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Abstract Discretization of continuous input functions into piecewise constant
or piecewise linear approximations is needed in many mathematical modeling
problems. It has been shown that choosing the length of the piecewise seg-
ments adaptively based on data samples leads to improved accuracy of the
subsequent processing such as classification. Traditional approaches are often
tied to a particular classification model which results in local greedy opti-
mization of a criterion function. This paper proposes a technique for learning
the discretization parameters along with the parameters of a decision func-
tion in a convex optimization of the true objective. The general formulation is
applicable to a wide range of learning problems. Empirical evaluation demon-
strates that the proposed convex algorithms yield models with fewer number
of parameters with comparable or better accuracy than the existing methods.

Keywords piecewise constant embedding · piecewise linear embedding ·
parameter discretization · convex optimization · classification · histograms

1 Introduction

Many mathematical modeling problems involve discretization of continuous
input functions to convert them into their discrete counterparts (Garćıa et al.,
2013; Liu et al., 2002). The goal of the discretization is to reduce the number
of values a continuous attribute assumes by grouping them into a number of
predefined bins (Cios et al., 2007, Chapter 8). The discretization is useful for
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reducing the data and subsequently generated model complexity and it is a
necessary preprocessing step for data mining and machine learning algorithms
that operate on discrete attribute spaces (Cios et al., 2007, Chapter 8). The
discrete functions are then piece-wise constant (0th order) or piece-wise linear
(1st order) approximations of the continuous input functions.

The discretization is useful, for example, when estimating probability den-
sity functions. The density functions are typically represented as multi-dimensional
histograms in the discrete domain (Silverman, 1986, Chapter 2). Although
histograms can asymptotically approximate any continuous density, the ac-
curacy of such approximation depends on the histogram bin size (Rao, 2005,
Chapter 2). In another example, the domain of input features is discretized
in order to apply a linear decision function as in logistic regression or Sup-
port Vector Machine classification (Chapelle et al., 1999). The input feature
discretization is a simple method to learn non-linear decision functions where
algorithms essentially learn linearly parameterized rules. Clearly, the accuracy
of the decision functions directly depends on the discretization of the feature
values. One common difficulty in the discretization process is the choice of the
discretization step which then indicates the size of the piece-wise segments,
e.g. histogram bins, or parameters of the feature representation quantization.
The parameters of the decision function are typically estimated in a separate
subsequent process (Dougherty et al., 1995; Pele et al., 2013).

Most algorithms employ the simplest unsupervised discretization by choos-
ing a fixed number of bins with the same size (equal interval width) or the same
number of samples in each bin (equal frequency interval) (Dougherty et al.,
1995). The total number of bins is tuned for a specific application balancing
two opposite considerations. Wider bins reduce the effects of noise in regions
where the number of input samples is low. On the other hand, narrower bins re-
sult in more accurate function approximation in regions where there are many
samples and thus the effects of the noise are suppressed. Equal frequency in-
tervals have been extended by using Shannon entropy over discretized space
to adjust the bin boundaries (Dougherty et al., 1995). Evidently, using varying
bin sizes during discretization can be beneficial.

Supervised discretization algorithms use sample labels to improve the bin-
ning (Kerber, 1992; Dougherty et al., 1995), often in an optimization step when
learning a classifier (Boullé, 2006; Fayyad and Irani, 1992; Friedman and Gold-
szmidt, 1996). One widely-adopted approach is to initially start with a large
number of bins and then merge neighboring bins while optimizing a criterion
function (Boullé, 2006). In (Boullé, 2006), the discretization is based on a
search algorithm to find a Bayesian optimal interval splits using a prior distri-
bution on a model space. In (Fayyad and Irani, 1992), the recursive splitting is
based on an information entropy minimization heuristic. The algorithm is ex-
tended with a Minimum Description Length stopping criteria in (Fayyad and
Irani, 1993) and embedded into a dynamic programming algorithm in (Elo-
maa and Rousu, 1999). These techniques introduce supervision for finding the
optimal discretization but are tied to a particular classification model (Näıve
Bayes, decision trees, or Bayesian Networks (Friedman and Goldszmidt, 1996;
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Yang and Webb, 2008)). As a result, they rely on local greedy optimization of
the criterion function (Hue and Boullé, 2007).

This paper proposes an algorithm for learning piece-wise constant or piece-
wise linear embeddings from data samples along with the parameters of a
decision function. Similarly to several previous techniques, the initial fine-
grained discretization with many histogram bins is adjusted by optimizing a
criterion function. Our algorithm proposes several important contributions.
First, when training a decision function, the algorithm optimizes the true
objective (or its surrogate) which includes the discretization parameters and
the parameters of the decision function. This is in contrast to previous methods
that rely on two separate steps, discretization and classifier learning, which
can deviate from the true objective (Pele et al., 2013). Second, the parameter
learning is transformed into a convex optimization problem that can be solved
effectively. Other techniques do not provide a global solution and resort to a
greedy strategy, where the features are processed sequentially (Hue and Boullé,
2007). Third, our formulation is general with piece-wise embeddings being used
when training a linear decision function which makes it applicable to a wide
range of linear models. Other methods are specific to a particular classification
model (Boullé, 2006; Fayyad and Irani, 1992; Friedman and Goldszmidt, 1996;
Yang and Webb, 2008).

Our experiments demonstrate that the learned discretization is effective
when applied to various data representation problems. The first set of results
combines the estimation of the malware traffic representation parameters with
learning a linear decision function in a joint convex optimization problem.
The learned linear embedding needs much lower dimensionality than equidis-
tant discretization (by a factor of three on average) to achieve the same or
better malware detection accuracy level. The second set of results shows a
piece-wise linear approximation of a probability density function using non-
equidistant bins when estimating the density from data samples. The proposed
algorithm achieves lower KL-divergence between the estimate and the ground
truth than histograms with equidistant bins. Comparison to the previously
published piece-wise linear embedding for non-linear classification (Pele et al.,
2013) shows higher accuracy of the proposed technique on a number of datasets
from the UCI repository. These encouraging results show the promise of the
technique which could be extended to other linear embedding and classification
problems.

2 Learning piece-wise constant functions

We consider learning a univariate piece-wise constant (PWC) function

fpwc(x,w,θ) =

B∑
i=1

[[x ∈ [θi−1, θi)]]wi = wk(x,θ) (1)

where x ∈ R is the input variable, B is the number of bins, θ = (θ0, . . . , θB)T ∈
RB+1 is a vector defining the bin edges, w = (w1, . . . , wB)T ∈ RB is a vector
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of weights each of them associated to a single bin and the function

k(x,θ) = 1 + min{i ∈ {0, . . . , B − 1} | x ≥ θi}

returns the bin number to which the variable x falls to. For notational con-
venience, we omit the additive scalar bias w0 in the definition (1) which does
not affect the discussion that follows. We denote set inclusive bracket as ’[’
and exclusive bracket as ’)’. The operator [[A]] evaluates to 1 if the logical
statement A is true and it is zero otherwise.

