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Center for Machine Perception, Department of Cybernetics,
Faculty of Electrical Engineering, Czech Technical University,

{xfrancv,hlavac,navara}@cmp.felk.cvut.cz,
http://cmp.felk.cvut.cz

Abstract. This paper contributes to the solution of the non-negative
least squares problem (NNLS). The NNLS problem constitutes a sub-
stantial part of many computer vision methods and methods in other
fields, too. We propose a novel sequential coordinate-wise algorithm
which is easy to implement and it is able to cope with large scale prob-
lems. We also derive stopping conditions which allow to control the dis-
tance of the solution found to the optimal one in terms of the optimized
objective function. The proposed algorithm showed promising perfor-
mance in comparison to the projected Landweber method.

1 Introduction

A common approach of fitting model parameters to data is formalized as the least
squares problem. There are situations in which additional constraints forcing the
fitted parameters to be non-negative are useful. This leads to the non-negative
least squares problem (NNLS). The non-negativity constraints are beneficial for
the problems in which the negative values of the fitted parameters do not corre-
spond to the physical reality, e.g., the problems dealing with pixel values in image
modeling. The non-negativity constraints can also be used to introduce regu-
larization for ill-posed problems. Examples of using NNLS in computer vision
include, for instance, object recognition with unknown lighting conditions [1], im-
age restoration [2] or tracking [3]. Learning of associative neural networks [5, 6] is
another task which can be expressed as the NNLS problem. This work has been
motivated by the project COgnitive Systems using Perception-Action Learning
(COSPAL http:\\www.cospal.org) in which associative networks play a sub-
stantial role in modeling low-level signals of the designed robotic system.

The NNLS problem becomes challenging if a large amount of data is to
be processed, which makes standard optimization methods infeasible, e.g., the
method by Lawson and Hanson [7]. The projected Landweber method was pro-
posed to deal with large NNLS problems [6]. The projected Landweber method
is a gradient-based iterative algorithm which produces a sequence of solutions
converging to the optimal one. This paper proposes two contributions to the
solution of the NNLS problem: (i) stopping conditions for iterative algorithms
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which allow to control the precision of the found solution in terms of the opti-
mized objective function and (ii) a novel sequential coordinate-wise algorithm
which is easy to implement and has promising performance on synthetical data.

The paper is organized as follows. The NNLS problem is defined in Section 2.
The stopping conditions suitable for iterative algorithms solving the NNLS prob-
lem are derived in Section 3. A novel sequential coordinate-wise algorithm which
solves the NNLS problem is proposed in Section 4. Section 5 describes an ex-
periment comparing the proposed sequential coordinate-wise algorithm to the
projected Landweber method. Conclusions are given in Section 6.

Notation used:

Upper-case bold letters denote matrices. Vectors are implicitly columns. Vectors
are denoted by lower-case bold italic letters. For instance, A = [a1, . . . , an] is
a matrix made of n column vectors ai, i ∈ I, where I = {1, . . . , n} is a set of
entries. The non-bolded letters are used to denote indices of vectors and matrices.
For instance, x = [x1, . . . , xn]T is a column vector with n entries (coordinates).
The notation [Hx+f ]i stands for the ith entry of the vector defined by the term
Hx + f . The term x ≥ 0 is a shortcut for a set of inequalities xi ≥ 0, ∀i ∈ I.
The expression 〈x, f〉 stands for the dot (inner) product of vectors x and f .

2 Non-negative least squares problem

Let A ∈ R
m×n be a matrix and b ∈ R

m a column vector. The non-negative least
squares (NNLS) problem is defined as

x∗ = argmin
x≥0

1

2
‖Ax − b‖2 . (1)

Without loss of generality, we may assume that all columns ai, i ∈ I = {1, . . . , n}
of the matrix A = [a1, . . . , an] are non-zero. A particular instance of the NNLS
problem (1) arises when all entries of A are non-negative. This case matches the
problem of learning of associative networks. In this formulation, we are searching
for the optimum within an unbounded positive cone in R

n. It is important to
restrict the search to a bounded set by finding also an upper estimate of the
optimal solution x∗. In our case x∗ ≤ xo = [xo

1, . . . , x
o
n]T , where

xo
i = max

(

0,
〈ai, b〉

〈ai, ai〉

)

, ∀i ∈ I .

