posteriori (MAP) infer-

ence in graphical models. It leads to a combinatorial optimization problem

which can be formulated as a linear optimization over the marginal polytope

(Wainwright and Jordan, 2008). Cutting plane methods iteratively construct

a sequence of progressively tighter outer bounds of the marginal polytope,

corresponding to a sequence of LP relaxations. We revisit the approach by

Werner (2008a, 2010), in which a dual cutting plane method is a straightfor-

ward extension of a simple message passing algorithm. It is a generalization

of the dual LP relaxation approach by Shlezinger (1976) and the max-sum

diffusion algorithm by Kovalevsky and Koval (approx. 1975).

1.1 Introduction to cutting plane methods 3

1.1 Introduction to cutting plane methods

Suppose we want to solve the optimization problem

min{ f(x) | x ∈ X } , (1)

where X ⊆ R
n is a convex set, f : R

n → R is a convex function, and we

assume that the minimum exists. Set X can be accessed only via the so called

separation oracle (or separation algorithm). Given x̂ ∈ R
n, the separation

oracle either asserts that x̂ ∈ X or returns a hyperplane 〈a, x〉 ≤ b (called

a cutting plane) that separates x̂ from X, i.e., 〈a, x̂〉 > b and 〈a, x〉 ≤ b for

all x ∈ X. Figure 1.1(a) illustrates the idea.

The cutting plane algorithm (Algorithm 1.1) solves (1) by constructing

progressively tighter convex polyhedrons Xt containing the true feasible setcutting plane

algorithm X, by cutting off infeasible parts of an initial polyhedron X0. It stops when

xt ∈ X (possibly up to some tolerance).

The trick behind the method is not to approximate X well by a convex

polyhedron but to do so only near the optimum. This is best seen if X is

already a convex polyhedron, described by a set of linear inequalities. At

optimum, only some of the inequalities are active. We could in fact remove

all the inactive inequalities without affecting the problem. Of course, we do

not know which ones to remove until we know the optimum. The cutting

plane algorithm imposes more than the minimal set of inequalities but still

possibly much fewer than the whole original description of X.

Algorithm 1.1 Cutting plane algorithm

1: Initialization: t← 0, X0 ⊇ X
2: loop

3: Let xt ∈ argminx∈Xt
f(x)

4: If xt ∈ X then stop, else find a cutting plane 〈a, x〉 ≤ b separating xt from X.
5: Xt+1 ← Xt ∩ {x | 〈a, x〉 ≤ b }
6: t← t + 1
7: end loop

This basic idea has many incarnations. Next we describe three of them,

which have been used in the three machine learning applications presented

in this chapter. Section 1.1.1 describes a cutting plane method suited for

minimization of nonsmooth convex functions. An improved variant thereof,

called the bundle method , is described in Section 1.1.2. Finally, Section 1.1.3

describes application of cutting plane methods to solving combinatorial

optimization problems.

4 Cutting plane methods in machine learning

a x̂

X

x0x1

f(x)

X
x2

f2(x)

f(x0) + 〈f ′(x0), x− x0〉 f(x1) + 〈f ′(x1), x− x1〉

(a) (b)

Figure 1.1: Figure (a) illustrates the cutting plane 〈a, x〉 ≤ b cutting off
the query point x̂ from the light gray halfspace {x | 〈a, x〉 ≤ b} which
contains the feasible set X (dark gray). Figure (b) shows a feasible set X (gray
interval) and a function f(x) which is approximated by a cutting plane model
f2(x) = max{f(x0) + 〈f ′(x0), x − x0〉, f(x1) + 〈f ′(x1), x − x1〉}. Starting
from x0, the CPA generates points x1 and x2 = argminx∈X f2(x).

1.1.1 Nonsmooth optimization

When f is a complicated nonsmooth function while the set X is simple, we

want to avoid explicit minimization of f in the algorithm. This can be done

by writing (1) in the epigraph form as

min{ y | (x, y) ∈ Z } where Z = { (x, y) ∈ X × R | f(x) ≤ y } . (2)

In this case, cutting planes can be generated by means of subgradients.

Recall that f ′(x̂) ∈ R
n is a subgradient of f at x̂ ifsubgradient

f(x) ≥ f(x̂) + 〈f ′(x̂), x− x̂〉 , x ∈ X . (3)

Thus, the right-hand side is a linear underestimator of f . Assume that

x̂ ∈ X. Then, the separation algorithm for the set Z can be constructed

as follows. If f(x̂) ≤ ŷ then (x̂, ŷ) ∈ Z. If f(x̂) > ŷ then the inequality

y ≥ f(x̂) + 〈f ′(x̂), x− x̂〉 (4)

defines a cutting plane separating (x̂, ŷ) from Z.

This leads to the algorithm proposed independently by Cheney and Gold-

stein (1959) and Kelley (1960). Starting with x0 ∈ X, it computes the next

1.1 Introduction to cutting plane methods 5

iterate xt by solving

(xt, yt) ∈ argmin
(x,y)∈Zt

y where

Zt =
{

(x, y) ∈ X × R | y ≥ f(xi) + 〈f ′(xi), x− xi〉, i = 0, . . . , t− 1
}

.
(5)

Here, Zt is a polyhedral outer bound of Z defined by X and the cutting

planes from previous iterates {x0, . . . ,xt−1}. Problem (5) simplifies to

xt ∈ argmin
x∈X

ft(x) where ft(x) = max
i=0,...,t−1

[

f(xi)+〈f
′(xi), x− xi〉

]

. (6)

Here, ft is a cutting-plane model of f (see Figure 1.1(b)). Note that

(xt, ft(xt)) solves (5). By (3) and (6), we have that f(xi) = ft(xi) for

i = 0, . . . , t − 1 and f(x) ≥ ft(x) for x ∈ X, i.e., ft is an underestima-

tor of f which touches f at the points {x0, . . . ,xt−1}. By solving (6) we

do not only get an estimate xt of the optimal point x∗ but also a lower

bound ft(xt) on the optimal value f(x∗). It is natural to terminate when

f(xt) − ft(xt) ≤ ε, which guarantees that f(xt) ≤ f(x∗) + ε. The method

is summarized in Algorithm 1.2.

Algorithm 1.2 Cutting plane algorithm in epigraph form

1: Initialization: t← 0, x0 ∈ X, ε > 0
2: repeat

3: t← t + 1
4: Compute f(xt−1) and f ′(xt−1).
5: Update the cutting plane model ft(x)← maxi=0,...,t−1

ˆ

f(xi) + 〈f ′(xi), x − xi〉
˜

6: Let xt ∈ argminx∈X ft(x).
7: until f(xt)− ft(xt) ≤ ε

In Section 1.3, this algorithm is applied to multiple kernel learning. This

requires solving the problem

min{ f(x) | x ∈ X } where f(x) = max{ g(α,x) | α ∈ A } . (7)

X is a simplex and function g is linear in x and quadratic negative

semi-definite in α. In this case, the subgradient f ′(x) equals the gradi-

ent ∇xg(α̂,x) where α̂ is obtained by solving a convex quadratic program

α̂ ∈ argmaxα∈A g(α,x).

1.1.2 Bundle methods

Algorithm 1.2 may converge slowly (Nemirovskij and Yudin, 1983) because

subsequent solutions can be very distant, exhibiting a zig-zag behavior, thus

many cutting planes do not actually contribute to the approximation of f

6 Cutting plane methods in machine learning

around the optimum x∗. Bundle methods (Kiwiel, 1983; Lemaréchal et al.,

1995) try to reduce this behavior by adding a stabilization term to (6). The

proximal bundle methods compute the new iterate asproximal bundle

methods
xt ∈ argmin

x∈X

{ νt‖x− x
+
t ‖

2
2 + ft(x) } ,

where x+
t is a current prox-center selected from {x0, . . . ,xt−1} and νt is

a current stabilization parameter. The added quadratic term ensures that

the subsequent solutions are within a ball centered at x+
t whose radius

depends on νt. If f(xt) sufficiently decreases the objective, the decrease step

is performed by moving the prox-center as x+
t+1 := xt. Otherwise, the null

step is performed, x+
t+1 := x+

t . If there is an efficient line-search algorithm,

the decrease step computes the new prox-center x+
t+1 by minimizing f along

the line starting at x+
t and passing through xt. Though bundle methods

may improve the convergence significantly they require two parameters: the

stabilization parameter νt and the minimal decrease in the objective which

defines the null step. Despite significantly influencing the convergence, there

is no versatile method for choosing these parameters optimally.

In Section 1.2, a variant of this method is applied to regularized risk

minimization which requires minimizing f(x) = g(x) + h(x) over R
n where

g is a simple (typically differentiable) function and h is a complicated

nonsmooth function. In this case, the difficulties with setting two parameters

are avoided because g naturally plays the role of the stabilization term.

1.1.3 Combinatorial optimization

A typical combinatorial optimization problem can be formulated as

min{ 〈c,x〉 | x ∈ C } , (8)

where C ⊆ Z
n (often just C ⊆ {0, 1}n) is a finite set of feasible configura-

tions, and c ∈ R
n is a cost vector. Usually C is combinatorially large but

highly structured. Consider the problem

min{ 〈c,x〉 | x ∈ X } where X = conv C . (9)

Clearly, X is a polytope (bounded convex polyhedron) with integral vertices.

Hence, (9) is a linear program. Since a solution of a linear program is always

attained at a vertex, problems (8) and (9) have the same optimal value. The

set X is called the integral hull of problem (8).

Integral hulls of hard problems are complex. If a problem (8) is not polyno-

mially solvable then inevitably the number of facets of X is not polynomial.