Let g : Rm → R be a convex function whose value g(f(x1), . . . , f(xm))
measures how well the function f : R → R evaluated on m training inputs
T = {xi ∈ R | i = 1, . . . ,m} explains the data. For example, g can be the
empirical risk or the likelihood of f evaluated on T . Assuming the bin edges
θ are fixed, the weights w of the PWC function (1) can be learned by solving
the minimization problem

w∗ ∈ argmin
w∈RB

Fpwc(w,θ) (2a)

where
Fpwc(w,θ) = g

(
fpwc(x

1,w,θ), . . . , fpwc(x
m,w,θ)

)
(2b)

is convex in w since it is a composition of a convex function g and fpwc which
is linear in w (Boyd and Vandenberghe, 2004).

In practice the bin edges θ are often selected before learning w. The sim-
plest way is to use equidistantly spaced bins,

θi = i(Max−Min)/B + Min , ∀i ∈ {0, . . . , B} ,

where Min and Max are defined such that every admissible input x is inside
the interval [Min,Max). The bin edges are constructed for different values of
B and the optimal setting is typically tuned on validation examples. This pro-
cedure involves minimization of Fpwc(w,θ) for all proposal discretizations θ.
In principle, one could optimize the width of individual bins as well, however,
this would generate exponentially many proposal discretizations making this
naive approach intractable.

We propose a method which can simultaneously learn the discretization θ
and the weights w of the PWC function (1). The important feature is that
the resulting bins do not have to be equidistant. We only assume that the
bin edges are selected from a finite monotonically increasing sequence of real
numbers ν0 < ν1 < · · · < νD, in further text represented by a vector ν =
(ν0, . . . , νD)T ∈ RD+1 and denoted as the initial discretization. The set of
admissible discretizations ΘB ⊂ RB+1 of the variable x ∈ R into B bins
contains all vectors θ satisfying:

θi = νli , i ∈ {0, . . . , B}, (3a)

l0 = 0 ,
li < li+1 , i ∈ {0, . . . , B − 1} ,
lB = D ,

 (3b)
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The equation (3a) says that the bin edges θ ∈ ΘB form a subset of the initial
discretization ν. The indices {l0, . . . , lB} define which edges are selected from
ν. The equations (3b) state that the left most bin edge is ν0, the right most
edge is νD, and the intermediate edges form an increasing sequence.

Given a convex learning algorithm (2), we propose to learn the discretiza-
tion θ∗ ∈ ΘB simultaneously with the weights w∗ ∈ RB by solving

(w∗,θ∗) ∈ argmin
w∈RB ,θ∈ΘB

Fpwc(w,θ) . (4)

Unlike (2) where θ is fixed, the problem (4) is almost always non-convex
and hard to optimize. In the sequel we derive a convex approximation of (4)
which can be solved efficiently provided the original problem (2) can be solved
efficiently.

Let us define a function c : RD → {0, . . . , D − 1}

c(v) =

D−1∑
i=1

[[vi 6= vi+1]]

returning the total number of different neighboring elements of the vector v ∈
RD. Let ΘB be induced by the initial discretization ν as defined by (3). It is
easy to see that for any (w,θ) ∈ (RB × ΘB) there exists a unique v ∈ VB ={
v ∈ RD

∣∣c(v) ≤ B − 1
}

such that

fpwc(x,w,θ) = fpwc(x,v,ν) , ∀x ∈ Rn , (5)

holds. In particular, v is constructed from (w,θ) by

vl = fpwc(νl,w,θ) , l ∈ {1, . . . , D} . (6)

Computing (w,θ) from (v,ν) is also straightforward but not unique in general.
It can be seen that for any v ∈ VB it is possible to construct a finite number
of pairs W(v) = {(w1,θ1), . . . , (wL,θL)} ∈ (RB ×ΘB)L, such that the equal-
ity (5) holds for any (w,θ) ∈ W(v). Provided c(v) = B − n the conversion
from v and (w,θ) is unique, i.e. |W(v)| = 1. The parametrization (w,θ) is
a shortened representation of (u,ν) which is composed of sub-sequences of
the equal components. Therefore we will denote (v,ν) as the uncompressed
parametrization and (w,θ) as the compressed parametrization. The equiva-
lence between the compressed parametrization and the uncompressed one is
illustrated in Figure 1. The equivalence implies that

min
{
Fpwc(w,θ) | (w,θ) ∈ (RB ×ΘB)

}
= min

{
Fpwc(v,ν) | v ∈ VB

}
and therefore the problem (4) can be solved by finding

v∗ ∈ argmin
v∈RD

Fpwc(v,ν) s.t. c(v) ≤ B − 1 , (7)

and solving (6) for (w∗,θ∗) while v is set to v∗. Methods for an efficient com-
putation of the compressed parametrization (w∗,θ∗) from the uncompressed
one (v∗,ν) are subject of Section 4.
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Fig. 1 The figure shows an example of the PWC function and its two equiv-
alent parametrizations which guarantee that fpwc(x,w,θ) = fpwc(x,v,ν), ∀x ∈
R. The function fpwc(x,w,θ) has 3 bins of heights w = (w1, w2, w3)T and 4
edges θ = (θ0, θ1, θ2, θ3)T = (ν0, ν4, ν7, ν12)T selected out of the sequence ν =
(ν0, . . . , ν12)T . The function fpwc(x,v,ν) has 11 bins with 12 edges ν and heights v =
(w1, w1, w1, w1, w2, w2, w2, w3, w3, w3, w3, w3)T . Though v has 11 components there are
only two places where they differ, hence c(v) = 2.

The problem (7) has a convex objective but its single constraint remains
non-convex. By introducing a vector d = (v1 − v2, . . . , vD−1 − vD)T we see
that the function c(v) can be written as the L0-norm of the vector d = (v1 −
v2, . . . , vD−1 − vD)T , i.e. c(v) = ‖d‖0. It has been demonstrated that the
L1-norm is often a good convex proxy of the L0-norm, see e.g. (Candes and
Tao, 2005; Candes et al., 2006; Donoho, 2006) . Therefore, we propose to
approximate the non-convex function c(v) = ‖v‖0 by the convex function
c̃(v) = ‖d‖1. A convex relaxation of the problem (7) then reads

v∗ ∈ argmin
v∈RD

Fpwc(v,ν) s.t.

D−1∑
i=1

|vi − vi+1| ≤ B − 1 ,

or, equivalently, we can solve an unconstrained problem

v∗ ∈ argmin
v∈RD

[
Fpwc(v,ν) + γ

D−1∑
i=1

|vi − vi+1|
]
, (8)

where the constant γ ∈ R+ is monotonically dependent on B − 1.