This condition is a result of [6, Theorem 7], where the maximum with 0 has
been omitted in [6, formula (41)]; however, the original proof works after this
correction. By e ∈ R

n we denote the vector with all coordinates equal to 1. We
have an upper bound of the sum of entries of x∗:

〈x∗, e〉 =

n∑

i=1

x∗
i ≤

n∑

i=1

xo
i = 〈xo, e〉 . (2)

Inequality (2) will be important for stopping conditions of an iterative algorithm
introduced below.



It can be seen that the NNLS problem (1) is a special instance of a more
general quadratic programming (QP) task with non-negativity constrains. The
quadratic objective function is

F (x) =
1

2
〈x,Hx〉 + 〈x, f〉 . (3)

The QP task with the non-negativity constraints reads

x∗ = argmin
x≥0

F (x) = argmin
x≥0

(
1

2
〈x,Hx〉 + 〈x, f 〉

)

. (4)

The solution of the QP task (4) coincides with the solution of the NNLS prob-
lem (1) if the matrix H = AT A ∈ R

n×n and the vector f = −AT b ∈ R
n.

The form of task (4) cannot be arbitrary; due to the formulation of the
original task (1), H and f satisfy some special properties:

1. H = ATA is symmetric and positive semidefinite.

2. Hk,k = 〈ak, ak〉 > 0 for all k.

3. The task may have multiple solutions if 0 is an eigenvalue of H; however,
the positive solutions are bounded.

The rest of this paper deals with this special form of task (4).

3 Stopping conditions

The QP task (4) can be solved by iterative algorithms which produce a sequence
of solutions x(1), x(2), . . ., x(t) converging to the optimal solution x∗. There is a
need to stop the algorithm when the current solution x(t) is sufficiently close to
the optimal x∗. Two possible stopping conditions will be introduced. First, the
stopping conditions based on the Karush-Kuhn-Tucker (KKT) conditions will
be described in Section 3.1. Second, the stopping conditions based on lower and
upper bounds of the optimal value F (x∗) will be derived in Section 3.2.

3.1 Karush-Kuhn-Tucker conditions

The objective function (3) is convex as the matrix H = ATA is symmetric and
positive semidefinite. The constraints x ≥ 0 define a convex feasible set. As
both the objective function and the feasible set are convex, the QP task (4) is
convex as well. In the case of a convex optimization task, the Karush-Kuhn-
Tucker (KKT) conditions are necessary and sufficient for the optimal solution
(see [4]). The KKT conditions for the QP task (4) have a particularly simple
form introduced below.

The Lagrange function for task (4) reads

L(x, µ) =
1

2
〈x,Hx〉 + 〈x, f〉 − 〈x, µ〉 , (5)



where µ ∈ R
n are Lagrange multipliers (or dual variables). We obtain conditions

∂L(x, µ)

∂x
= Hx + f − µ = 0 , x ≥ 0 , µ ≥ 0 , 〈x, µ〉 = 0 . (6)

Any vector x which satisfies the KKT conditions (6) is an optimal solution of
the QP task (4) and vice versa.

Let X ∗ ⊂ R
n denote the set of vectors which satisfy (6), i.e., any x∗ ∈ X ∗ is

the solution of the task (4) for some µ. Notice that the set X ∗ is convex and it
contains just one vector if the matrix H is positive definite. Reasonable stopping
conditions for an iterative algorithm can be derived by introducing a relaxed
version of the KKT conditions. The ε-KKT conditions are defined as a set of
linear inequalities

x ≥ 0 ,

[Hx + f ]i ≥ −ε , for i ∈ I = {1, . . . , n} ,

[Hx + f ]i ≤ ε , for i ∈ I∅ = {i ∈ I: xi > 0} ,

(7)

where ε > 0 is a constant defining the precision of the solution. Let X ε ⊂ R
n be

the set of vectors which satisfy conditions (7). It is easy to show that X ∗ ⊆ X ε

holds in general and X ∗ = X ε holds for ε = 0.
The ε-KKT conditions are easy to evaluate and they can be used as an indi-

cator that the current solution is close to the optimal one. It is not immediately
seen, however, how the solution satisfying the ε-KKT conditions corresponds
to the optimal x∗ in terms of the optimized function F (x). This drawback is
removed after introducing a lower bound LB(x) of the optimal value F (x∗)
derived in the sequel.