Therefore (9) cannot be solved explicitly. This is where Algorithm 1.1 is

1.2 Regularized risk minimization 7

used. The initial polyhedron X0 ⊇ X is described by a tractable number of

linear inequalities and usually it is already a good approximation of X, often

but not necessarily we also have X0 ∩Z
n = C. The cutting plane algorithm

then constructs a sequence of gradually tighter LP relaxations of (8).

A fundamental result states that a linear optimization problem and the

corresponding separation problem are polynomial-time equivalent (Grötschel

et al., 1981). Therefore, for an intractable problem (8) there is no hope to

find a polynomial algorithm to separate an arbitrary point from X. However,

a polynomial separation algorithm may exist for a subclass (even intractably

large) of linear inequalities describing X.

After this approach was first proposed by Dantzig et al. (1954) for the

travelling salesman problem, it became a breakthrough in tackling hard

combinatorial optimization problems. Since then much effort has been de-

voted to finding good initial LP relaxations X0 for many such problems,

subclasses of inequalities describing integral hulls for these problems, and

polynomial separation algorithms for these subclasses. This is the subject of

polyhedral combinatorics (e.g., Schrijver, 2003).

In Section 1.4, we focus on the NP-hard combinatorial optimization

problem arising in MAP inference in graphical models. This problem, in

its full generality, has not been properly addressed by the optimization

community. We show how its LP relaxation can be incrementally tightened

during a message passing algorithm. Because message passing algorithms

are dual, this can be understood as a dual cutting plane algorithm: it does

not add constraints in the primal but variables in the dual. The sequence of

approximations of the integral hull X (the marginal polytope) can be seen

as arising from lifting and projection.

1.2 Regularized risk minimization

Learning predictors from data is a standard machine learning problem. A

wide range of such problems are special instances of the regularized risk

minimization. In this case, learning is often formulated as an unconstrained

minimization of a convex function

w∗ ∈ argmin
w∈Rn

F (w) where F (w) = λΩ(w) + R(w) . (10)

The objective F : R
n → R, called regularized risk, is composed of a regu-

larization term Ω: R
n → R and empirical risk R : R

n → R which are both

convex functions. The number λ ∈ R+ is a predefined regularization constant

and w ∈ R
n is a parameter vector to be learned. The regularization term Ω

8 Cutting plane methods in machine learning

is typically a simple, cheap-to-compute function used to constrain the space

of solutions in order to improve generalization. The empirical risk R evalu-

ates how well the parameters w explains the training examples. Evaluation

of R is often computationally expensive.

Example 1.1. Given a set of training examples {(x1, y1), . . . , (xm, ym)} ∈

(Rn × {+1,−1})m, the goal is to learn a parameter vector w ∈ R
n of a

linear classifier h : R
n → {−1, +1} which returns h(x) = +1 if 〈x, w〉 ≥ 0

and h(x) = −1 otherwise. Linear support vector machines (Cortes and

Vapnik, 1995) without bias learn the parameter vector w by solving (10)

with the regularization term Ω(w) = 1
2‖w‖

2
2 and the empirical risk R(w) =

1
m

∑m
i=1 max{0, 1−yi〈xi, w〉} which, in this case, is a convex upper bound on

the number of mistakes the classifier h(x) makes on the training examples.

There is a long list of learning algorithms which in their core are solvers

of a special instance of (10), see, e.g. Schölkopf and Smola (2002). If F is

differentiable, (10) is solved by algorithms for a smooth optimization. If F is

nonsmooth, (10) is typically transformed to an equivalent problem solvable

by off-the-shelf methods. For example, learning of the linear SVM classifier

in Example 1.1 can be equivalently expressed as quadratic program. Because

off-the-shelf solvers are often not efficient enough in practice a huge effort has

been put into development of specialized algorithms tailored to particular

instances of (10).

Teo et al. (2007, 2010) proposed a generic algorithm to solve (10) which is a

modification of the proximal bundle methods. The algorithm, called bundle

method for risk minimization (BMRM), exploits the specific structure of

the objective F in (10). In particular, only the risk term R is approximated

by the cutting-plane model while the regularization term Ω is without any

change used to stabilize the optimization. In contrast, standard bundle

methods introduce the stabilization term artificially. The resulting BMRM

is highly modular and was proven to converge in O(1
ε
) iterations to an ε-

precise solution. In addition, if an efficient line-search algorithm is available,

BMRM can be drastically accelerated with a technique proposed by Franc

and Sonnenburg (2008, 2010); Teo et al. (2010). The accelerated BMRM has

been shown to be highly competitive with state-of-the-art solvers tailored

to particular instances of (10).

In the next two sections, we describe BMRM algorithm and its version

accelerated by line-search.

1.2 Regularized risk minimization 9

Algorithm 1.3 Bundle Method for Regularized Risk Minimization (BMRM)

1: input & initialization: ε > 0, w0 ∈ R
n, t← 0

2: repeat

3: t← t + 1
4: Compute R(wt−1) and R′(wt−1)
5: Update the model Rt(w)← maxi=0,...,t−1 R(wi) + 〈R′(wi), w −wi〉
6: Solve the reduced problem wt ← argminw Ft(w) where Ft(w) = λΩ(w) + Rt(w)
7: until F (wt)− Ft(wt) ≤ ε

1.2.1 Bundle method for regularized risk minimization

Following optimization terminology, we will call (10) the master problem.

Using the approach by Teo et al. (2007), one can approximate the master

problem (10) by its reduced problem

wt ∈ argmin
w∈Rn

Ft(w) where Ft(w) = λΩ(w) + Rt(w) . (11)

The reduced problem (11) is obtained from the master problem (10) by

substituting the cutting-plane model Rt for the empirical risk R while the

regularization term Ω remains unchanged. The cutting-plane model reads

Rt(w) = max
i=0,...,t−1

[

R(wi) + 〈R′(wi), w −wi〉
]

, (12)

where R′(w) ∈ R
n is a subgradient of R at point w. Since R(w) ≥ Rt(w),

∀w ∈ R
n, the reduced problem’s objective Ft is an underestimator of

the master objective F . Starting from w0 ∈ R
n, BMRM of Teo et al.

(2007) (Algorithm 1.3) computes a new iterate wt by solving the reduced

problem (11). In each iteration t, the cutting-plane model (12) is updated

by a new cutting plane computed at the intermediate solution wt leading to

a progressively tighter approximation of F . The algorithm halts if the gap

between the upper bound F (wt) and the lower bound Ft(wt) falls bellow a

desired ε, meaning that F (wt) ≤ F (w∗) + ε.Solving the

reduced problem In practice, the number of cutting planes t required before the algorithm

converges is typically much lower than the dimension n of the parameter

vector w ∈ R
n. Thus, it is beneficial to solve the reduced problem (11) in its

dual formulation. Let A = [a0, . . . ,at−1] ∈ R
n×t be a matrix whose columns

are the subgradients ai = R′(wi) and let b = [b0, . . . , bt−1] ∈ R
t be a column

vector whose components equal to bi = R(wi) − 〈R
′(wi), wi〉. Then the

reduced problem (11) can be equivalently expressed as

wt ∈ argmin
w∈Rn,ξ∈R

[

λΩ(w)+ξ
]

s.t. ξ ≥ 〈w, ai〉+bi , i = 0, . . . , t−1 . (13)

10 Cutting plane methods in machine learning

The Lagrange dual of (13) reads (Teo et al., 2010, Theorem 2)

αt ∈ argmin
α∈Rt

[

− λΩ∗(−λ−1Aα) + 〈α, b〉
]

s.t. ‖α‖1 = 1 ,α ≥ 0 , (14)

where Ω∗ : R
n → R

t denotes the Fenchel dual of Ω defined as

Ω∗(µ) = sup
{

〈w, µ〉 − Ω(w)
∣

∣ w ∈ R
n
}

.

Having the dual solution αt, the primal solution can be computed by

solving wt ∈ argmaxw∈Rn

[

〈w, −λ−1Aαt〉 − Ω(w)
]

which for differentiable

Ω simplifies to wt = ∇µΩ∗(−λ−1Aαt).

Example 1.2. For the quadratic regularizer Ω(w) = 1
2‖w‖

2
2 the Fenchel

dual reads Ω∗(µ) = 1
2‖µ‖

2
2. The dual reduced problem (14) boils down to the

quadratic program

αt ∈ argmin
α∈Rt

[

−
1

2λ
αT AT Aα+αTb

]

s.t. ‖α‖1 = 1 ,α ≥ 0

and the primal solution can be computed analytically by wt = −λ−1Aαt.

The convergence of Algorithm 1.3 in a finite number of iterations is

guaranteed by the following theorem:Convergence

guarantees
Theorem 1.3. (Teo et al., 2010, Theorem 5) Assume that (i) F (w) ≥ 0,

∀w ∈ R
n, (ii) maxg∈∂R(w) ‖g‖2 ≤ G for all w ∈ {w0, . . . ,wt−1} where

∂R(w) denotes the subdifferential of R at point w, and (iii) Ω∗ is twice

differentiable and has bounded curvature, that is, ‖∂2Ω∗(µ)‖ ≤ H∗ for all

µ ∈ {µ′ ∈ R
t | µ′ = λ−1Aα , ‖α‖1 = 1 ,α ≥ 0 } where ∂2Ω∗(µ) is the

Hessian of Ω∗ at point µ. Then Algorithm 1.3 terminates after at most

T ≤ log2

λF (0)

G2H∗
+

8G2H∗

λε
− 1

iterations for any ε < 4G2H∗λ−1.