3 Learning piece-wise linear functions

The previous section shows how to transform learning of PWC functions to a
convex optimization problem. A similar idea can be applied to learning piece-
wise linear (PWL) functions which provide more accurate approximation of
the input data. In this case, we want to learn a function

fpwl(x,w,θ) = wk(x,θ)−1 · (1− α(x,θ)) + wk(x,θ) · α(x,θ) (9)
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Fig. 2 The figure shows an example of the PWL function and its two equivalent
parametrizations which guarantee that fpwl(x,w,θ) = fpwl(x,u,ν), ∀x ∈ R. The function
fpwl(x,w,θ) is described by 3 line segments connecting 4 points {(θ0, w0), . . . , (θ3, w3)}
whose coordinates are stored in w = (w0, . . . , w3)T a θ = (θ0, . . . , θ3)T . The bin edges
θ = (θ0, θ1, θ2, θ3)T = (ν0, ν4, ν7, ν12)T form a subset of ν = (ν0, . . . , ν12)T . The function
fpwl(x,u,ν) is described by 11 line segments connecting points {(ν0, u0), . . . , (ν12, u12)}
whose coordinates are stored in u = (u0, . . . , u12)T and ν. Note, however, that only 4
components of u cannot be expressed as an average of its neighbors, hence e(u) = 4.

where x ∈ R is the input variable as for before, θ ∈ RB+1 is a vector defining
the bin edges, B is the number of bins and w ∈ RB+1 is the vector of weights 1.
The function α : R× RB+1 → [0, 1], defined as

α(x,θ) =
x− θk(x,θ)−1

θk(x,θ) − θk(x,θ)−1

is a normalized distance between x and the right edge of the k(x,θ)-th bin.
Analogously to the previous section, we want to learn simultaneously the

discretization θ∗ ∈ ΘB and the weights w∗ ∈ RB+1 by solving

(w∗,θ∗) ∈ argmin
w∈RB+1,θ∈ΘB

Fpwl(w,θ) (10)

where

Fpwl(w,θ) = g
(
fpwl(x

1,w,θ), . . . , fpwl(x
m,w,θ)

)
is the learning objective depending on the responses of the PWL function (9)
and evaluated on the training inputs {x1, . . . , xm} ∈ Rm. In the sequel, we
derive a convex relaxation of (10).

Let us define a function e : RD+1 → {0, . . . , D + 1},

e(u) =

D−1∑
i=1

[[ui 6=
1

2
(ui−1 + ui+1)]]

which returns the number of weights that cannot be expressed as an average
of the neighboring weights. Let ΘB be induced by the initial discretization ν

1 Note that the PWC function has B weights associated with the bins while the PWL
function has B + 1 weights associated with the bin edges.
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as defined by (3). It can be seen that for any (w,θ) ∈ (RB+1 × ΘB) we can
construct a unique u ∈ UB = {u ∈ RD+1 | e(u) ≤ B − 1} such that

fpwl(x,w,θ) = fpwl(x,u,ν) , ∀x ∈ Rn (11)

holds, in particular, u is constructed from (w,θ) by

ul = fpwl(νl,w,θ) , l ∈ {0, . . . , D} . (12)

In addition, for any u ∈ UB it is possible to construct a finite number of
pairsW ′(u) = {(w1,θ1), · · · , (wL,θL)} ∈ (RB+1×ΘB)L such that the equal-
ity (11) holds for any (w,θ) ∈ W ′(u). For e(u) = B − 1 the conversion from
u to (w,θ) is unique, i.e. |W ′(u)| = 1. The equivalence between the com-
pressed parametrization (w,θ) and the uncompressed parametrization (u,ν)
is illustrated in Figure 2. The equivalence implies that

min
{
Fpwl(w,θ) | (w,θ) ∈ (RB+1 ×ΘB)

}
= min

{
Fpwl(u,ν) | u ∈ UB

}
.

Consequently, the problem (10) can be solved by choosing

u∗ ∈ argmin
u∈RD+1

Fpwl(u,ν) s.t. e(u) ≤ B − 1 , (13)

and computing (w∗,θ∗) from u∗ by solving the equation (12) for (w,θ) with
u = u∗. Efficient methods computing the compressed parametrization (w∗,θ∗)
from the uncompressed one (u∗,ν) are discussed in Section 4. As before, re-
placing the L0-norm in the non-convex constraint e(u) = B−1 by the L1-norm,
we obtain a convex relaxation of (10) which reads

u∗ ∈ argmin
u∈RD+1

Fpwl(u,ν) s.t.

D−1∑
i=1

∣∣ui − 1

2
ui−1 −

1

2
ui+1

∣∣ ≤ B − 1 ,

or, equivalently, we can solve an unconstrained problem

u∗ ∈ argmin
u∈RD+1

[
Fpwl(u,ν) + γ

D−1∑
i=1

∣∣ui − 1

2
ui−1 −

1

2
ui+1

∣∣] . (14)

where the constant γ ∈ R+ is monotonically dependent on B − 1.

4 Rounding of piece-wise functions

The uncompressed parametrization (v,ν) of the PWC function (e.g. found by
the proposed algorithm (8)) can be converted to the compressed one (w,θ)
by splitting v into sub-vectors of equal weights, i.e. v = (vT1 ,v

T
2 , . . . ,v

T
B)

where each vi can be written as vi = wi[1, . . . , 1]T . Obtaining the compressed
parametrization (w,θ) is then straightforward (see Figure 1). An analogous
procedure can be applied for the PWL parametrizations in which case we are
searching for sub-vectors whose intermediate components can be expressed
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as an average of its neighbors. In practice, however, the components of the
uncompressed solution can be noisy thanks to the used convex relaxation and
usage of approximate solvers to find the uncompressed parameters. For this
reason, it is useful to round the uncompressed solution before its conversion
to the compressed one. The rounding procedures for the PWC and the PWL
parametrization are described in the next sections.

4.1 Rounding of PWC parametrization

A very crude rounding is obtained by splitting v into the sub-vectors v =
(vT1 ,v

T
2 , . . . ,v

T
B) such that all components of each vi have the same sign. The

rounded uncompressed solution is then

v̄ = (mean(v1)[1, . . . , 1]T , . . . ,mean(vB)[1, . . . , 1]T )T (15)

where the operator mean(v′) returns the mean value of the components of the
vector v′. Note that this procedure does not require any parameter.

Another method is to find the parameters v̄ of the PWC function with B
bins which have the shortest Euclidean distance to the given v by solving

v̄ ∈ argmin
v′∈RD

‖v − v′‖2 s.t. c(v′) = B − 1 . (16)

The problem (16) is the Euclidean projection of v onto the set VB =
{
v ∈

RD
∣∣c(v) ≤ B − 1

}
. The optimal solution of (16) can be found by dynamic

programming as follows. Provided that c(v′) = B − 1 holds, the vector v′

can be parametrized by a shorter vector w = (w1, . . . , wB) ∈ Rb and indices
(l0, . . . , lB) satisfying (3b) which define bins and hence also sub-sequences
within v′ with the same value, i.e. v′li+1 = · · · = v′li = wi holds for all i ∈
{1, . . . , B}. With this notation, we can rewrite the distance ‖v − v′‖2 as

‖v − v′‖2 =

D∑
i=1

(vi − v′i)2 =

B∑
j=1

lj∑
i=lj−1+1

(vi − wj)2 =

B∑
j=1

R(lj−1, lj , wj) .

