
Simple Solvers for Large Quadratic

Programming Tasks

Vojtěch Franc and Václav Hlaváč

Center for Machine Perception, Department of Cybernetics,
Faculty of Electrical Engineering, Czech Technical University

{xfrancv, hlavac}@cmp.felk.cvut.cz,
http://cmp.felk.cvut.cz

Abstract. This paper describes solvers for specific quadratic program-
ming (QP) tasks. The QP tasks in question appear in numerous prob-
lems, e.g., classifier learning and probability density estimation. The QP
task becomes challenging when large number of variables is to be opti-
mized. This the case common in practice. We propose QP solvers which
are simple to implement and still able to cope with problems having
hundred thousands variables.

1 Introduction

A lot of problems in machine learning and pattern recognition lead to quadratic
programming (QP) tasks. Although optimization of a general QP task have been
studied at length, it is still a challenging problem when the number of variables
is large. The large QP tasks are quite common in practice. In such cases it is
necessary to derive specialized solvers which exploit all particular properties of
the task at hand. In this paper, we propose solvers for special instances of QP
tasks which can be applied to many problems. The proposed solvers are simple
to implement and they allow to cope with QP tasks having hundred thousands
of variables.

The quadratic programming (QP) task which we tackle in this paper is very
related to two geometrical tasks. These task are the minimal norm problem
(MNP) and the nearest point problem (NPP). The MNP aims to find the mini-
mal norm vector from a convex hull defined by a finite set of vectors. The NPP
searches for two nearest vectors from two different convex hulls defined again
by finite sets of vectors. Algorithms to solve the MNP and the NPP first ap-
peared in computational geometry and control engineering but later they were
applied in pattern recognition. A simple algorithm for the MNP was published by
Gilbert [4]. Kozinec [9] proposed a very similar method which he used for separa-
tion of two convex hulls given by finite vector sets. A different algorithm for the
MNP was described by Mitchell, Demyanov and Malozemov [10]. Various mod-
ifications of the Kozinec’s algorithm applied for analysis of linear discriminant
functions were described in the book by Schlesinger and Hlaváč [11]. Keerthi et
al. [7] proposed a new method to solve the NPP which was applied for training

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 75–84, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

76 V. Franc, V. Hlaváč

of binary Support Vector Machines (SVM) classifiers. Another method for the
NPP was proposed by Kowalczyk [8] who also used it for training of the SVM’s.
A modification of the Kozinec’s algorithm for training of the SVM’s was further
proposed by Franc and Hlaváč [2].

We concentrate on a slightly more general QP tasks the special cases of which
are the MNP and the NPP. We denote this task as the generalized MNP and the
generalized NPP problem. The generalization consists in adding a linear term to
the QP criterion and assuming that the Hessian of the criterion is an arbitrary
symmetric positive definite matrix. The original problems are recovered after
the linear term is removed and the Hessian equals to a product of two matrices.
The exact definitions of the generalized MNP and NPP are given in Section 2.

We claim that the above mentioned methods designed to solve the original
MNP and NPP can be simply modified to solve the general problems. Moreover,
we will introduce a general framework for sequential algorithms suitable to solve
the generalized problems. The special instances of the general framework are the
MNP and NPP methods. The introduced framework allows for their compari-
son and better understanding. We also derived a new method which proved to
outperform the original ones. Due to a lack of space, we describe only the new
method in Section 3. Detailed description and experimental evaluation can be
found in [1].

While the original solvers were used mainly for training of binary SVM’s
their generalization proposed in this paper is applicable in many other problems.
For example, training of multi-class SVM classifiers [3], Reduced Set Density
Estimation [5], Support Vector Data Description [12], several modifications of
SVM’s for classification and regression introduced in [6].

The paper is organized as follows. The generalized MNP and NPP are defined
in Section 2. The general framework and two particular algorithms are described
in Section 3. Conclusions are drawn in Section 4.