Furthermore, for a twice differentiable F with bounded curvature Algo-

rithm 1.3 requires only O(log 1
ε
) iterations instead of O(1

ε
) (Teo et al., 2010,

Theorem 5). The most constraining assumption of Theorem 1.3 is that it

requires Ω∗ to be twice differentiable. This assumption holds, e.g., for the

quadratic Ω(w) = 1
2‖w‖

2
2 and the negative entropy Ω(w) =

∑n
i=1 wi log wi

regularizers. Unfortunately, the theorem does not apply for the ℓ1-norm reg-

ularizer Ω(w) = ‖w‖1 often used to enforce sparse solutions.

1.2 Regularized risk minimization 11

1.2.2 BMRM algorithm accelerated by line-search

BMRM can be drastically accelerated whenever an efficient line-search

algorithm for the master objective F is available. An accelerated BMRM for

solving linear SVM problem (c.f. Example 1.1) has been first proposed in

Franc and Sonnenburg (2008). Franc and Sonnenburg (2010) generalized the

method for solving (10) with an arbitrary risk R and quadratic regularizer

Ω(w) = 1
2‖w‖

2
2. Finally, Teo et al. (2010) proposed a fully general version

imposing no restrictions on Ω and R. BMRM accelerated by the line-search,

in Teo et al. (2010) called LS-BMRM, is described by Algorithm 1.4.

Algorithm 1.4 BMRM accelerated by line-search (LS-BMRM)

1: input & initialization: ε ≥ 0, θ ∈ (0, 1], wb
0, w

c
0 ← wb

0, t← 0
2: repeat

3: t← t + 1
4: Compute R(wc

t−1) and R′(wc
t−1)

5: Update the model Rt(w)← maxi=1,...,t−1 R(wc
i) + 〈R′(wc

i), w −w
c
i 〉

6: wt ← argminw Ft(w) where Ft(w) = λΩ(w) + Rt(w)
7: Line-search: kt ← argmink≥0 F (wb

t + k(wt −w
b
t−1))

8: wb
t ← wb

t−1 + kt(wt −w
b
t−1)

9: wc
t ← (1− θ)wb

t−1 + θwt

10: until F (wb
t)− Ft(wt) ≤ ε

Unlike BMRM, LS-BMRM simultaneously optimizes the master and re-

duced problems’ objectives F and Ft, respectively. In addition, LS-BMRM

selects cutting planes that are close to the best-so-far solution which has a

stabilization effect and, moreover, such cutting planes have a higher chance

of actively contributing to the approximation of the master objective F

around the optimum w∗. In particular, there are three main changes com-

pared to BMRM:

1. BMRM-LS maintains the best-so-far solutionwb
t obtained during the first

t iterations, i.e., F (wb
0), . . . , F (wb

t) is a monotonically decreasing sequence.

2. The new best-so-far solutionwb
t is found by searching along a line starting

at the previous solution wb
t−1 and crossing the reduced problem’s solution

wt. This is implemented on lines 7 and 8.

3. The new cutting plane is computed to approximate the master objective

F at the point wc
t ← (1− θ)wb

t + θwt (line 9) which lies on the line segment

between the best-so-far solution wb
t and the reduced problem’s solution wt.

θ ∈ (0, 1] is a prescribed parameter. Note that wc
t must not be set directly

to wb
t in order to guarantee convergence (i.e., θ = 0 is not allowed). It was

found experimentally (Franc and Sonnenburg, 2010), that value θ = 0.1

12 Cutting plane methods in machine learning

works consistently well.
Convergence

guarantees LS-BMRM converges in O(1
ε
) iterations to ε-precise solution:

Theorem 1.4. (Teo et al., 2010, Theorem 7) Under the assumption of

Theorem 1.3 Algorithm 1.4 converges to the desired precision after

T ≤
8G2H∗

λε

iterations for any ε < 4G2H∗λ−1.
Efficient

line-search

algorithm

LS-BMRM requires at line 7 to solve a line-search problem

k∗ = argmin
k≥0

f(k) where f(k) = λΩ(w′ + kw) + R(w′ + kw) . (15)

Franc and Sonnenburg (2008, 2010) proposed a line-search algorithm which

finds the exact solution of (15) if Ω(w) = 1
2‖w‖

2
2 and

R(w) =

m
∑

i=1

max
j=1,...,p

(uij + 〈vij , w〉) , (16)

where uij ∈ R and vij ∈ R
n, i = 1, . . . , m, j = 1, . . . , p, are some fixed scalars

and vectors, respectively. In this case, the subdifferential of ∂f(k) can be

described by O(pm) line segments in 2D. Problem (15) can be replaced

by solving ∂f(k) ∈ 0 w.r.t. k which is equivalent to finding among the

line segments the one intersecting the x-axis. This line-search algorithm

finds the exact solution of (15) in O(mp2 + mp log mp) time. The risk (16)

emerges in most variants of the support vector machines learning algorithms,

e.g., binary SVMs, multi-class SVMs or SVM regression. Unfortunately, the

algorithm is not applicable if p is huge which excludes applications to the

structured output SVM learning (Tsochantaridis et al., 2005).

1.2.3 Conclusions

A notable advantage of BMRM is its modularity and simplicity. One only

needs to supply a procedure to compute the risk R(w) and its subgradi-

ent R′(w) at a point w. The core part of BMRM, i.e., solving the reduced

problem, remains for a given regularizer Ω unchanged. Thus, many exist-

ing learning problems can be solved by a single optimization technique.

Moreover, one can easily experiment with new learning formulations just by

specifying the risk term R and its subgradient R′ without spending time on

development of a new solver for that particular problem.

The convergence speed of BMRM and the accelerated LS-BMRM has

1.3 Multiple kernel learning 13

been extensively studied on a variety of real-life problems in domains ranging

from the text classification, bioinformatics and computer vision to computer

security systems (Teo et al., 2007; Franc and Sonnenburg, 2008, 2010; Teo

et al., 2010). Compared to the state-of-the-art dedicated solvers, BMRM

is typically slightly slower, however, it is still competitive and practically

useful. On the other hand, the LS-BMRM has proved to be among the

fastest optimization algorithms for a variety of problems. Despite the similar

theoretical convergence times, in practice, the LS-BMRM is on average by

an order of magnitude faster than BMRM.

The most time-consuming part of BMRM, as well as LS-BMRM, is the

evaluation of the risk R and its subgradient R′. Fortunately, the risk,

and thus also its subgradient, are typically additively decomposable which

allows for an efficient parallelization of their computation. The effect of the

parallelization on the reduction of the computational time is empirically

studied in Franc and Sonnenburg (2010); Teo et al. (2010).

A relatively high memory requirements of BMRM/LS-BMRM may be

the major deficiency if the method is applied to large-scale problems. The

method stores in each iteration t a cutting plane of size O(n), where n

is the dimension of the parameter vector w ∈ R
n, which leads to O(nt)

memory complexity not counting the reduced problem which is typically

much less memory demanding. To alleviate the problem, Teo et al. (2010)

propose a limited memory variant of BMRM maintaining up to K cutting

planes aggregated from the original t cutting planes. Though the memory

limited variant does not have an impact on the theoretical upper bound

of the number of iterations, in practice, it may significantly slow down the

convergence.

The implementations of BMRM and LS-BMRM can be found in the

SHOGUN machine learning toolbox (Sonnenburg et al., 2010) or in the

open-source packages BMRM (http://users.cecs.anu.edu.au/~chteo/

BMRM.html) and LIBOCAS (http://cmp.felk.cvut.cz/~xfrancv/ocas/

html/index.html).

1.3 Multiple kernel learning

Multiple kernel learning (MKL) (e.g., Bach et al., 2004) has recently become

an active line of research. Given a mapping Φ : X 7→ R
n that represents each

object x ∈ X in n-dimensional feature space1, a kernel machine employs a

1. For the sake of simplicity, we consider the n-dimensional Euclidean feature space.
However, all the methods in this section can be applied even if the objects are mapped

14 Cutting plane methods in machine learning

kernel function

k(x,x′) = 〈Φ(x), Φ(x′)〉

to compare two objects x and x′ without ever explicitly computing Φ(x).

Ultimately, a kernel machine learns α-weighted linear combination of kernel

functions with bias b

h(x) =
m
∑

i=1

αik(xi,x) + b , (17)

where x1, . . . ,xm is a set of training objects. For example, the support

vector machine (SVM) classifier uses the sign of h(x) to assign a class label

y ∈ {−1, +1} to the object x (e.g., Schölkopf and Smola, 2002).

Traditionally, just a single kernel function has been used. However, it has

proven beneficial to consider not just a single, but multiple kernels in various

applications (see Section 1.3.4). Currently, the most popular way to combine

kernels is via convex combinations, i.e., introducing

B =
{

β ∈ R
K
∣

∣‖β‖1 = 1 ,β ≥ 0} , (18)

the composite kernel is defined as

k(x,x′) =
K
∑

k=1

βkkk(x,x′) , β ∈ B , (19)

where kk : X×X→ R, k = 1, . . . , K, is a given set of positive-definite kernels

(Schölkopf and Smola, 2002). Now, in contrast to single kernel algorithms,

MKL learns in addition to the coefficients α and b the weighting over

kernels β.

In Section 1.3.1, we review convex MKL for classification and, in Sec-

tion 1.3.2, we show that this problem can be cast as minimization of a

complicated convex function over a simple feasible set. In Section 1.3.3, we

derive a CPA that transforms the MKL problem into a sequence of linear

and quadratic programs, of which the latter can be efficiently solved by

existing SVM solvers. Section 1.3.4 concludes this part.

1.3.1 Convex multiple kernel learning

Various MKL formulations have been proposed (Lanckriet et al., 2004b;

Bach et al., 2004; Sonnenburg et al., 2006a; Varma and Babu, 2009; Kloft

into arbitrary Reproducing Kernel Hilbert Space (Schölkopf and Smola, 2002).