It is clear that weight w̄j solving the sub-problem minwj R(lj−1, lj , wj) equals

the arithmetic mean of the corresponding weights, w̄j =
∑lj
i=lj−1+1 vi/(lj −

lj−1). Let us define R̂(lj−1, lj) = R(lj−1, lj , ŵj). Instead of solving (16) we can
now search for the optimal indices:

(l̄0, . . . , l̄B) ∈ argmin
(l0,...,lB)

B∑
j=1

R̂(lj−1, lj) s.t
l0 = 0 ,
li < li+1 , i ∈ {0, . . . , B − 1} .
lB = D .

(17)
The problem (17) can be solved by dynamic programming since its objective
decomposes into a sum of functions each of which sharing at most two variables
with other functions. The overall computational time of the DP procedure is
O(B ·D2).
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Because the number of bins is often unknown a priori, we can search for the
minimal number of bins which explain the given solution v with a prescribed
precision ε, i.e. we can solve

v̄ = argmin
B∈N ,v′∈RD

B s.t. ‖v − v′‖2 ≤ ε and c(v′) = B − 1 . (18)

The solution of (18) can be converted to the solution of (16) by increasing B
until the constraint ‖v − v′‖2 ≤ ε is satisfied.

4.2 Rounding PWL function

The parameter vector ū describing the PWL function with B bins which has
the shortest Euclidean distance to given u can be found by solving

ū ∈ argmin
u′∈RD+1

‖u− u′‖2 s.t. e(u′) = B − 1 . (19)

If the number of bins is unknown, we can search for the minimal number of
bins which explain the given solution u with a prescribe precision ε by solving

ū = argmin
B∈N ,u′∈RD+1

B s.t. ‖u− u′‖2 ≤ ε and e(v′) = B − 1 . (20)

The problems (19) and (20) can be solved exactly by procedures analogous
to the ones for the PWC function which were described in previous section
and hence omitted for the sake of space.

5 Examples of the proposed framework

The previous sections desribe a generic framework that allows to modify a
wide class of convex algorithms so that they can learn the PWC and the PWL
functions. In this section, we give three instances of the proposed framework.
We also show how the same idea can be applied to learning multi-variate
PWC and PWL functions. In particular, we consider learning of the linear
classifiers using sequential data represented by PWC histograms (Section 5.1),
estimation of the PWL probability density models (Section 5.2) and learning
of the non-linear classifiers via the PWL data embedding (Section 5.3). It will
be shown that learning leads to an instance of convex optimization problem in
all cases. Moreover, the optimization can be reformulated as a well-understood
Quadratic Programming task.
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5.1 Classification of histograms

In many applications, the object to be classified is described by a set of se-
quences sampled from some unknown distributions. A simple yet effective rep-
resentation of the sequential data is the normalized PWC histogram which
is then used as an input to a linear classifier. This classification model has
been successfully used e.g. in computer vision (Dalal and Triggs, 2005) or in
the computer security (Bartos and Sofka, 2015) as will be described in Sec-
tion 7.1.

Assume we have a training set T = {(X1, y1), . . . , (Xm, ym)} ∈ (Rn×d ×
{−1,+1})m where the input matrix Xi describes n sequences each having
d elements. The linear classifier h(X,w,θ) = sign(fpwc(X,w,θ)) assigns X
into a class based on the sign of the discriminant function

fpwc(X,w,θ) =

n∑
i=1

bi∑
j=1

1

d

d∑
k=1

[[Xi,k ∈ [θi,j−1, θi,j)]]wi,j (21)

where θi = (θi,0, . . . , θi,bi)
T ∈ Rbi+1 is a vector defining bin edges of the i-th

histogram and θ = (θT1 , . . . ,θ
T
n )T ∈ Rn+B is their concatenation, B =

∑n
i=1 bi

denotes the total number of bins, wi = (wi,1, . . . , wi,bi)
T ∈ Rbi are bin heights

of the i-th histogram and w = (wT
1 , . . . ,w

T
n ) ∈ RB is their concatenation.

In order to learn the bin edges θ and the weights w from examples T
simultaneously, we apply the general framework described in Section 2. In
particular, we show how to adapt the Support Vector Machine (SVM) algo-
rithm. First, we define the initial discretization νi = (νi,0, . . . , νi,D)T ∈ RD+1

for each of the n histograms. For example, we place D+ 1 edges equidistantly
between the minimal Mini and the maximal Maxi value that can appear in
the i-th sequence, so that νi,j = j(Maxi −Mini) + Mini. Second, we combine
the SVM objective function

F svm
pwc (w,θ, λ) =

λ

2
‖w‖2 +

1

m

m∑
i=1

max
{

0, 1− yifpwc(x
i,w,θ)

}
with the L1-norm approximation of the function

cn(v) =

n∑
i=1

D−1∑
j=1

[[vi,j 6= vi,j+1]]

The function cn(v) indicates the total number of different neighboring compo-
nents of v. Analogously to the general formulation (8), we obtain the following
convex program

v∗ ∈ argmin
v∈RnD

[
F svm
pwc (v,ν, λ) + γ

n∑
i=1

D−1∑
j=1

|vi,j − vi,j+1|
]
. (22)

The constant λ ∈ R+ controls the empirical error. The constant γ ∈ R+

influences the number of equal neighboring in v∗ and thus the number of
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emerging bins. The uncompressed parametrization (v∗,ν) is converted to the
compressed one (w∗,θ∗) via the rounding methods from Section 4, which are
applied to each pair (v∗i ,νi), i ∈ {1, . . . , n}, separately.

5.2 Estimation of PWL histograms

Given a training sample T = {xi ∈ R | i = 1, . . . ,m} drawn from i.i.d.
random variables with unknown distribution p(x), the goal is to find p̂(x)
approximating p(x) accurately based on the samples T . Assume we want to
model the unknown p.d.f. by the PWL function

p̂pwl(x,w,θ) =
(
1− α(x,θ)

)
wk(x,θ)−1 + α(x,θ)wk(x,θ), (23)

where θ ∈ RB+1 are the bin edges and w ∈ RB+1
+ is a vector of non-negative

weights selected such that
∫
p̂pwl(x,w,θ)dx = 1. To learn the unknown pa-

rameters (w,θ) from the sample T , we are going to instantiate the framework
proposed in Section 3 to the Maximum Likelihood method. Let the initial dis-
cretization ν ∈ RD+1 be equidistantly spaced between the minimal and the
maximal value, i.e. νj = j(Max−Min) + Min, ∀j ∈ {0, . . . , D}, where D is set
to be sufficiently high. We substitute the negative log-likelihood

F nll
pwl(w,θ) = −

m∑
i=1

log p̂pwl(x
i,w,θ)

to the general formulation (14) which yields the following convex problem

u∗ = argmin
u∈RD

[
F nnl
pwl(u,ν) + γ

D−1∑
j=1

∣∣uj − 1

2
uj−1 −

1

2
uj+1

∣∣] (24a)

subject to

u0 + uD + 2

D−1∑
i=1

ui =
2D

Max−Min
, ui ≥ 0 , i ∈ {0, . . . , D} , (24b)

where γ ∈ R+ is a constant controlling the number of bins. The introduced

constraints (24b) ensure that
∫Max

Min
p̂pwl(x,u,ν)dx = 1 holds for any feasible

u. The found u∗ defines a PWL probability density model p̂pwl(x
i,u∗,ν). If

necessary, the compressed parameters (w∗,θ∗), defining the non-equidistant
bins, can be recovered from u∗ by the rounding methods described in Section 4.
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5.3 PWL embedding for non-linear classification