2 Generalized Minimal Norm and Nearest Point
Problems

Let a quadratic objective function

Q(α) =
1
2
〈α,Hα〉 + 〈c, α〉 , (1)

be determined by a vector c ∈ R
m and a symmetric positive definite matrix

H ∈ R
m×m. The symbol 〈·, ·〉 stands for the dot product Let A ⊆ R

m be a
convex set of feasible solutions α ∈ A. The goal is to solve the following task

α∗ = argmin
α∈A

1
2
〈α,Hα〉 + 〈c, α〉 . (2)

Let I1 and I2 be non-empty disjoint sets of indices such that I1 ∪ I2 = I =
{1, 2, . . . , m}. Let vectors e, e1, e2 ∈ R

m be defined as follows

[e]i = 1 , i ∈ I , [e1]i =
{

1 for i ∈ I1

0 for i ∈ I2
, [e2]i =

{
0 for i ∈ I1

1 for i ∈ I2
,

Simple Solvers for Large Quadratic Programming Tasks 77

where [·]i denotes i-the coordinate of a vector. The optimization problems (2)
with two distinct feasible sets A are assumed. In the first case, the generalized
Minimal Norm Problem is the optimization problem (2) with the feasible set A
determined by

A = {α ∈ R
m: 〈α, e〉 = 1, α ≥ 0} . (3)

In the second case, the generalized Nearest Point Problem is the optimization
problem (2) with the feasible set A determined by

A = {α ∈ R
m: 〈α, e1〉 = 1, 〈α, e2〉 = 1 , α ≥ 0} , (4)

where vectors e, e1, e2 ∈ R
m are defined as follows

[e]i = 1 , i ∈ I , [e1]i =
{

1 for i ∈ I1

0 for i ∈ I2
, [e2]i =

{
0 for i ∈ I1

1 for i ∈ I2
.

The generalized MNP and generalized NPP are convex optimization problems
as both the objective functions (1) and the feasible sets (3) and (4), respectively,
are convex.

3 Algorithms

3.1 Framework of Sequential Algorithms

The optimization problem (2) with the feasible set A can be transformed to a
sequence of auxiliary optimization problems with the same objective function (1)
but with much simpler auxiliary feasible sets A(0), A(1), . . . ,A(t). Solving the
problem (2) with respect to the auxiliary feasible sets yields a sequence of
solutions α(0), α(1), . . . , α(t). The sequence of feasible sets A(0), A(1), . . . ,A(t)

is assumed to be constructed such that (i) the sequence Q(α(0)) > Q(α(1)) >
. . . > Q(α(t)) converges to the optimal solution Q(α∗) and (ii) the auxiliary
problems can be solved efficiently. The sequential algorithm solving the QP task
which implements the idea mentioned above is summarized by Algorithm 1.

Algorithm 1: A Sequential Optimization Algorithm

1. Initialization. Select α(0) ∈ A.
2. Repeat until stopping condition is satisfied:

(a) Select a feasible set A(t+1) such that

Q(α(t)) > min
α∈A(t+1)

Q(α) . (5)

(b) Solve the auxiliary task

α(t+1) = argmin
α∈A(t+1)

Q(α) . (6)

78 V. Franc, V. Hlaváč

The auxiliary feasible sets A(t+1) is assumed to be a line segment

A(t+1)
L = {α ∈ R

m: α = (1 − τ)α(t) + τβ(t), 0 ≤ τ ≤ 1} , (7)

between the current solution α(t) and a vector β(t) ∈ A. The optimization
task (6) has an analytical solution in the case in which the feasible set is a line
segment. Moreover, there exist simple rules to construct the vectors β(t) which
guarantee that condition (5) is satisfied.

3.2 Stopping Conditions

There is a need to stop the algorithm when it gets sufficiently close to the
optimum. We assume the following two reasonable stopping conditions:

1. ε-optimal solution. The algorithm stops if

Q(α) − Q(α∗) ≤ ε . (8)

2. Scale invariant ε-optimal solution. The algorithm stops if

Q(α) − Q(α∗) ≤ ε|Q(α)| . (9)

The prescribed ε > 0 controls the precision of the found solution. The stopping
conditions (8) and (9) can be evaluated despite the unknown optimal value
Q(α∗) because a lower bound QLB(α) can be used instead. Let the inequality
Q(α∗) ≥ QLB(α) hold. Then the satisfaction of the condition Q(α)−QLB(α) ≤
ε implies that condition (8) holds as well. Similarly, if the condition Q(α) −
QLB(α) ≤ ε|Q(α)| holds then (9) is also satisfied.