1.3 Multiple kernel learning 15

et al., 2009; Bach, 2009; Nath et al., 2009; Cortes et al., 2009). Here we focus

solely on the convex optimization problem for classification as first stated

by Zien and Ong (2007); Rakotomamonjy et al. (2007). Note that the same

authors have shown that the mixed-norm approaches of Bach et al. (2004);

Sonnenburg et al. (2006a) are equivalent.

Let {(x1, y1), . . . , (xm, ym)} ∈ (X × {−1, +1})m be a training set of

examples of input x and output y assumed to be i.i.d. from an unknown

distribution p(x, y). The input x is translated into a compositional feature

vector (Φ1(x); . . . ; ΦK(x)) ∈ R
n1+···+nk that is constructed by a set of K

mappings Φk : X → R
nk , k = 1, . . . , K. The goal is to predict y from an

unseen x by using a linear classifier

y = sgn
(

h(x)
)

where h(x) =
K
∑

k=1

〈wk, Φk(x)〉+ b , (20)

its parameters wk ∈ R
nk , k = 1, . . . , K, b ∈ R, are learned from the training

examples. Using the definition x
0 = 0 if x = 0 and ∞ otherwise, the param-

eters of the classifier (20) can be obtained by solving the following convex

primal MKL optimization problem (Zien and Ong, 2007; Rakotomamonjy

et al., 2007)

min
1

2

K
∑

k=1

1

βk

‖wk‖
2
2 + C

m
∑

i=1

ξi (21)

w.r.t. β ∈ B ,w = (w1, . . . ,wK) ∈ R
n1+···+nK , ξ ∈ R

m, b ∈ R

s.t. ξi ≥ 0 and yi

(

K
∑

k=1

〈wk, Φk(xi)〉+ b

)

≥ 1− ξi, i = 1, . . . , m .

Analogously to the SVMs, the objective of (21) is composed of two terms.

The first (regularization) term constrains the spaces of the parameters wk,

k = 1, . . . , K, in order to improve the generalization of the classifier (20).

The second term, weighted by a prescribed constant C > 0, is an upper

bound on the number of mistakes the classifier (20) makes on the training

examples. In contrast to SVMs, positive weights β with ℓ1-norm constraint

(see (18)) are introduced to enforce block-wise sparsity, i.e., rather few blocks

of features Φk are selected (have non-zero weightwk). Since 1
βk

≫ 1 for small

βk, non-zero components of wk experience stronger penalization and thus

the smaller βk the smoother wk. By definition, wk = 0 if βk = 0. Note that

for K = 1, the MKL problem (21) reduces to the standard two-class linear

SVM classifier.

16 Cutting plane methods in machine learning

1.3.2 Min-max formulation of multiple kernel learning

To apply kernels, the primal MKL problem (21) must be reformulated such

that the features vectors Φk(xi) appear in terms of dot products only.

Following Rakotomamonjy et al. (2007) we can rewrite (21) as

min{F (β) | β ∈ B} , (22)

where F (β) is a shortcut for solving the standard SVM primal on the β-

weighted concatenated feature space

F (β) = min
1

2

K
∑

k=1

1

βk

‖wk‖
2
2 + C

m
∑

i=1

ξi (23)

w.r.t. w = (w1, . . . ,wK) ∈ R
n1+···+nK , ξ ∈ R

m, b ∈ R

s.t. ξi ≥ 0 and yi

(

K
∑

k=1

〈wk, Φk(xi)〉+ b

)

≥ 1− ξi , i = 1, . . . , m.

Note, that in (23) the weights β are fixed and the minimization is only over

(w, ξ, b). The Lagrange dual of (23) reads (Rakotomamonjy et al., 2007)

D(β) = max{S(α,β) | α ∈ A} where S(α,β) =
K
∑

k=1

βkSk(α) , (24)

and Sk and A are defined as follows:

Sk(α) =
m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyj〈Φk(xi), Φk(xj)〉

A = {α ∈ R
m | 0 ≤ αi ≤ C , i = 1, . . . , m ,

m
∑

i=1

αiyi = 0} .

(25)

Note, that (24) is equivalent to solving the standard SVM dual with the

composite kernel (19). Because (23) is convex and the Slater’s qualification

condition holds, the duality gap is zero, i.e. F (β) = D(β). Substituting

D(β) for F (β) in (22) leads to an equivalent min-max MKL problemMin-Max

Problem
min{D(β) | β ∈ B} . (26)

Let β∗ ∈ argmaxβ∈B D(β) and α∗ ∈ argmaxα∈A S(α,β∗). Then the solu-

tion of the primal MKL problem (21) can be computed analytically as

w∗
k = β∗

k

m
∑

i=1

α∗
i yiΦk(xi) and b∗ = yi −

K
∑

k=1

〈w∗
k, Φk(xi)〉 , i ∈ J , (27)

1.3 Multiple kernel learning 17

where J = {j ∈ {1, . . . , m} | 0 < α∗
i < C}. The equalities (27) follow from

the Karush-Kuhn-Tucker optimality conditions of the problem (23) (e.g.,

Schölkopf and Smola, 2002). Note, that in practice, b∗ is computed as an

average over all |J | equalities which is numerically more stable.

By substituting (27) and kk(xi,x) = 〈Φk(xi), Φk(x)〉 in the linear clas-

sification rule (20), we obtain the kernel classifier (17) with the composite

kernel (19). In addition, after substituting kk(xi,xj) for the dot products

〈Φk(xi), Φk(xj)〉 in (25) we can compute all the parameters of the kernel

classifier without ever using the features Φk(xi) explicitly.

1.3.3 Solving MKL via cutting planes

In this section, we will apply the cutting plane Algorithm 1.2 to the min-max

MKL problem (26).

It follows from (24) that the objective D is convex since it is a point-

wise maximum over an infinite number of functions S(α,β), α ∈ A, which

are linear in β (e.g., Boyd and Vandenberghe, 2004). By Danskin’s theorem

(e.g., Proposition B.25 in Bertsekas, 1999), the subgradient of D at point

β equals the gradient ∇βS(α̂,β) where α̂ ∈ argmaxα∈A S(α,β), i.e, the

subgradient reads

D′(β) = [S1(α̂); . . . ; SK(α̂)] ∈ R
K . (28)

Note, that computing D(β) and its subgradient D′(β) requires solving

the convex quadratic program (24) which is equivalent to the standard

SVM dual computed on the composite kernel (19) with a fixed weighting

β (Rakotomamonjy et al., 2007). Thus, existing SVM solvers are directly

applicable.

Having the means to compute D and its subgradient D′, we can approxi-

mate the objective D by its cutting-plane model

Dt(β) = max
i=0,...,t−1

[

D(βi) + 〈D′(βi), β − βi〉
]

= max
i=0,...,t−1

〈β, D′(βi)〉 . (29)

The points {β0, . . . ,βt−1} can be computed by Kelley’s CPA (Algorithm 1.2)

as follows. Starting with β0 ∈ B, a new iterate is obtained by solving

βt ∈ argmin
β∈B

Dt(β) , (30)

which can be cast as a linear program. Note, that since the feasible set B is

bounded so is the solution of (30). In each iteration t, the obtained point βt

is an estimate of the optimal β∗, and it is also used to update the cutting

18 Cutting plane methods in machine learning

Algorithm 1.5 Cutting plane algorithm for solving the MKL problem. The

algorithm requires solving a simple LP (line 7) and a convex QP (line 3) which

is equivalent to the standard SVM dual.

1: Initialization: t← 0, β0 ∈ B (e.g. β0 = [1

K
; . . . ; 1

K
]), ε > 0

2: repeat

3: Let αt ∈ argmaxα∈A S(α, βt)
4: Compute D(βt)← S(αt,βt) and D′(βt) = [S1(αt); . . . ; SK(αt)]
5: t← t + 1
6: Update the cutting plane model Dt(β)← maxi=0,...,t−1〈D

′(βi), β〉
7: Let βt ∈ argminβ∈B Dt(β)
8: until D(βt−1)−Dt(βt) ≤ ε

plane model (29). The process is repeated until the gap between D(βt−1)

and Dt(βt) falls below a prescribed ε, meaning that D(βt) ≤ D(β∗) + ε

holds. Algorithm 1.5 summarizes the method.

Note that originally Sonnenburg et al. (2006a) converted the problem

(26) into a semi-infinite linear problem (SILP) that was solved by column

generation. However, the SILP is equivalent to the epigraph form of (26)

(see Section 1.1.1) and the column generation results in the exact same

Algorithm 1.5.

Since large-scale SVM training problems are usually solved by so-called

decomposition techniques like chunking (e.g., used in Joachims, 1999), one

may significantly speedup Algorithm 1.5 by alternately solving for α and β

within the SVM solver avoiding to solve the full SVM model with a high

precision (Sonnenburg et al., 2006a). Furthermore, as noted in Section 1.2.1,

potential oscilations occuring in cutting plane methods can be reduced by

the bundle methods, as has been done by Xu et al. (2009a).

1.3.4 Conclusions

Multiple Kernel Learning has been used in various applications across

diverse fields like bioinformatics, image analysis, signal processing, and

biomedical applications like brain computer interfaces. It is being applied

to fusing heterogeneous data (Lanckriet et al., 2004a; Sonnenburg et al.,

2006b; Zien and Ong, 2007; Rakotomamonjy et al., 2008; Varma and Babu,

2009), to understand the learned kernel classifier (Sonnenburg et al., 2005),

feature selection (Szafranski et al., 2008; Xu et al., 2009b; Subrahmanya

and Shin, 2010) or automated model selection Sonnenburg et al. (2006a).