The PWL embedding (Pele et al., 2013) is a simple yet efficient way to learn
highly non-linear decision function by a linear algorithm such as the Sup-
port Vector Machines. Let T = {(x1, y1), . . . , (xm, ym)} ∈ (Rn × {−1,+1})m
be a training set of input features and output binary labels. A linear classi-
fier h(x,w,θ) = sign(fpwl(x,w,θ)) assigns the input x = (x1, . . . , xn)T into
classes based on the sign of the discriminant function

fpwl(x,w,θ) =

n∑
i=1

(
wi,k(xi,θi)−1 · (1−α(xi,θi)) +wi,k(xi,θi) ·α(xi,θi)

)
(25)

which is a sum of n PWL functions each defined for a single input feature.
The vector θi ∈ Rbi+1 contains the bin edges of the i-th feature and θ =
(θT1 , . . . ,θ

T
n )T ∈ Rn+B is their concatenation where B =

∑n
i=1 bi denotes the

total number of bins. The vector wi ∈ Rbi+1 contains the weights associated
to the edges θi and w = (wT

1 , . . . ,w
T
n ) ∈ RB+n is their concatenation.

We can learn the weights w as well as the discretization θ using the SVM
algorithm adapted by the framework from Section 3. First, for each input vec-
tor we define the initial discretization νi = (νi,0, . . . , νi,D)T ∈ RD+1, e.g. as
before by setting νi,j = j(Maxi−Mini)+Mini where Mini and Maxi is the min-
imal and the maximal value of the i-the feature and D is the maximal number
of bins per feature. Let ν = (νT1 , . . . ,ν

T
n )T ∈ Rn(D+1) be the concatenation of

initial discretizations for all features. The SVM objective function

F svm
pwl (w,θ, λ) =

λ

2
‖w‖2 +

1

m

m∑
i=1

max
{

0, 1− yifpwl(x
i,w,θ)

}
is then combined with the L1-norm approximation of the function

en(u) =

n∑
i=1

D−1∑
j=1

[[ui,j 6=
1

2
(ui,j−1 + ui,j+1)]].

The function en(u) indicates the total number of weights that can be expressed
as the average of its neighbors. Analogously to the general formulation (14),
we obtain the following convex program

u∗ = argmin
u∈Rn(D+1)

[
F svm
pwl (u,ν, λ) + γ

n∑
i=1

D−1∑
j=1

∣∣ui,j − 1

2
ui,j−1 −

1

2
ui,j+1

∣∣] . (26)

The constant λ ∈ R+ controls the empirical error as in the standard SVM. The
constant γ ∈ R+ controls the number of emerging bins, and thus the complex-
ity (or smoothness) of the decision function. The uncompressed parameters
u∗ can be converted to the compressed ones (w∗,θ∗) by the projection meth-
ods from Section 4 which are applied to each pair (u∗i ,νi), i ∈ {1, . . . , n},
separately.
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6 Limitations of the convex relaxation

In this section we discuss the limitations of the proposed convex relaxation. We
concentrate on the PWC learning which leads to solving a convex minimization
problem (8). The objective function (8) is a weighted sum of the original

task objective Fpwc(v,ν) and a regularization term
∑D−1
i=1 |vi− vi+1| that was

introduced to control the number of different neighboring weights. However,
the regularization term can also have an undesired influence on the solution
as shown below.

It is possible to factorize every candidate solution v ∈ RD into a monotonic
subsequences whose endpoints are local extrema of the sequence (v1, v2, . . . , vD).
The value of the regularization term is given only by the weights at these end-
points. Indeed, let vk, vk+1, . . . vk+l be one of the monotonic subsequences and
let it be an increasing one, that is, vk ≤ vk+1 ≤ . . . ≤ vk+l. In this case, we
have

k+l−1∑
i=k

|vi − vi+1| =
k+l−1∑
i=k

(vi+1 − vi) = vk+1 − vk.

The same argument holds for decreasing subsequences, vk ≥ vk+1 ≥ . . . ≥
vk+l, in which case

∑k+l
i=k+1 |vi−1 − vi| = vk − vk+l. This observation has the

following two implications. First, the values of the intermediate weights, that is
those between the local extrema, have no influence on the regularization term.
Second, the only way to decrease the value of the regularization term is to
either decrease a local maximum or to increase a local minimum. Subsequently
the regularization term tends to push the local extrema towards each other
and to make the resulting sequence flat.

Estimation of the PWC histograms by the ML method is an example ap-
plication in which the described behavior is not favorable. In principle, we
can use the same method as for estimation of the PWL histograms which
was described in Section 7.2. The only difference is that for PWC histograms
we use the regularization term γ

∑D−1
i=1 |vi − vi+1| and we have to adjust the

normalization constraint (24b) correspondingly. We applied the method to es-
timate the PWC histogram from 106 examples randomly drawn from a known
bimodal distribution (the high number was used to get rid of the estimation
error). We estimated the PWC histogram with the regularization constant set
to γ ∈ {0.1, 1, 10, 100}. The effect of increasing γ is illustrated in Figure 3. It
is seen that the PWC regularization term favors uniform distributions which
may not be desirable. This problem can be addressed by using the PWL his-
tograms instead as shown in Section 7.2. In other applications, like learning
linear classifiers on top of PWC histograms, the preference of uniform weights
can be beneficial as shown in Section 7.1.

7 Experiments

This section provides empirical evaluation of the algorithms proposed in Sec-
tion 5. Section 7.1 describes learning of malware detector representing the net-
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Fig. 3 The PWC histogram learned by the ML method. The number of bins is controlled
by the L1-regularization term γ

∑D−1
i=1 |vi − vi+1|. Each figure shows a histogram (blue)

learned with a different setting of the regularization constant γ and the ground truth distri-
bution (black) from which the training examples were drawn. As the regularization constant
increases the undesired flattening effect of the PWC approximation becomes apparent.

work communication by PWC histograms. Section 7.2 evaluates the proposed
PWL density estimator on synthetic data. Section 7.3 evaluates the proposed
algorithm for learning PWL data embedding on classification benchmarks se-
lected from the UCI repository.

7.1 Malware detection by classification of histograms

The proposed approach was applied in the network security domain to clas-
sify unseen malware samples from HTTP traffic. The data was obtained from
several months (January - July 2015) of real network traffic of companies
of various sizes in form of proxy log records. The logs contain anonymized
HTTP/HTTPS web requests, where one request represents one connection
defined as a group of packets from a single user and source port with a single
server IP address, port, and protocol. Each request consists of the follow-
ing fields: user name, source IP address, destination IP address, source port,
destination port, protocol, number of bytes transferred from client to server
and from server to client, flow duration, timestamp, user agent, URL, referer,
MIME-Type, and HTTP status. The most informative field is the URL, which
can be decomposed further into several parts, e.g. protocol, hostname, path,
file name, or query.
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Features applied on URL, path, query, file name
length; digit ratio
lower/upper case ratio; ratio of digits
vowel changes ratio
ratio of a character with max occurrence
has a special character
max length of consonant/vowel/digit stream
number of non-base64 characters
has repetition of parameters

Other Features
number of bytes from client to server
number of bytes from server to client
length of referer/file extension
number of parameters in query
number of ’/’ in path/query/referer

Table 1 List of selected connection-based features extracted from HTTP/HTTPS traffic.