The computation of the lower bound QLB(α) depends on the feasible set
used. We give the lower bounds without derivation which can be found in [1].
In the case of the generalized MNP with the feasible set A defined by (3), the
following lower bound QLB(α) can be used

QLB(α) = min
i∈I

[Hα + c]i −
1
2
〈α,Hα〉 . (10)

In the case of the generalized NPP with the feasible set A defined by (4), the
lower bound QLB reads

QLB(α) = min
i∈I1

[Hα + c]i + min
i∈I2

[Hα + c]i − 1
2
〈α,Hα〉 . (11)

3.3 Solution for a Line Segment

Let the feasible set A(t+1)
L be a line segment (7) between the current solution

α(t) and a vector β(t) ∈ A. The quadratic objective function (1) defined over
the line segment A(t+1)

L reads

Q
(t+1)
L (τ) = Q

(
α(t)(1 − τ) + τβ(t)

)

=
1
2
(1 − τ)2〈α(t),Hα(t)〉 + τ(1 − τ)〈β(t),Hα(t)〉

+
1
2
τ2〈β(t),Hβ(t)〉 + (1 − τ)〈c, α(t)〉 + τ〈c, β(t)〉 .

(12)

Simple Solvers for Large Quadratic Programming Tasks 79

The objective function is now parameterized by a single variable 0 ≤ τ ≤ 1. It
is obvious that Q

(t+1)
L (0) = Q(α(t)) and Q

(t+1)
L (1) = Q(β(t)). The improvement

gained from the optimization over the line segment A(t+1)
L is

∆(t+1) = Q(α(t)) − Q(α(t+1)) = Q(α(t)) − min
0≤τ≤1

Q
(t+1)
L (τ) . (13)

A new vector α(t+1) is determined as

α(t+1) = α(t)(1 − τ∗) + τ∗β(t) where τ∗ = argmin
0≤τ≤1

Q
(t+1)
L (τ) . (14)

The vector β(t) ∈ A must be selected such that the improvement (13) is positive.
This occurs when the derivative of Q

(t+1)
L (τ) evaluated in zero is negative, i.e.,

∂Q
(t+1)
L (τ)
∂τ

∣∣∣∣∣
τ=0

= 〈(β(t) − α(t)), (Hα(t) + c)〉 < 0 . (15)

The solution of (14) can be found analytically by setting the derivative of
Q

(t+1)
L (τ) to zero and solving for τ . This yields

τ∗ = min
(

1,
〈(α(t) − β(t)), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t),Hα(t)〉 + 〈β(t),Hβ(t)〉
)

, (16)

where the minimum min(1, ·) guarantees that the solution does not leave the
feasible set A(t+1)

L . If τ∗ = 1 then α(t+1) = β(t) which implies that the value of
improvement (13) equals to

∆(t+1) = Q(α(t)) − Q(β(t)) . (17)

If τ∗ < 0 then the value of improvement can be derived by substituting (12)
and (16) to (13). After some manipulation we get

∆(t+1) =
〈(α(t) − β(t)), (Hα(t) + c)〉2

2(〈α(t),Hα(t)〉 − 2〈α(t),Hβ(t)〉 + 〈β(t),Hβ(t)〉) . (18)

3.4 Algorithm for Generalized Minimal Norm Problem

The algorithm described in this section fulfills the general framework outlined
by Algorithm 1. The particular algorithm is determined by a rule for selection
of the line segment A(t+1)

L . The line segment is constructed between the current
solution α(t) and a vector β(t). In this case, we assume that all entries of the
vector β(t) equal to the current solution α(t) except for two entries u and v, i.e.,

[β(t)]i =

⎧⎨
⎩

[α(t)]u + [α(t)]v for i = u ,
0 for i = v ,

[α(t)]i for i �= u ∧ i �= v,
∀i ∈ I . (19)

80 V. Franc, V. Hlaváč

If proper u and v are used then the optimization over the line segment between
α(t) and β(t) leads to the improvement ∆(t+1)(u, v) = Q(α(t))−Q(α(t+1)). The
exact value of the improvement can be derived by substituting (19) to (18) which
for τ < 1 gives

∆(t+1)(u, v) =
([Hα(t) + c]v − [Hα(t) + c]u)2

2([H]u,u − 2[H]u,v + [H]v,v)
, (20)

and substituting (19) to (17) which for τ = 1 gives

∆(t+1)(u, v) = [α(t)]v([Hα(t)+c]v−[Hα(t)+c]u)−1
2
[α(t)]2v([H]u,u−2[H]u,v+[H]v,v).