In this section, we have illustrated that the min-max formulation of MKL

problem (22) can be converted into a sequence of linear and quadratic

programs, of which the LP is of a simple nature and the QP can be directly

solved using any of the various existing SVM solvers. There exist further

1.4 MAP inference in graphical models 19

extensions of this approach not discussed in this section, e.g. an infinite

dimensional version of the min-max MKL which was proposed by Argyriou

et al. (2006). We provide efficient implementations of MKL in the SHOGUN

machine learning toolbox (Sonnenburg et al., 2010).

1.4 MAP inference in graphical models

MAP inference in graphical models (Wainwright and Jordan, 2008) leads to

the following NP-hard combinatorial optimization problem: given a set of

variables and a set of functions of (small) subsets of the variables, maximize

the sum of the functions over all the variables. This is also known as the

weighted constraint satisfaction problem (Rossi et al., 2006, chapter 9).

The problem has a natural LP relaxation, proposed independently by

Shlezinger (1976), Koster et al. (1998), and Wainwright et al. (2005). It is

crucial to optimize the LP in the dual because primal methods do not scale to

large problems, which is not done in (Koster et al., 1998). The relaxation was

extended by Wainwright et al. (2005), Wainwright and Jordan (2008) and

Johnson et al. (2007) to a hierarchy of progressively tighter LP relaxations.

Komodakis et al. (2007) pointed out that the LP approach can be seen as a

dual decomposition of the problem to tractable subproblems.

Several authors proposed to tighten the relaxation incrementally. First,

primal methods were proposed (Koster et al., 1998; Sontag and Jaakkola,

2007; Sontag, 2007), then dual methods (Werner, 2008a, 2010; Kumar and

Torr, 2008; Sontag et al., 2008; Komodakis and Paragios, 2008). Not all of

the authors related these incremental schemes to cutting plane methods.

We revisit here the approach by Werner (2008a, 2010), which, we believe,

captures the very core of the dual cutting plane approach to MAP inference

in a clean and transparent way. It is a generalization of the dual LP relax-

ation approach by Shlezinger (1976) and the max-sum diffusion algorithm

by Kovalevsky and Koval (approx. 1975), which have been recently reviewed

by Werner (2005, 2007).

The approach is surprisingly simple and general. Every subset of the of

variables is assigned a function (‘interaction’), all of them except a small part

(which defines the problem) being initially zero. Max-sum diffusion passes

messages between pairs of the variable subsets, acting as reparameterizations

of the problem which monotonically decrease its upper bound. While in the

extreme case all pairs of variable subsets are coupled like this, coupling

only some of them results in a relaxation of the problem. Any time during

diffusion we can tighten the relaxation by coupling new pairs – this results

in an incremental scheme, recognized as a dual cutting plane method.

20 Cutting plane methods in machine learning

After introducing notation, we construct the integer hull of the problem

and the hierarchy of its LP relaxations in Section 1.4.2. In Sections 1.4.3

and 1.4.4 we dualize the LP relaxation and describe the max-sum diffusion

algorithm which optimizes the dual. In Section 1.4.5 we augment this to

a dual cutting plane algorithm and discuss the corresponding separation

problem. Section 1.4.6 explains the geometry of this cutting plane algorithm

in the primal domain, relating it to the marginal polytope.

1.4.1 Notation and problem definition

Let V be an ordered set of variables (the order on V is used only for notation

consistency). A variable v ∈ V attains states xv ∈ Xv, where Xv is the

(finite) domain of the variable. The joint domain of a subset A ⊆ V of the

variables is the Cartesian product XA =
∏

v∈A Xv, where the order of factors

is given by the order on V . A tuple xA ∈ XA is a joint state of variables A.

An interaction with scope A ⊆ V is a function θA: XA → R = R ∪ {−∞}.

Let E ⊆ 2V be a hypergraph on V (a set of subsets of V). Every variable

subset A ⊆ V is assigned an interaction, while θA is identically zero whenever

A /∈ E. Having to deal with so many interactions may seem scary – but it

will always be evident that the vast majority of them do not contribute to

sums and are never visited in algorithms. Our task is to compute

max
xV ∈XV

∑

A∈E

θA(xA) = max
xV ∈XV

∑

A⊆V

θA(xA) . (31)

E.g., if V = (1, 2, 3, 4) and E = {(1, 3, 4), (2, 3), (2, 4), (3)} then (31) reads

max
x1,x2,x3,x4

[θ134(x1, x3, x4) + θ23(x2, x3) + θ24(x2, x4) + θ3(x3)]. Note, as V is

an ordered set we use (· · ·) rather than {· · · } to denote V and its subsets.

We will use T = { (A, xA) | A ⊆ V, xA ∈ XA } to denote the set of all

joint states of all variable subsets (‘T ’ stands for ‘tuples’). All interactions

θA, A ⊆ V , will be understood as a single vector θ ∈ R
T .

1.4.2 The hierarchy of LP relaxations

We define a mapping δ: XV → {0, 1}T as follows: δA(yA)(xV) equals 1 if jointLP formulation

state yA is the restriction of joint state xV on variables A, and 0 otherwise.

Here, δA(yA)(xV) denotes the (A, yA)-component of vector δ(xV) ∈ {0, 1}T .

This lets us write the objective function of (31) as a scalar product,
∑

A⊆V

θA(xA) =
∑

A⊆V

∑

yA

θA(yA) δA(yA)(xV) = 〈θ, δ(xV)〉 .

1.4 MAP inference in graphical models 21

Problem (31) can now be reformulated as

max
xV ∈XV

∑

A⊆V

θA(xA) = max
xV ∈XV

〈θ, δ(xV)〉 = max
µ∈δ(XV)

〈θ,µ〉 = max
µ∈conv δ(XV)

〈θ,µ〉

where δ(XV) = { δ(xV) | xV ∈ XV }. This expresses problem (31) in the

form (9), as a linear optimization over the integral hull conv δ(XV) ⊆ [0, 1]T .

Let I = { (A, B) | B ⊆ A ⊆ V } denote the set of hyperedge pairs related

by inclusion, i.e., the inclusion relation on 2V . For any J ⊆ I, we define a

polytope M(J) to be the set of vectors µ ∈ [0, 1]T satisfying
∑

xA\B

µA(xA) = µB(xB) , (A, B) ∈ J, xB ∈ XB , (32a)

∑

xA

µA(xA) = 1 , A ⊆ V . (32b)

What is this object? Any µ ∈M(J) is a set of distributions µA: XA → [0, 1]

over every subset A ⊆ V of the variables. Constraint (32b) normalizes the

distributions. Constraint (32a) couples pairs of distributions, imposing that

µB is the marginal of µA whenever (A, B) ∈ J . E.g., if A = (1, 2, 3, 4) and

B = (2, 4) then (32a) reads
∑

x1,x3
µ1234(x1, x2, x3, x4) = µ24(x2, x4).

For brevity, we will use the shorthand M(I) = M. We claim thatintegral hull

conv δ(XV) = M . (33)

To see it, let us write a convex combination of the elements of δ(XV),

µ =
∑

xV

µV (xV) δ(xV) , (34)

where µV (xV) denote the coefficients of the convex combination. But µV is

already part of µ. The (A, yA)-component of vector (34) reads

µA(yA) =
∑

xV

µV (xV) δA(yA)(xV) =
∑

yV \A

µV (yV) .

But this is (32a) for (A, B) = (V, A).

By imposing only a subset of all possible marginalization constraints (32a),hierarchy of LP

relaxations an outer relaxation of the integral hull conv δ(XV) = M is obtained. Namely,

for any J ⊆ I we have M(J) ⊇M, hence

max{ 〈θ,µ〉 | µ ∈M(J) } (35)

is a linear programming relaxation of problem (31), i.e., its optimum is

an upper bound on (31). All possible relaxations form a partially ordered

hierarchy, indexed by J ⊆ I. Figure 1.2 shows examples.

22 Cutting plane methods in machine learning

We remark that the hierarchy could be made finer-grained by selecting

also subsets of joint states, i.e., by imposing marginalization equality (32a)

for (A, B, xB) ∈ J where J ⊆ I = { (A, B, xB) | B ⊆ A ⊆ V, xB ∈ XB }.

123 124 134 234

13

1234

12 14 23 24 34

4321

123 124 134 234

13

1234

12 14 23 24 34

4321

123 124 134 234

13

1234

12 14 23 24 34

4321

(a) (b) (c)

Figure 1.2: The Hasse diagram of the set 2V of all subsets of V = (1, 2, 3, 4).
The nodes depict hyperedges A ⊆ V (with hyperedge ∅ omitted) and the
arcs depict hyperedge pairs (A, B) ∈ I. The hyperedges in circles form the
problem hypergraph E = {(1), (2), (3), (4), (1, 2), (1, 4), (2, 3), (2, 4), (3, 4)},
the interactions over the non-circled hyperedges are zero. Any subset J ⊆ I
of the arcs yields one possible relaxation (35) of problem (31). Subfigures (a),
(b), (c) show three example relaxations, with J depicted as thick arcs.