We grouped all connections into bags, where one bag contains all connec-
tions of the same user going to the same domain. We the extracted 115 feature
values for each connection (see Table 1), computed a histogram representation
of each bag and used the histograms as input to a linear two-class classifier (21)
as described in Bartos and Sofka (2015).

We compare two methods learning the classifier parameters:

1. The linear SVM using histograms with equidistantly spaced bins. The num-
ber of bins per feature varied from {8, 12, . . . , 256}.

2. The proposed algorithm learning non-equidistant bins from examples. The
uncompressed weights u∗ are obtained by solving (22) with the initial
discretisation ν set to split each feature equidistantly to D = 256 bins.
The constant γ, which controls the number of bins, varied from 10−1 to
10−6. The compressed weights (w∗,θ∗) were obtained by the rounding
procedure (15). Finally, the linear SVM was re-trained on the learned bins
θ∗.

The optimal value of the SVM constant γ used by both compared methods
was selected from {10−1, . . . , 10−5} based on the validation error.

The data consists of 7,028 positive (malware) and 44,338 negative (le-
gitimate) samples. The positive samples are from 32 classes representing 32
different malware types. The samples were split into training, validation and
testing set by a ratio 3/1/1. It is ensured that the same malware class never
appears simultaneously in the training, validation and test sets. We report the
average performance and its standard deviation computed over five test splits.

We analyzed the effect of the number of bins on the precision and recall of
the linear SVM classifier. Figure 4 shows precision recall curves (PRCs) for the
representation with different number of equidistant bins. Figure 5 shows PRCs
of the representation with different number of non-equidistant bins positions
of which are learned by the proposed method. It is seen that the representation
with non-equidistant bins achieves higher precision using substantially smaller
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Fig. 4 Precision recall curves for histogram
representation with different number of
equidistant bins. The performance increases
with the number of bins, however higher
number of bins show comparable results.
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Fig. 5 Precision recall curves for histogram
representation with non-equidistant bins
learned by the proposed method. The per-
formance is increased when compared to
Figure 4, and with smaller number of bins.
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Fig. 7 Recall is influenced by the com-
plexity of the baseline histogram representa-
tion as well as of the representation learned
with the proposed approach. However, the
proposed optimization achieves higher recall
with significantly less number of bins.

number of bins. In Figure 7 we show the recall as the function of the num-
ber of bins in order to emphasize the difference between the equidistant and
learned non-equidistant representation. The precision was set at 95%, a com-
mon operating point of the detector used in real-life deployment. The figures
are numerically summarized in Table 2.

Figure 6 illustrates the weights w of the linear SVM classifier trained with
three different representations. First, we used a histograms with 256 equidis-
tant bins (black line), resulting in a large complexity of weights. Second, we
learned the weights and bins simultaneously according to the proposed al-
gorithm (red line), which significantly decreased the number of bins without
sacrificing the efficacy. Finally, we applied the second step to define new bins
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Equidistant bins Learned soft bins Learned rounded bins
bins per B recall at 95 γ recall at 95 bins per B recall at 95
feature [%] [%] feature [%]

256 58,880 53.5 (25.4) 5 · 107 58.2 (24.4) 58 13,316 58.9 (23.6)
128 29,440 51.0 (27.9) 1 · 106 56.4 (23.9) 40 9,196 58.3 (22.9)
64 14,720 51.2 (26.5) 5 · 106 56.4 (22.6) 20 4,634 55.0 (20.6)
32 7,360 50.3 (26.3) 1 · 105 56.2 (24.3) 13 2,991 54.5 (22.2)
16 3,680 46,7 (26.9) 5 · 105 54.6 (25.4) 3 741 51.1 (25.7)
8 1,840 45.6 (28.5) 1 · 104 51.2 (22.5) 2 510 50.0 (27.5)

Table 2 Performance comparison of a linear SVM classifier trained from a histogram repre-
sentation with equidistant bins with the two proposed methods: learned soft bins (when the
bins and SVM weights are learned simultaneously) and learned rounded bins (retraining new
SVM weights once the bins are learned from the samples). All approaches have comparable
recall, but the proposed algorithms significantly reduced the number of bins.

by rounding the uncompressed solution and then re-trained a new linear SVM
classifier on the top of it (blue line). It means that the discretization for the sec-
ond and third method is similar, but the third method retrained the classifier
and boosted the weights to further maximize the separability of the positive
and negative samples.

7.2 Non-parametric distribution estimation

We evaluated the algorithm finding PWL approximation of an unknown distri-
bution described in Section 5.2. The samples were drawn from a mixture of two
Gaussians: p(x) = 0.4 ·N (x;−2, 1) + 0.6 ·N (x; 2, 0.5) with mean and standard
deviation (−2, 1) and (2, 0.5), respectively. We compared three methods:

1. The proposed algorithm estimating non-equdistant PWL histogram. The
uncompressed weights u∗ were obtained by solving (24). The initial D =
100 bins ν were placed equidistantly between the minimal and the maximal
value in the training set. The optimal value of the constant γ was selected
from {10, . . . , 10000} based on the log-likelihood evaluated on the valida-
tion set. The compressed parameters (w∗,θ∗) of the PWL histogram (23)
were computed from u∗ by the rounding procedure (20) with the precision
parameter ε = 0.001.

2. The PWL histogram with bin edges θ placed equidistantly between the
minimal and the maximal value in the training set. The weights w were
found by maximizing the likelihood function which is equivalent to solv-
ing (24) with γ = 0. The optimal number of bins was selected from
{5, 10, . . . , 100} based on the log-likelihood evaluated on the validation set.

3. The standard PWC histogram with equidistant bins whose number was
selected from {5, 10, . . . , 100} based on the log-likelihood evaluated on the
validation set. The bin heights were found by the ML method.

We used the distribution p(x) to generate training and validation set the
size of which varied from 100 to 10000. For each method we recorded the
optimal number of bins and the KL-divergence between the estimated and the
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ground distribution p(x). The results are averages and standard deviations
computed over ten generated data sets.

Figure 8(a) shows the KL-divergence and Figure 8(b) the number of bins as
a function of the training set size. As expected, the equidistant PWC histogram
provides the least precise (high KL divergence) and the most complex (high
number of bins) model. We also see that PWL model with equidistantly-spaced
bins provides the same accurate model as the model with non-equidistant bins
learned from example, however, the compactness (the number of bins) of the
non-equidistant model is consistently smaller.