(21)
From (15) it follows that u and v must be selected such that [α(t)]v > 0 and the
inequality

κ(u, v) = [Hα(t) + c]v − [Hα(t) + c]u > 0 ,

holds to guarantee a non-zero improvement. The computation of τ for β(t) given
by (19) simplifies to

τ =
[Hα(t) + c]v − [Hα(t) + c]u

[α(t)]v([H]u,u − 2[H]u,v + [H]v,v)
. (22)

It remains to select the indices u and v such that the improvement will
be maximized. The algorithm proposed by Mitchell, Demyanov and Maloze-
mov (MDM) selects the indices u and v so that κ(u, v) is maximized. This is
reasonable since the value of κ(u, v) approximates the value of improvement
∆(t+1)(u, v). A novel method proposed here is based on searching for the entries
u and v which maximize the exact value of the improvement ∆(t+1)(u, v) instead
of its approximation κ(u, v).

The computation of the improvement for given u and v requires evaluation
of the (22) and, based on the value of τ , (20) or (21) is used. To select the
optimal pair (u, v) one has to try d(d+1)

2 combinations where d is the number of
non-zero entries of the current solution α(t). Notice that zero entries of α(t) can
be disregarded as the corresponding vector β(t) would be the same as α(t). The
search for the optimal (u, v) would require to access d columns of the matrix H
which would be too expensive . To overcome this difficulty, the following strategy
of selecting (u, v) is proposed. The index u is selected such that

u ∈ argmin
i∈I

[Hα(t) + c]i .

The found u is fixed and the index v is computed as

v ∈ argmax
i∈IV

∆(t+1)(u, i) ,

where the IV = {i ∈ I: [Hα(t) + c]i > [Hα(t) + c]u ∧ [α(t)]i > 0} is a set of
admissible indices for v for which the improvement can be greater than zero.

Simple Solvers for Large Quadratic Programming Tasks 81

A similar strategy would be to fix v and search for the optimal u or to apply
both these searches together. All these three combinations were experimentally
tested and the proposed strategy required on average the minimal access to the
matrix H. Algorithm 2 summarizes the proposed method:

Algorithm 2: Algorithm for generalized MNP

1. Initialization. Set α(0) ∈ A.
2. Repeat until stopping condition is satisfied:

(a) Construct vector β(t) ∈ A such that

[β(t)]i =

⎧⎨
⎩

[α(t)]u + [α(t)]v for i = u ,
0 for i = v ,

[α(t)]i for i �= u ∧ i �= v,
∀i ∈ I ,

where

u ∈ argmin
i∈I

[Hα(t) + c]i , and v ∈ argmax
i∈IV

∆(t+1)(u, i) .

The improvement ∆(t+1)(u, i) is computed using (22), (20) and (21).
(b) Update

α(t+1) = α(t)(1 − τ) + τβ(t) ,

where

τ = min
(

1,
〈(α(t) − β(t)), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t),Hα(t)〉 + 〈β(t),Hβ(t)〉
)

.

The number of iterations depends on used stopping condition. Let us assume
that ε-optimality condition (8) is applied. We can prove that the number of iter-
ations t can be bounded using the following quantities: the prescribed precision
ε, the initial value Q(α(0)), the optimal value Q(α∗) and a diameter D ∈ R

+ of
the matrix H defined as

D2 = max
α∈A
β∈A

(〈α,Hβ〉 − 2〈α,Hβ〉 + 〈β,Hβ〉) .

Theorem 1. Algorithm 2 started from an arbitrary vector α(0) ∈ A returns the
vector α satisfying for any ε > 0 the ε-optimality condition Q(α) − Q(α∗) ≤ ε
after at most tmax < ∞ iterations, where

tmax =
2D2(m − 1)

ε2
(Q(α(0)) − Q(α∗)) .

For proof we refer to [1].