1.4.3 The dual of the LP relaxation

Rather than solving the linear program (35) directly, it is much better toconstructing the

dual solve its dual. This dual is constructed as follows. Let matrices A and B

be such that Aµ = 0 and Bµ = 1 is the set of equalities (32a) and (32b),

respectively. Then (35) can be written as the left linear program below:

〈θ,µ〉 → max 〈ψ,1〉 → min (36a)

Aµ = 0 ϕ ≶ 0 (36b)

Bµ = 1 ψ ≶ 0 (36c)

µ ≥ 0 ϕA+ψB ≥ θ (36d)

On the right we wrote the LP dual, such that in (36b-d) a constraint and its

Lagrange multiplier are always on a same line (‘≶ 0’ means that the variable

vector is unconstrained). By eliminating the variables ψ, the dual reads

min
ϕ

∑

A⊆V

max
xA

θϕ
A(xA) (37)

1.4 MAP inference in graphical models 23

where we abbreviated θϕ = θ −ϕA. The components of vector θϕ read

θϕ
A(xA) = θA(xA)−

∑

B|(B,A)∈J

ϕBA(xA) +
∑

B|(A,B)∈J

ϕAB(xB) (38)

where ϕ = {ϕAB(xB) | (A, B) ∈ J, xB ∈ XB }. Next we explain the

meaning of (38) and (37).
reparameterizations A reparameterization is a transformation of θ that preserves the objective

function
∑

A⊆V θA of problem (31). The simplest reparameterization is done

as follows: pick two interactions θA and θB with B ⊆ A, add an arbitrary

function (a ‘message’) ϕAB: XB → R to θA, and subtract it from θB:

θA(xA)← θA(xA) + ϕAB(xB) , xA ∈ XA , (39a)

θB(xB)← θB(xB)− ϕAB(xB) , xB ∈ XB . (39b)

E.g., if A = (1, 2, 3, 4) and B = (2, 4) then we add a function ϕ24(x2, x4) to

θ1234(x1, x2, x3, x4) and subtract it from θ24(x2, x4). This preserves θA + θB

(because ϕAB cancels out) and hence also
∑

A⊆V θA. Applying reparameter-

ization (39) to all pairs (A, B) ∈ J yields (38).

Thus, (38) describes reparameterizations, i.e., for every xV and ϕ we have
∑

A⊆V

θA(xA) =
∑

A⊆V

θϕ
A(xA) .

Besides this, (38) preserves (for feasible µ) also the objective of the primal

program (36): Aµ = 0 implies 〈θϕ,µ〉 = 〈θ −ϕA,µ〉 = 〈θ,µ〉.

By the well-known max-sum dominance, for any θ we haveupper bound

max
xV

∑

A⊆V

θA(xA) ≤
∑

A⊆V

max
xA

θA(xA) , (40)

thus the right-hand side of (40) is an upper bound on (31). This shows that

the dual (37) minimizes an upper bound on (31) by reparameterizations.

Note that for each (A, B) ∈ J , marginalization constraint (32a) corre-

sponds via duality to message ϕAB. The larger is J , the larger is the set of

reparameterizations (38) and hence the smaller the optimal value of (37).

When is inequality (40) (and hence the upper bound) tight? It happens

if and only if the independent maximizers of the interactions agree on a

common global assignment, i.e., if there exists yV ∈ XV such that

yA ∈ argmax
xA

θA(xA) , A ⊆ V .

We will further refer to the set argmaxxA
θA(xA) as the active joint states

of interaction θA. The test can be cast as the constraint satisfaction problemCSP on active

joint states

24 Cutting plane methods in machine learning

(CSP) (Mackworth, 1991; Rossi et al., 2006) formed by the active joint states

of all the interactions (Shlezinger, 1976; Werner, 2007, 2010). Thus, if after

solving (37) this CSP is satisfiable for θϕ, the relaxation is tight and we

have solved our instance of problem (31) exactly. Otherwise, we have only

an upper bound on (31).

1.4.4 Max-sum diffusion

Max-sum diffusion is a simple convergent ‘message-passing’ algorithm to

tackle the dual LP. It seeks to reparameterize θ such thatfixed point

max
xA\B

θA(xA) = θB(xB) , (A, B) ∈ J, xB ∈ XB . (41)

The algorithm repeats the following iteration:update

Enforce (41) for a single pair (A, B) ∈ J by reparameterization (39).

This is done by setting ϕAB(xB) = [θB(xB) − maxxA\B
θA(xA)]/2 in (39).

The algorithm converges to a fixed point when (41) holds for all (A, B) ∈ J .

We remark that originally (Kovalevsky and Koval, approx. 1975), max-

sum diffusion was formulated for problems with only binary (no unary)

interactions. The generalization (41) by Werner (2008a, 2010) is interesting

in the fact that (41) has exactly the same form as (32a). We pursued this

idea further in (Werner, 2008b).

Doing reparameterization by messages rather than by modifying θ yields

Algorithm 1.6. To correctly handle infinite weights, the algorithm expects

that [θB(xB) > −∞]⇔ [maxxA\B
θA(xA) > −∞] for every (A, B) ∈ J .

Algorithm 1.6 Max-sum diffusion

1: repeat

2: for (A, B) ∈ J and xB ∈ XB such that θB(xB) > −∞ do

3: ϕAB(xB)← ϕAB(xB) + [θϕ
B(xB)− max

xA\B

θϕ
A(xA)]/2

4: end for

5: until convergence

The diffusion iteration decreases or preserves, but never increases, theproperties

upper bound. In general, the algorithm does not find the global minimum

of (37) but only a certain local minimum (where ‘local’ is meant w.r.t. block-

coordinate moves), which is nevertheless very good in practice. These local

minima are characterized by local consistency (Rossi et al., 2006, chapter 3)

of the CSP formed by the active joint states.

1.4 MAP inference in graphical models 25

1

46

4

5

2
4

−1

5

0

0 7

7

5

7

2

2

47

5

2

6

−2

−2

−2

5

3

−6

3

4

0

1

4

4

4

4

1

3

2
4

1

42

4 42

1

1

3

3

4

4 4 2

−1

−3

5

5

5

5

5

5

5

5

5

5

5

5

5 5

5

2

4

3

4

0 4

2

5

5

5

−3

−2

−1

(a) (b) (c)

Figure 1.3: The visualization of a problem with |Xv| = 2 variable states
and hypergraph E as in Figure 1.2. The variables are shown as boxes, their

numbering is 2
1

3
4. Variable states are shown as circles, joint states of variable

pairs as edges. Weights θA(xA), A ∈ E, are written in the circles and next
to the edges. Active joint states are emphasized (black circles, thick edges).
Example (a) is not a diffusion fixed point, (b,c) are diffusion fixed points
for J from Figure 1.2a. Examples (a,b) are reparameterizations of each other
(this is not obvious at the first sight), (c) is not a reparameterization of (a,b).
For (b), a global assignment xV can be composed of the active joint states
and hence inequality (40) is tight. For (a,c), no global assignment xV can be
composed of the active joint states, hence inequality (40) is not tight.

Note that the only non-trivial operation in Algorithm 1.6 is computing the

max-marginals maxxA\B
θϕ
A(xA). By (38), this is an instance of problem (31).

When |A| is small (such as for a binary interaction), computing the max-

marginals is trivial. But even when |A| is large, depending on the function

θA and on J there may exist an algorithm polynomial in |A| to compute

maxxA\B
θϕ
A(xA). In that case, Algorithm 1.6 still can be used.

If θA = 0, it depends only on J whether maxxA\B
θϕ
A(xA) can be computed

in polynomial time. E.g., in Figure 1.2c we have θ1234 = 0 and hence, by (38),

θϕ
1234(x1, x2, x3, x4) = ϕ1234,12(x1, x2) + ϕ1234,23(x2, x3) + ϕ1234,34(x3, x4) +

ϕ1234,14(x1, x4). Thus we have a problem on a cycle, which can be solved

more efficiently than by going through all states (x1, x2, x3, x4).

This suggests that diffusion in a sense exactly solves certain small subprob-diffusion solves

subproblems lems (which links it to the dual decomposition interpretation (Komodakis

et al., 2007)). This can be formalized as follows. Let A ∈ F ⊆ 2A. Clearly,

max
xA

∑

B∈F

θB(xB) ≤
∑

B∈F

max
xB

θB(xB) (42)

for any θ, which is inequality (40) written for subproblem F . Let J =

{ (A, B) | B ∈ F }. In this case, the minimal upper bound for subproblem

F is tight. To see it, just do reparameterization (39) with ϕAB = θB for

26 Cutting plane methods in machine learning

B ∈ F , which results in θB = 0 for B ∈ F \{A}, hence (42) is tight trivially.

What is not self-evident is that diffusion finds the global minimum in this

case. It does: if θ satisfies (41) for J = { (A, B) | B ∈ F } then (42) is tight.

1.4.5 Dual cutting plane algorithm

The relaxation can be tightened incrementally during dual optimization.incremental

scheme Any time during Algorithm 1.6, the current J can be extended by any J ′ ⊆ I,

J ′∩J = ∅. The messages ϕAB for (A, B) ∈ J ′ are initialized to zero. Clearly,

this does not change the current upper bound. Future diffusion iterations

can only preserve or improve the bound, so the scheme remains monotonic.

This can be imagined as if the added variables ϕAB extended the space of

possible reparameterizations and diffusion is now trying to take advantage

of it. If the bound does not improve, all we will have lost is the memory

occupied by the added variables. Algorithm 1.7 describes this.

In the primal domain, this incremental scheme can be understood as a

cutting plane algorithm. We discuss this later in Section 1.4.6.

Algorithm 1.7 Dual cutting plane algorithm

1: Initialization: Choose J ⊆ I and J ⊆ 2I .
2: repeat

3: Execute any number of iterations of Algorithm 1.6.
4: Separation oracle: Choose J ′ ∈ J, J ∩ J ′ = ∅.
5: J ← J ∪ J ′

6: Allocate messages ϕAB , (A, B) ∈ J ′, and set them to zero.
7: until no suitable J ′ can be found

On line 4 of Algorithm 1.7 the separation oracle is called, which choosesseparation test

a promising extension J ′ from some predefined set J ⊆ 2I of candidate

extensions. We assume |J| is small so that J it can be searched exhaustively.