Figure 9 shows examples of PWC historams and PWL histograms with
learned non-equdistant bins. It is seen that the non-equdistant PWL histogram
can closely approximate the ground truth model even from small training sets.
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Fig. 8 Figures compare the proposed method learning non-equdistant PWL histograms
(black), the equdistant PWL histogram (green) and the equdistant PWC histogram (blue).
Figure (a) depicts the KL-divergence between the ground truth and the estimated model
as a function of the training set size. Figure (b) shows the optimal number of bins as the
function of training set size.

7.3 PWL embedding for non-linear classification

In this section we evaluate the algorithm for learning the PWL data embed-
ding proposed in Section 5.3. We learned a two-class classifier h(x,w,θ) =
sign(fpwl(x,w,θ)) with the discriminant function fpwl(x,w,θ) defined by (25)
for a set of classification problems selected from the UCI repository (Lichman,
2013) which are summarized in Table 3. We evaluated three methods:

1. The proposed algorithm learning simultaneously θ and w. The uncom-
pressed parameters u∗ were found by solving (26) with the initial dis-
cretization ν equidistantly splitting each feature to D = 100 bins. The
compressed parameters (w∗,θ∗) were computed from (u∗,ν) by the round-
ing procedure (20) with the precision parameter ε = 0.1. Finally, a linear
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Fig. 9 Figures show the ground truth p.d.f. (red), the learned PWL histogram (black) and
the PWC histogram with equidistant bins (blue) estimated from training sets of different
sizes. The number of bins of a particular histogram is shown in brackets. The black vertical
lines denote the learned bin edges.

SVM was re-trained on the learned bins θ∗. The constant γ, which controls
the number of bins, was varied from 0.1 to 0.0001.

2. The parameters w were trained by the linear SVM on top of equdistantly
constructed bins θ. The number of bins per feature varied from 5 to 20.

3. Method of (Pele et al., 2013) which was shown to outperform the non-linear
SVM with many state-of-the-art kernels and data embeddings. Namely, we
re-implemented the “PL1 algorithm” applying the PWL embedding on
individual features as we do. The non-equidistant bins were found for each
feature independently by constructing edges as the mid-points between the
cluster centers obtained from the k-means algorithm. The number of bins
was varied from 3 to 20.

The optimal value of the SVM constant λ used by all three methods was
selected from {0.1, . . . , 0.00001} based on the validation error.

We used the same evaluation protocol as in (Pele et al., 2013). Each data
set was ten times randomly split into training, validation and test part in the
ratio 60/20/20. The reported results are averages and the standard deviations
computed on the test part over the ten splits.
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name num. of num. of Pele et. al 2013 Equdist. bins Learned bins
examples features acc % bins acc % bins acc % bins

eyestate 14,980 15 64.6±7.1 20.0 60.5±5.1 21.0 72.9±4.0 13.3
ionosphere 351 34 92.1±1.9 3.0 90.9±2.3 6.0 92.2±0.2 8.4
magic 19,020 11 85.4±0.3 20.0 85.4±0.3 21.0 86.0±0.4 11.7
miniboo 130,065 50 91.0±0.2 3.0 84.4±0.6 21.0 92.2±0.2 5.7
musk 6,598 167 98.8±0.3 10.0 98.4±0.4 11.0 99.0±0.2 20.2
skin 245,057 4 96.5±0.2 20.0 96.6±0.1 21.0 97.3±0.1 19.3
sonar 208 60 84.1±5.8 5.0 79.3±5.8 6.0 82.0±3.7 3.7
spectf 267 44 79.4±4.9 10.0 79.2±0.0 6.0 79.3±3.2 4.6
transf 748 5 76.4±0.7 3.0 77.0±1.3 11.0 76.3±0.6 3.0
wilt 4,889 6 97.0±0.6 20.0 94.8±0.3 21.0 98.6±0.2 9.7

Table 3 A summary of two-class classification problems selected from the UCI reposi-
tory (Lichman, 2013) and used to evaluate the linear embedding algorithms. Further, the
“skin” database originates from Bhatt and Dhall (2010), “wilt” from Johnson et al. (2013)
and “transf” from Yeh et al. (2008). The right part of the table summarizes the classification
accuracy for the best choice of bins and the corresponding number of bins. The reported
values are means and standard deviations computed over 10 random splits.

Figure 10 shows the test classification accuracy of the compared methods
as a function of the number of bins. The accuracy for the best choice of bins
and the corresponding number of bins is summarized in Table 3. The baseline
PWL embedding with equidistant bins provides slightly but consistently worse
accuracy compared to the other two methods which learn the non-equidistant
bins. The proposed method yields comparable or slightly better results than
the approach of (Pele et al., 2013) both in terms of the classification accu-
racy and the complexity of the embedding (number of bins). However, the
proposed method relies solely on solving convex optimization problems unlike
the method of (Pele et al., 2013) which involves a highly non-convex clustering
problem.

7.4 The computational time

In this section we provide empirical estimate of the computational time re-
quired when learning discretization by the proposed framework. As a bench-
mark we use the task of learning the PWL embedding for non-linear classifi-
cation described in Section 7.3. In this case learning leads to a convex opti-
mization problem (26) which has two hyper-parameters. First, the parameter
λ controls the quadratic regularization similar to the standard SVM formula-
tion. Second, the additional parameter γ which implicitly controls the number
of bins of the resulting feature discretization. The time required to solve the
convex problem thus depends on the hyper-parameters λ and γ and on the
size of the optimized problem specified by the number of examples m and
the number of features n. We empirically measured the dependency of the
computational time on the four variables as described below.

Besides the four variables, the runtime obviously depends on a particular
optimization solver. There is a large number of optimization methods applica-
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ble to the convex problem (26). For example, the problem (26) can be expressed
as an equivalent quadratic program (QP) and solved by any QP solver. In this
work we used the Optimized Cutting Plane Algorithm for Large-Scale Risk
Minimization (OCA) (Franc and Sonneburg, 2009). The OCA is a general
purpose and easy-to-implement solver for minimization of convex functions
containing a quadratic regularization term like the problem (26). The em-
pirical study presented below uses this particular solver which is sufficiently
efficient for the problem sizes considered in our experiments. Other solvers
might be even more efficient.

We used a Matlab implementation of the OCA solver. The experiments
were performed on a Linux machine with 32 CPUs (AMD Opteron 1.4GHz)
and 256 GB RAM. We stopped the OCA solver when the objective value
reached a level not more than 1% above the optimal value. Such precision
may be exaggeratedly high for practical purposes but it removes the influence
of the optimization error on the resulting accuracy.

Figure 11 shows the average runtime required by the OCA solver as a
function of λ, γ, the number of examples m and the number of features n. The
runtime is measured on a subset of classification problems listed in Table 3. In
case of λ and γ we use problems with more than 1,000 examples (6 problems in
total). The dependency on the number of examples and the number of features
is measured on “miniboo” and “musk” dataset, respectively.

We found that the runtime scales gracefully with respect to the quadratic
regularization parameter λ, specifically, it grows approximately as O(λ−0.8).
On the other hand, the runtime grows much faster, approximately O(e20

√
γ),

with increasing γ controlling the number of bins. It means that the lower num-
ber of bins the higher computational time is needed. A low number of bins is
enforced by increasing the weight of the L1-regularization term in the objec-
tive function, which brings the task closer to a linear program. The dominant
linear term impairs the regularization effect of the quadratic term which causes
the “zig-zag” behavior of the cutting plane solver leading to a higher number
of iterations. The dependency of the running time on the number of training
examples is linear which is consistent with the theoretical upper bound on
the number of iterations proved in Franc and Sonneburg (2009). Finally, the
dependency on the number of features is approximately quadratic.