82 V. Franc, V. Hlaváč

3.5 Algorithm for Generalized Nearest Point Problem

The algorithm to solve the generalized NPP is of the same nature as that solving
the generalized MNP problem. Let A(t+1)

1 = {α ∈ A: [α]i = [α(t)]i, i ∈ I2}
denote a set of vectors from the feasible set A which have the entries I2 fixed to
corresponding entries of the current solution α(t). Similarly, let A(t+1)

2 = {α ∈
A: [α]i = [α(t)]i, i ∈ I1} denote vectors with the entries I1 fixed. The algorithm
for the generalized NPP constructs the vector β(t) such that it belongs either to
A(t+1)

1 or to A(t+1)
2 which is only the difference compared to Algorithm 2.

Using the same reasoning as discussed in Section 3.4 we first find the indices

u1 ∈ argmin
i∈I1

[Hα(t) + c]i , u2 ∈ argmin
i∈I2

[Hα(t) + c]i . (23)

Second, the optimal v1 and v2 are sought for so that

v1 ∈ argmin
i∈IV 1

∆(t+1)(u1, i) , v2 ∈ argmin
i∈IV 2

∆(t+1)(u2, i) , (24)

where IV 1 = {i ∈ I1: [Hα(t) + c]i > [Hα(t) + c]u1 ∧ [α(t)]i > 0} and IV 2 = {i ∈
I2: [Hα(t)+c]i > [Hα(t)+c]u2∧[α(t)]i > 0} are sets of admissible indices. Finally,
the pair of indices (u1, v1) or (u2, v2) which yields the bigger improvement is used
to construct the vector β(t). The formula for the improvement ∆(t+1)(u, v) can
be derived using the same way as in the the generalized MNP case. So that
the improvement is computed by the formula (20) if τ < 1 and (21) if τ = 1.
Algorithm 3 summarizes the proposed method:

Algorithm 3: Algorithm for generalized NPP

1. Initialization. Set α(0) ∈ A.
2. Repeat until stopping condition is satisfied:

(a) Construct vector β(t) ∈ A

[β(t)]i =

⎧⎨
⎩

[α(t)]u + [α(t)]v for i = u ,
0 for i = v ,

[α(t)]i for i �= u ∧ i �= v,

where the indices (u, v) are computed as follows. First, the pairs (u1, v1)
and (u2, v2) are computed by (23) and (24). Second, the pair which yields
the bigger improvement ∆(t+1)(u, v) is taken for (u, v).

(b) Update
α(t+1) = α(t)(1 − τ) + τβ(t) ,

where

τ = min
(

1,
〈(α(t) − β(t)), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t),Hα(t)〉 + 〈β(t),Hβ(t)〉
)

.

Simple Solvers for Large Quadratic Programming Tasks 83

Theorem 2. Algorithm 3 started from an arbitrary vector α(0) ∈ A returns the
vector α satisfying for any ε > 0 the ε-optimality condition Q(α) − Q(α∗) ≤ ε
after at most tmax < ∞ iterations, where

tmax =
8D2(m − 2)

ε2
(Q(α(0)) − Q(α∗)) .

The upper bound on the maximal number of iterations is defined by the same
quantities as in Theorem 1 except for the diameter D. We refer to [1] for the
definition of D and the proof of Theorem 2.

3.6 Efficient Implementation

The main requirement on the developed QP solvers is the ability to deal with
large problems, i.e., problems where the matrix H in the definition of the QP task
is large and cannot be stored in the memory. The aim is to minimize an access
of the QP solver to the entries of the matrix H. It is seen that the algorithms
described in Sections 3.4 and 3.4 require only two columns of the matrix H in
each iteration. Moreover, in many cases only a small subset of the columns is
requested by the algorithms, i.e., those which corresponds to the non-zero entries
I∅ = {i ∈ I: [α]i > 0} of the vector α(t). This allows to use a cache for the most
often requested columns without the need to store the whole matrix H. For
instance, the First In First Out (FIFO) turned out to be suitable.

The efficient implementation of the algorithms lies in maintaining a cache of
key variables. In the case of the generalized MNP problem, these variables are

δ(t)
α = 〈α(t),Hα(t)〉 , h(t)

α = Hα(t) , δ
(t)
β = 〈β(t),Hα(t)〉 , (25)

where δ
(t)
α ∈ R is a scalar, h

(t)
α ∈ R

m is a vector and δ
(t)
β ∈ R is a scalar. Having

the variables (25), the number of computations scales with O(m) in each iteration
of any QP solver, i.e., it is linear with respect to the number of variables m. It is
easy to show that the variables (25) can be updated in each iteration instead of
computing them from a scratch. The updates of all variables also require O(m)
operations. The exact updating formulas can be simply derived by substituting
rule (19) to (25).