For that, we need a test to recognize whether a given J ′ would lead to a

(good) bound improvement. We refer to this as the separation test .

Of course, a trivial necessary and sufficient separation test is to extend J

by J ′ and run diffusion till convergence. One easily invents a faster test:

Execute several diffusion iterations only on pairs J ′. If this improves

the bound, then running diffusion on J ∪J ′ would inevitably improve

the bound too.

This local test is sufficient but not necessary for improvement because even

if running diffusion on J ′ does not improve the bound, it may change the

problem such that future diffusion iterations on J ∪ J ′ improve it.

Even with a sufficient and necessary separation test, Algorithm 1.7 isgreediness

1.4 MAP inference in graphical models 27

‘greedy’ in the following sense. For J ′
1, J

′
2 ⊆ I, it can happen that extending

J by J ′
1 alone or by J ′

2 alone does not lead to a bound improvement but

extending J by J ′
1 ∪ J ′

2 does. See (Werner, 2010) for an example.

The extension J ′ can be an arbitrary subset of I. One form of extension has

a clear meaning: pick a hyperedge A not yet coupled to any other hyperedge,

choose F ⊆ 2A, and let J ′ = { (A, B) | B ∈ F }. This can be seen as

‘connecting’ a so far disconnected interaction θA to the problem.

An important special case is connecting a zero interaction, θA = 0.adding zero

subproblems Because, by (38), we have θϕ
A(xA) =

∑

B∈F θB(xB), we refer to this extension

as adding a zero subproblem F . In this case, the separation test can be done

more efficiently than by running diffusion on J ′. This is based on the fact

stated at the end of Section 1.4.4: if inequality (42) is not tight for current

θϕ then running diffusion on J ′ will surely make it tight, i.e., improve the

bound. Note, we do not need A ∈ F here because θA = 0. The gap in (42)

is an estimate of the expected improvement.

This has a clear interpretation in CSP terms. Inequality (42) is tight if and

only if the CSP formed by the active joint states of interactions F is satisfi-

able. If this CSP is unsatisfiable then J ′ will improve the bound. Therefore,

the separation oracle needs to find a (small) unsatisfiable subproblem of the

CSP formed by the active joint states.

For instance, Figure 1.3c shows a problem after diffusion convergence,

for J defined by Figure 1.2a. The CSP formed by the active joint states

is not satisfiable because it contains an unsatisfiable subproblem, the cycle

F = {(1, 2), (1, 4), (2, 4)}. Hence, adding zero subproblem F (which yields J

from Figure 1.2b) and running diffusion would improve the bound. Adding

the zero cycle F = {(1, 2), (1, 4), (2, 3), (3, 4)} (yielding J from Figure 1.2c)

or the whole zero problem F = E would improve the bound too.

Figure 1.4 shows a more complex example.

Message passing algorithms have a drawback: after extending J , theyremoving zero

subproblems need a long time to re-converge. This can be partially alleviated by adding

multiple subproblems at a time and doing so before full convergence. As

some of the added subproblems might later turn out redundant, we found

helpful to remove redundant subproblems occasionally – which can be done

without sacrificing monotonicity of bound improvement. This is a (dual)

way of ‘constraint management’, often used in cutting plane methods.

1.4.6 Zero interactions as projection, marginal polytope

In the beginning, formula (31), we added all possible zero interactions to ourzero interactions

act as projection problem. This has proved natural because the problem is after all defined

only up to reparameterizations and thus any zero interaction can become

28 Cutting plane methods in machine learning

(a) (b) (c)

Figure 1.4: Two steps of the cutting plane algorithm for a problem with
the 8 × 8 grid graph E and |Xv| = 4 variable states. The set J of candidate
extensions contains all cycles of length 4. Only the active joint states are
shown. Subfigure (a) shows the problem after diffusion has converged for
J = { (A, B) | B ⊆ A; A, B ∈ E }. The upper bound is not tight because
of the depicted unsatisfiable subproblem (an inconsistent cycle). Adding the
cycle and letting diffusion re-converge results in problem (b) with a better
bound. The original cycle is now satisfiable but a new unsatisfiable cycle
occurred. Adding this cycle solves the problem, (c).

non-zero. Now, let us see how the LP relaxation would look like without

adopting this abstraction. Let T (E) = { (A, xA) | A ∈ E, xA ∈ XA } denote

the restriction of the set T to hypergraph E. Since zero interactions do not

contribute to the objective function of (35), (35) can be written as

max{ 〈θ,µ〉 | µ ∈M(J) } = max{ 〈πT (E)θ, µ〉 | µ ∈ πT (E)M(J) } (43)

where πD′a ∈ R
D′

denotes the projection of a vector a ∈ R
D on dimensions

D′ ⊆ D, thus πD′ deletes the components D \D′ of a. Applied to a set of

vectors, πD′ does this for every vector in the set. Informally, (43) shows that

zero interactions act as the projection of the feasible set onto the space of

non-zero interactions.

The set πT (E)M ⊆ [0, 1]T (E) is recognized as the marginal polytope (Wain-marginal

polytope wright et al., 2005) of hypergraph E. Its elements µ are the marginals over

variable subsets E of some global distribution µV , which not necessarily is

part of µ. The marginal polytope of the complete hypergraph πT (2V)M = M

is of fundamental importance because all other marginal polytopes are its

projections. For J ⊆ I, the set πT (E)M(J) ⊇ πT (E)M is a relaxation of the

marginal polytope, which may contain elements µ that no longer can be

realized as the marginals of any global distribution µV .

While conv δ(XV) = M is the integral hull of the problem max{ 〈θ,µ〉 |

µ ∈ δ(XV) }, the polytope conv πT (E)δ(XV) = πT (E) conv δ(XV) = πT (E)M

is the integral hull of the problem max{ 〈πT (E)θ,µ〉 | µ ∈ πT (E)δ(XV) }.

1.4 MAP inference in graphical models 29

Following (Wainwright et al., 2005), we say a relaxation J is local in E iflocal vs. non-local

relaxations A, B ∈ E for every (A, B) ∈ J . E.g., in Figure 1.2 only relaxation (a) is local.

For local relaxations, the distributions µA, A /∈ E, are not coupled to any

other distributions and the action of πT (E) on M(J) is simple: it just removes

these superfluous coordinates. Thus, πT (E)M(J) has an explicit description

by a small (polynomial in |E|) number of linear constraints.

For non-local relaxations, the effect of the projection is in general complex

and the number of facets of πT (E)M(J) is exponential in |E|. It is well-known

that to compute the explicit description of a projection of a polyhedron can

be extremely difficult – which suggests that to directly look for the facets

of πT (E)M might be a bad idea. Non-local relaxations can be seen as a lift-

and-project approach: we lift from dimensions T (E) to dimensions T , impose

constraints in this lifted space, and project back onto dimensions T (E).

Now it is clear what is the geometry of our cutting plane algorithm in theprimal view on

the cutting plane

algorithm
primal space [0, 1]T (E). Suppose max-sum diffusion has found a global opti-

mum of the dual and let µ∗ ∈ [0, 1]T (E) be a corresponding primal optimum.

A successful extension of J means that a set (perhaps exponentially large)

of cutting planes is added to the primal that separates µ∗ from πT (E)M.

However, µ∗ is not computed explicitly at all (and, let us remark, it is ex-

pensive to compute µ∗ from a dual optimum for large problems). In fact,

µ∗ may not even exist because diffusion may find only a local optimum of

the dual – we even need not run diffusion to full convergence.

1.4.7 Conclusions

We have presented the theory of the cutting plane approach to the MAP

inference problem, as well as a very general message passing algorithm

to implement this approach. In comparison with other similar works, the

theory, and Algorithm 1.6 in particular, is very simple. We have shown

that for the case of adding subproblems, separation means finding a (small)

unsatisfiable subproblem of the CSP formed by the active joint states.

We assumed, in Section 1.4.5, that the set J of candidate extensions is

tractably small. Is there a polynomial algorithm to select an extension from

an intractably large set J? In particular, is there a polynomial algorithm to

find a small unsatisfiable subproblem (most interestingly, a cycle) in a given

CSP? This is currently an open problem. An inspiration for finding such

algorithms are local consistencies in CSP (Rossi et al., 2006, chapter 3).

Let us remark that several polynomial algorithms are known to separate

intractable families of cutting planes of the max-cut polytope (Deza and

Laurent, 1997), closely related to the marginal polytope. Some of them have

been applied to MAP inference by Sontag and Jaakkola (2007) and Sontag

30 Cutting plane methods in machine learning

(2007). As these algorithms work in the primal space, they cannot be used

in our dual cutting plane scheme – we need a dual separation algorithm.

Acknowledgments

Vojtěch Franc was supported by the Czech Ministry of Education project

1M0567 and by EC projects FP7-ICT-247525 HUMAVIPS, PERG04-GA-

2008-239455 SEMISOL. Soeren Sonneburg was supported by the EU under

the PASCAL2 Network of Excellence (ICT-216886) as well as DFG Grants

MU 987/6-1 and RA-1894/1-1. Tomáš Werner has been supported by the EC

grant 215078 (DIPLECS), the Czech government grant MSM6840770038,

and the Grant Agency of the Czech Republic grant P103/10/0783.

References

A. Argyriou, R. Hauser, C. A. Micchelli, and M. Pontil. A dc-programming

algorithm for kernel selection. In Proc. Intl. Conf. Machine Learning,

pages 41–48. ACM Press, 2006.