3.2 Bounds of the optimal solution

In this section, we exclude the (possible) trivial solution x∗ = 0. If the optimum
is obtained at 0, we find it easily by a test of the inputs or after the first step
(starting from 0 as the initial estimate, we obtain it as the next approximation
and a fixed point).

Let the vector ∇F (x∗) be the gradient of the function F evaluated at x∗. It
follows from the convexity of the function F that

F (x∗) + 〈(x − x∗),∇F (x∗)〉 ≤ F (x) ,
1

2
〈x∗,Hx∗〉 + 〈x∗, f〉 + 〈(x − x∗), (Hx∗ + f )〉 ≤

1

2
〈x,Hx〉 + 〈x, f〉 ,

which can be further rearranged to

〈x∗,Hx + f〉 −
1

2
〈x,Hx〉 ≤

1

2
〈x∗,Hx∗〉 + 〈x∗, f〉 . (8)

Since the entries of the optimal vector x∗ are non-negative, the following in-
equality holds

〈x∗,Hx + f 〉 ≥ 〈x∗, e〉min
i∈I

[Hx + f ]i . (9)



Inequalities (8) and (9) give a lower bound

〈x∗, e〉min
i∈I

[Hx + f ]i −
1

2
〈x,Hx〉

︸ ︷︷ ︸

LB(x)

≤
1

2
〈x∗,Hx∗〉 + 〈x∗, f〉
︸ ︷︷ ︸

F (x∗)

. (10)

Equality in (10) is obtained for the optimal solution vector x∗, i.e., LB(x∗) =
F (x∗) holds true which follows from the equalities

min
i∈I

[Hx∗ + f ]i = 0 and 〈x∗,Hx∗〉 + 〈x∗, f 〉 = 0 ,

derived directly from the KKT conditions (6). (The former equality is based on
the fact that there is at least one i ∈ I such that [Hx∗ + f ]i = 0. Otherwise,
x∗ = 0; this case has been excluded by our assumption.)

The lower bound (10) is valid for an arbitrary optimization task (4). The
bound depends on a generally unknown term 〈x∗, e〉. However, the upper bound
of 〈x∗, e〉 can be derived for a special instance of task (4) which was specified
in Section 2. Provided the term 〈x∗, e〉 (or its upper bound) is known the lower
bound LB(x) can be evaluated and used as a stopping condition of an iterative
algorithm. A reasonable stopping condition reads

F (x) − F (x∗) ≤ δ , (11)

where δ > 0 is a constant which limits the distance between vectors x and x∗ in
terms of the optimized criterion. The stopping condition (11) is satisfied if the
inequality

F (x) − LB(x) ≤ δ , (12)

holds which could be evaluated provided the lower bound (10) is known.

4 Sequential coordinate-wise algorithm

This section describes a novel (according to the authors’ knowledge) sequential
coordinate-wise algorithm for optimization of the task (4). Without the posi-
tivity constraint, our method coincides with the Gauss-Seidel method which is
known to converge if H is positive definite. The algorithm produces a sequence
of solutions x(0), x(1), . . . , x(t) which converges to the optimal x∗. The idea is to
optimize in each iteration with respect to a single coordinate while the remaining
coordinates are fixed. The optimization with respect to a single coordinate has
an analytical solution, thus it can be computed efficiently.

Let xk ∈ R be the k-th coordinate of the vector x = [x1, . . . , xn]T ∈ R
n and

Ik = I \ {k}. The objective function F (x) can be equivalently rewritten as

F (x) =
1

2

∑

i∈I

∑

j∈I

xixjHi,j +
∑

i∈I

xifi

=
1

2
x2

kHk,k + xkfk + xk

∑

i∈Ik

xiHi,k +
∑

i∈Ik

xifi +
1

2

∑

i∈Ik

∑

j∈Ik

xixjHi,j

=
1

2
x2

kα + xkβ + γ ,



where

α = Hk,k ,

β = fk +
∑

i∈Ik

xiHi,k = [Hx + f ]k − Hk,kxk ,

γ =
∑

i∈Ik

xifi +
1

2

∑

i∈Ik

∑

j∈Ik

xixjHi,j .