In absolute numbers, the longest time, around 160 minutes, was required for
training a single model on “miniboo” dataset (130,065 examples, 50 features)
with the highest value of λ = 0.1.

8 Conclusions

We proposed a generic framework which allows to modify a wide class of con-
vex learning algorithms so that they can learn parameters of the piece-wise
constant (PWC) and the piece-wise linear (PWL) functions from examples.
The learning objective of the original algorithm is augmented by a convex
term which enforces compact bins to emerge from an initial fine discretization.
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In contrast to existing methods, the proposed approach learns the discretiza-
tion and the parameters of the decision function simultaneously. In addition,
learning is converted to a convex problem which is solvable efficiently by global
methods. We instantiated the proposed framework for three problems, namely,
learning PWC histogram representation of sequential data, estimation of the
PWL probability density function and learning PWL data embedding for non-
linear classification. The proposed algorithms were evaluated on synthetic data
and standard public benchmarks and applied to malware detection in network
traffic data. It was demonstrated that the proposed convex algorithms yield
models with fewer number of parameters with comparable or better accuracy
than the existing methods. The main disadvantage of the proposed method,
when compared to heuristic local methods like Pele et al. (2013), is a higher
computational time required to solve the convex problem.
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Hue, C. and Boullé, M. (2007). A new probabilistic approach in rank regression
with optimal bayesian partitioning. Journal of Machine Learning Research,
8:2727–2754.

Johnson, B. A., Tateishi, R., and Hoan, N. T. (2013). A hybrid pansharpening
approach and multiscale object-based image analysis for mapping diseased
pine and oak trees. International journal of remote sensing, 34(20):6969–
6982.

Kerber, R. (1992). Chimerge: Discretization of numeric attributes. In Proc.
of the Tenth National Conference on Artificial Intelligence, AAAI’92, pages
123–128.

Lichman, M. (2013). UCI machine learning repository.
Liu, H., Hussain, F., Tan, C. L., and Dash, M. (2002). Discretization: An

enabling technique. Data Mining and Knowledge Discovery, 6(4):393–423.
Pele, O., Taskar, B., Globerson, A., and Werman, M. (2013). The pairwise

piecewise-linear embedding for efficient non-linear classification. In Proc. of
the International Conference on Machine Learning, pages 205–213.

Rao, C. (2005). Handbook of Statistics: Data Mining and Data Visualization.
Handbook of Statistics. Elsevier Science.

Silverman, B. (1986). Density Estimation for Statistics and Data Analysis.
Chapman & Hall/CRC Monographs on Statistics & Applied Probability.
Taylor & Francis.

Yang, Y. and Webb, G. I. (2008). Discretization for naive-bayes learning:
managingdiscretization bias and variance. Machine Learning, 74(1):39–74.

Yeh, I.-C., Yang, K.-J., and Ting, T.-M. (2008). Knowledge discovery on
rfm model using bernoulli sequence. Expert Systems with Applications,
36(3):5866–5871.



Learning data discretization via convex optimization 25

 

 

equidistant bins
Pele et al 2013
learned bins

eyestate
ac
cu
ra
cy

%

number of bins
0 5 10 15 20 25

50

55

60

65

70

75

80

 

 

equidistant bins
Pele et al 2013
learned bins

ionosphere

ac
cu
ra
cy

%

number of bins
0 5 10 15 20 25

86

88

90

92

94

96

 

 

equidistant bins
Pele et al 2013
learned bins

magic

ac
cu
ra
cy

%

number of bins
0 10 20 30 40 50 60

84

85

86

 

 

equidistant bins
Pele et al 2013
learned bins

miniboo

ac
cu
ra
cy

%

number of bins
0 5 10 15 20 25

75

80

85

90

95

 

 

equidistant bins
Pele et al 2013
learned bins

musk

ac
cu
ra
cy

%

number of bins
0 10 20 30 40 50 60

96

97

98

99

 

 

equidistant bins
Pele et al 2013
learned bins

skin

ac
cu
ra
cy

%

number of bins
0 5 10 15 20 25

94

95

96

97

 

 

equidistant bins
Pele et al 2013
learned bins

sonar

ac
cu
ra
cy

%

number of bins
0 5 10 15 20 25

65

70

75

80

85

90

 

 

equidistant bins
Pele et al 2013
learned bins

spectf

ac
cu
ra
cy

%

number of bins
0 5 10 15 20 25
0

20

40

60

80

100

 

 

equidistant bins
Pele et al 2013
learned bins

transf

ac
cu
ra
cy

%

number of bins
0 5 10 15 20 25

75

76

77

78

 

 

equidistant bins
Pele et al 2013
learned bins

wilt

ac
cu
ra
cy

%

number of bins
0 5 10 15 20 25

94

95

96

97

98

99

Fig. 10 Classification accuracy (mean and std computed over ten splits) of the linear
classifier using PWL data embedding evaluated on problems selected from UCI repository.
The accuracy is shown as a function of the average number of bins used to discretize each
feature. Results are shown for the baseline using equidistantly placed bins (blue), the method
of (Pele et al., 2013) finding non-equidistant bins by the k-means algorithm (green) and the
proposed methods learning the non-equidistant bins by a convex programming (black).



26 Vojtech Franc, Ondrej Fikar, Karel Bartos, Michal Sofka

 

 

O(λ−0.8)
skin
musk
miniboo
magic
eyestate

ru
n
ti
m
e
[s
]

λ
10−4 10−3 10−2 10−1 100

10−2

100

102

104

106

 

 

O(e20
√
γ)

skin
musk
miniboo
magic
eyestate

ru
n
ti
m
e
[s
]

γ
10−4 10−3 10−2 10−1

100

102

104

ru
n
ti
m
e
[s
]

number of examples ×1042 4 6 8 10 12
0

5

10

15

20

25

30

ru
n
ti
m
e
[s
]

number of features
0 50 100 150 200
0

5

10

15

20

25

30

35

Fig. 11 Figures report the computational time required by the OCA solver to find a precise
solution (within 1% from the optimal value) of the convex problem (26). The runtime is
shown as a function of the hyper-parameter λ (upper left), the hyper-parameter γ (upper
right), the number of examples m (bottom left) and the number of features n (bottom
right). The runtime for λ and γ is measured on a subset of UCI datasets with more than
1,000 examples (cf. Table 3). The runtime for the number of examples m and the number
of features n is measured on “miniboo” and “musk” dataset, respectively. The figures show
average time and standard deviations computed over 10 runs of the solver. When measuring
γ, the value of λ was fixed to 0.1 (middle of the range). Similarly, when measuring λ, the
value of γ was fixed to 0.01 (middle of the range). The dependency for m and n was measured
when the hyper-parameters were fixed to γ = 0.01 and λ = 0.1.