The same idea is also applied for the generalized NPP. In this case, there are
more key variables to be cached. However, the number of computations required
for their updating is also O(m). The overall number of computations required
in each iteration is thus O(m) for both described algorithms. We refer to [1] for
a detailed description.

4 Conclusions

We introduced a general framework for sequential algorithms suitable to solve
the generalized minimal norm problem (MNP) and generalized nearest point
problem (NPP). The framework allows for comparison of existing methods de-
signed to solve original MNP and NPP. The methods can be simply modified to

84 V. Franc, V. Hlaváč

solve the generalized formulations. We also derived a new algorithm with perfor-
mance superior to other methods. The new algorithm is described in this paper
while comparison to other methods was skipped due to a lack of space. We refer
to [1] where all the methods are described in details and compared to each other
in numerous synthetical and real-life problems.

Acknowledgments

The authors were supported by the projects IST-004176 COSPAL, CONEX GZ
45.535. The first author was also supported by MSM 6840770013. The second
author was also supported by INTAS 04-77-7347 (PRINCESS).

References

1. V. Franc. Optimization algorithms for kernel methods. PhD Thesis, Center for
Machine Perception, K13133 FEE Czech Technical University, Prague, Czech Re-
public, 2005. To be submitted in July 2005.

2. V. Franc and V. Hlaváč. A Simple Learning Algorithm for Maximal Margin Clas-
sifier. In Kernel and Subspace Methods for Computer Vision, workshop adjoint to
the Int. Conference on Neural Netwoks, pages 1–11. TU Vienna, August 2001.

3. V. Franc and V. Hlaváč. Multi-class Support Vector Machine. In R. Kasturi,
D. Laurendeau, and Suen C., editors, 16th International Conference on Pattern
Recognition, volume 2, pages 236–239, Los Alamitos, CA 90720-1314, August 2002.
IEEE Computer Society.

4. E.G. Gilbert. Minimizing the quadratic form on a convex set. SIAM journal on
Control and Optimization, 4:61–79, 1966.

5. M. Girolami and C. He. Probability density estimation from optimally condensed
data sample. IEEE PAMI, 25(10), 2003.

6. L. Gonzales, C. Angulo, and A. Velasco, F. Catala. Unified dual for bi-class SVM
approaches. Patter Recognition, 2005. Article in press.

7. S.S. Keerthi, S.K. Shevade, C. Bhattacharya, and K.R.K. Murthy. A Fast Iterative
Nearest Point Algorithm for Support Vector Machine Classifier Design. IEEE
Transactions on Neural Networks, 11(1):124–136, January 2000.

8. A. Kowalczyk. Maximal margin perceptron. In P.J. Bartlett, B. Schloköpf, D. Schu-
urmans, and A.J. Smola, editors, Advances in Large-Margin Classifiers, pages 75–
113. The MIT Press, 2000.

9. B.N. Kozinec. Recurrent algorithm separating convex hulls of two sets. In V.N.
Vapnik, editor, Learning algorithms in pattern recognition, pages 43–50. Sovetskoje
radio, Moskva, 1973.

10. B.F. Mitchell, V.F. Demyanov, and V.N. Malozemov. Finding the point of a poly-
hedron closest to the origin. SIAM journal on Control and Optimization, 12:19–26,
1974.

11. M.I. Schlesinger and V. Hlaváč. Ten lectures on statistical and structural pattern
recognition. Kluwer Academic Publishers, 2002.

12. D.M.J. Tax and R.P.W Duin. Data domain description by support vectors. In
M. Verleysen, editor, Proceedings ESANN, pages 251–256, Brussels, 1999.

	Introduction
	Generalized Minimal Norm and Nearest Point Problems
	Algorithms
	Framework of Sequential Algorithms
	Stopping Conditions
	Solution for a Line Segment
	Algorithm for Generalized Minimal Norm Problem
	Algorithm for Generalized Nearest Point Problem
	Efficient Implementation

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