F. Bach. Exploring large feature spaces with hierarchical multiple kernel

learning. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances

in Neural Information Processing Systems 9, pages 105–112, 2009.

F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning,

conic duality, and the smo algorithm. In Proc. Intl. Conf. Machine

Learning. ACM Press, 2004.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA,

1999. ISBN 1-886529-00-0.

S. Boyd and L. Vandenberge. Localization and cutting-plane meth-

ods. Stanford University, California, USA, Unpublished lecture

notes, 2008. URL http://see.stanford.edu/materials/lsocoee364b/

05-localization_methods_notes.pdf.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, March 2004. ISBN 0521833787.

E. W. Cheney and A. A. Goldstein. Newton’s method for convex program-

ming and Tchebycheff approximation. Numerische Mathematik, 1:253–

268, 1959. ISSN 0029-599X.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20

(3):273–297, 1995.

C. Cortes, M. Mohri, and A. Rostamizadeh. Learning non-linear combina-

1.4 MAP inference in graphical models 31

tions of kernels. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,

Advances in Neural Information Processing Systems 9, pages 396–404,

2009.

G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-

salesman problem. Operations Research, 2:393–410, 1954.

M. M. Deza and M. Laurent. Geometry of Cuts and Metrics. Springer,

Berlin, 1997.

V. Franc and S. Sonnenburg. OCAS optimized cutting plane algorithm for

support vector machines. In Proc. Intl. Conf. Machine Learning, pages

320–327. ACM Press, 2008.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for large-

scale risk minimization. Journal of Machine Learning Research, 10:2157–

2192, 2010.

M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its

consequences in combinatorial optimization. Combinatorica, 1(2):169–197,

1981.

T. Joachims. Making large–scale SVM learning practical. In B. Schölkopf,

C. Burges, and A. Smola, editors, Advances in Kernel Methods — Support

Vector Learning, pages 169–184, Cambridge, MA, USA, 1999. MIT Press.

J. K. Johnson, D. M. Malioutov, and A. S. Willsky. Lagrangian relaxation for

MAP estimation in graphical models. In Allerton Conf. Communication,

Control and Computing, 2007.

J. E. Kelley. The cutting-plane method for solving convex programs. Journal

of the Society for Industrial and Applied Mathematics, 8(4):703–712, 1960.

K. C. Kiwiel. An aggregate subgradient method for nonsmooth convex

minimization. Mathematical Programming, 27:320–341, 1983.

M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. Müller, and A. Zien.

Efficient and accurate lp-norm multiple kernel learning. In M. C. Mozer,

M. I. Jordan, and T. Petsche, editors, Advances in Neural Information

Processing Systems 9, pages 997–1005. MIT Press, 2009.

N. Komodakis and N. Paragios. Beyond loose LP-relaxations: Optimizing

MRFs by repairing cycles. In European Conf. on Computer Vision, 2008.

N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via dual

decomposition: Message-passing revisited. In Proc. Intl. Conf. Computer

Vision, 2007.

A. Koster, C. P. M. van Hoesel, and A. W. J. Kolen. The partial constraint

satisfaction problem: Facets and lifting theorems. Operations Research

Letters, 23(3–5):89–97, 1998.

32 Cutting plane methods in machine learning

V. A. Kovalevsky and V. K. Koval. A diffusion algorithm for decreasing the

energy of the max-sum labeling problem. Glushkov Institute of Cybernet-

ics, Kiev, USSR. Unpublished, personally communicated to T. Werner by

M. I. Schlesinger., approx. 1975.

M. P. Kumar and P. H. S. Torr. Efficiently solving convex relaxations for

MAP estimation. In Proc. Intl. Conf. Machine Learning, pages 680–687.

ACM, 2008.

G. Lanckriet, T. D. Bie, N. Cristianini, M. Jordan, and W. Noble. A

statistical framework for genomic data fusion. Bioinformatics, 20:2626–

2635, 2004a.

G. Lanckriet, N. Cristianini, L. E. Ghaoui, P. Bartlett, and M. I. Jordan.

Learning the kernel matrix with semi-definite programming. Journal of

Machine Learning Research, 5:27–72, 2004b.

C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle

methods. Mathematical Programming, 69(1–3):111–147, 1995.

A. Mackworth. Constraint satisfaction. In Encyclopaedia of Artificial

Intelligence, pages 285–292. John Wiley, 1991.

J. S. Nath, G. Dinesh, S. Ramanand, C. Bhattacharyya, A. Ben-Tal, and

K. R. Ramakrishnan. On the algorithmics and applications of a mixed-

norm based kernel learning formulation. In M. C. Mozer, M. I. Jordan, and

T. Petsche, editors, Advances in Neural Information Processing Systems

9, pages 844–852, 2009.

A. S. Nemirovskij and D. B. Yudin. Problem Complexity and Method

Efficiency in Optimization. Wiley Interscience, New York, 1983.

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. More efficiency

in multiple kernel learning. In Proc. Intl. Conf. Machine Learning, pages

775–782, 2007.

A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet. SimpleMKL.

Journal of Machine Learning Research, 9:2491–2521, 2008.

F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming.

Elsevier, 2006.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

A. Schrijver. Combinatorial Optimization : Polyhedra and Efficiency (Algo-

rithms and Combinatorics). Springer, 2003.

M. I. Shlezinger. Syntactic analysis of two-dimensional visual signals in

noisy conditions. Cybernetics and Systems Analysis, 12(4):612–628, 1976.

Translation from Russian.

S. Sonnenburg, G. Rätsch, and C. Schäfer. Learning interpretable SVMs for

1.4 MAP inference in graphical models 33

biological sequence classification. In S. Miyano, J. P. Mesirov, S. Kasif,

S. Istrail, P. A. Pevzner, and M. Waterman, editors, Research in Com-

putational Molecular Biology, 9th Annual International Conference (RE-

COMB), volume 3500, pages 389–407. Springer-Verlag, 2005.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large Scale

Multiple Kernel Learning. Journal of Machine Learning Research, 7:1531–

1565, July 2006a.

S. Sonnenburg, A. Zien, and G. Rätsch. ARTS: Accurate Recognition of

Transcription Starts in Human. Bioinformatics, 22(14):e472–e480, 2006b.

S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien,

F. de Bona, A. Binder, C. Gehl, and V. Franc. The SHOGUN machine

learning toolbox. Journal of Machine Learning Research, 11:1799–1802,

June 2010. URL http://www.shogun-toolbox.org.

D. Sontag. Cutting plane algorithms for variational inference in graphical

models. Master’s thesis, Massachusetts Institute of Technology, Depart-

ment of Electrical Engineering and Computer Science, 2007.

D. Sontag and T. Jaakkola. New outer bounds on the marginal polytope.

In Advances in Neural Information Processing Systems 7, 2007.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening

LP relaxations for MAP using message passing. In Conf. Uncertainty in

Artificial Intelligence (UAI), 2008.

N. Subrahmanya and Y. C. Shin. Sparse multiple kernel learning for signal

processing applications. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 32:788–798, 2010.

M. Szafranski, Y. Grandvalet, and A. Rakotomamonjy. Composite kernel

learning. In Proc. Intl. Conf. Machine Learning, 2008.

C. Teo, Q. Le, A. Smola, and S. Vishwanathan. A scalable modular convex

solver for regularized risk minimization. In Proc. Intl. Conf. Knowledge

Discovery and Data Mining, 2007.

C. Teo, S. Vishwanathan, A. Smola, and V. Quoc. Bundle methods for

regularized risk minimization. Journal of Machine Learning Research, 11:

311–365, 2010.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin

methods for structured and interdependent output variables. Journal of

Machine Learning Research, 6:1453–1484, 2005.

M. Varma and B. R. Babu. More generality in efficient multiple kernel

learning. In Proc. Intl. Conf. Machine Learning, pages 1065–1072, New

York, NY, USA, 2009. ACM Press.

34 Cutting plane methods in machine learning

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement

on (hyper)trees: message passing and linear programming approaches.

IEEE Trans. Information Theory, 51(11):3697–3717, 2005.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families,

and variational inference. Foundations and Trends in Machine Learning,

1(1-2):1–305, 2008.

T. Werner. High-arity interactions, polyhedral relaxations, and cutting plane

algorithm for soft constraint optimisation (MAP-MRF). In Proc. IEEE

Conf. Computer Vision and Pattern Recognition, June 2008a.

T. Werner. Revisiting the linear programming relaxation approach to

Gibbs energy minimization and weighted constraint satisfaction. IEEE

Transactions on Pattern Analysis and Machine Intelligence, August 2010.

T. Werner. A linear programming approach to max-sum problem: A review.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7):

1165–1179, July 2007.

T. Werner. Marginal consistency: Unifying constraint propagation on com-

mutative semirings. In Intl. Workshop on Preferences and Soft Constraints

(co-located with Conf. on Principles and Practice of Constraint Program-

ming), pages 43–57, September 2008b.

T. Werner. A linear programming approach to max-sum problem: A review.

Technical Report CTU–CMP–2005–25, Center for Machine Perception,

Czech Technical University, December 2005.

Z. Xu, R. Jin, I. King, and M. Lyu. An extended level method for efficient

multiple kernel learning. In M. C. Mozer, M. I. Jordan, and T. Petsche,

editors, Advances in Neural Information Processing Systems 9, pages

1825–1832, 2009a.

Z. Xu, R. Jin, J. Ye, M. R. Lyu, and I. King. Non-monotonic feature

selection. In Proc. Intl. Conf. Machine Learning, pages 1145–1152, 2009b.

A. Zien and C. S. Ong. Multiclass multiple kernel learning. In Proc. Intl.

Conf. Machine Learning, pages 1191–1198. ACM Press, 2007.