The optimization of F (x) with respect to a selected xk has an analytical solution

x∗
k = argmin

xk≥0

1

2
x2

kα + xkβ + γ

= max

(

0,−
β

α

)

= max

(

0, xk −
[Hx + f ]k

Hk,k

)

.

The iterative algorithm derived in the sequel updates a single variable xk in
each iteration, i.e.,

x
(t+1)
i = x

(t)
i , ∀i ∈ Ik . (13)

The formula for the update requires the gradient µ(t) = Hx(t) + f . We recom-
mend to update the vector µ(t) in each iteration instead of computing it from
the scratch. Thanks to (13) the update can be written as

µ(t+1) = µ(t) +
(

x
(t+1)
k − x

(t)
k

)

hk , (14)

where hk is the kth column of the matrix H = [h1, . . . , hn]. (In fact, the orig-
inal formula for β has the same order of complexity, because we need only one
coordinate of the gradient. However, the latter formula allows to compute the
whole gradient which is needed for stopping conditions.) The proposed iterative
algorithm to solve task (4) is the following:

Algorithm 1: Sequential Coordinate-wise Algorithm for NNLS (abbrev. SCA)

1. Initialization. Set x(0) = 0 and µ(0) = f .
2. Repeat until the stopping condition is satisfied:

For k = 1 to n

x
(t+1)
k = max

(

0, x
(t)
k −

µ
(t)
k

Hk,k

)

and x
(t+1)
i = x

(t)
i , ∀i ∈ Ik ,

µ(t+1) = µ(t) +
(

x
(t+1)
k − x

(t)
k

)

hk .



Algorithm 1 requires O(n) computations for each update from x(t) to x(t+1).
The gradient vector µ(t) is known in each iteration, which can be employed
for the evaluation of the stopping conditions. The stopping conditions are eval-
uated after all n coordinates were updated. Section 3 describes two different
stopping conditions which can be used to halt the algorithm. It is obvious that
the objective function F (x(t)) decreases or remains unchanged in Algorithm 1,
however, we have not found a proof of its convergence yet. We have the following
observation at least:

Proposition 1. All fixed points of Algorithm 1 are optimal solutions of task (4).

proof: Suppose that x(t) is a fixed point of Algorithm 1, i.e., x(t+1) = x(t).

This means that for each k ∈ I either µ
(t)
k = 0 or (µ

(t)
k > 0 and x

(t)
k = 0) hold.

Thus the KKT conditions are satisfied for x(t), µ(t).

5 Experiments

This section outlines an experiment carried out on synthetical data. The problem
selected is to train an associative network with channel-based representation of
input and output signals. We refer to [5, 6] for more information about associative
networks. The adopted setting results into 10 training problems of the form (4)
with the number of n = 2500 variables.

The proposed sequential coordinate-wise Algorithm 1 (SCA) is compared
to the projected Landweber Algorithm [6] (LA). The Matlab implementation
was used in all experiments. The data matrix contains only positive entries,
which allows to evaluate the lower bound on F (x∗) and to use the stopping
condition (12). The stopping condition F (x(t)) − F (x∗) ≤ 10−6 was used. We
measured the speed of convergence in terms of (i) the number of updates required
for convergence and (ii) an estimate of the required CPU time on the common
PC with Intel Pentium IV 2.80GHz processor.

The comparison of the convergence speed can be seen in terms of the number
of iterations and the required CPU time can be seen in Figure 1. These values are
measured for all 10 problems separately. The SCA turned out to be on average
more than ten times faster compared to the LA.

6 Conclusions

This paper describes two contributions to the problem of solving the non-negative
least squares (NNLS) problem. First, stopping conditions suitable for iterative
algorithms solving the NNLS problem were proposed. The stopping conditions
allow to control the precision of the solution found in terms of the optimized
objective function. Second, a sequential coordinate-wise algorithm to solve the
NNLS problem was proposed. The algorithm is easy to implement and showed
promising performance. The proposed algorithm outperformed the projected
Landweber method which has been used to solve the NNLS problem. The meth-
ods were benchmarked on synthetical data.



Fig. 1. Comparison between the projected Landweber method and the sequential
coordinate-wise algorithm on 10 different NNLS problems having 2500 variables each.
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Linköping, Sweden, September 2004.

7. C.L. Lawson and R.J. Hanson. Solving Least Squares Problems. Prentice-Hall,
Englewood Cliffs, New Jersey, 1995.




