
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY

P
h
D

T
H

E
S
IS

IS
S
N

1
2
1
3
-2

3
6
5

Optimization Algorithms

for Kernel Methods
Vojtěch Franc

xfrancv@cmp.felk.cvut.cz

CTU–CMP–2005–22

July 29, 2005

Available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/franc/Franc-PhD.pdf

Thesis Advisor: Prof. Ing. Václav Hlaváč, CSc.

The research presented in this thesis was supported by the Ministry
of Education, Youth and Sports of the Czech Republic under the
grant no. MSM6840770013 and the European Commission under

project IST-004176 COSPAL and by the Czech Science Foundation
under project GACR 102/03/0440 and by the Austrian Ministry of
Education under project CONEX GZ 45.535 and by the EU INTAS

project PRINCESS 04-77-7347.

Research Reports of CMP, Czech Technical University in Prague, No. 22, 2005

Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +4202 2435 7385, phone +4202 2435 7637, www: http://cmp.felk.cvut.cz

Optimization Algorithmsfor Kernel Methods
A dissertation presented to the Faculty of the Electrical Engineering
of the Czech Technical University in Prague in partial fulfillment of the
requirements for the Ph.D. degree in Study Programme No. P2612 –
Electrotechnics and Informatics, branch No. 3902V035 – Artificial In-
telligence and Biocybernetics, by

Vojtěch Franc

July 29, 2005

Thesis Advisor

Prof. Ing. Václav Hlaváč, CSc.

Center for Machine Perception

Department of Cybernetics

Faculty of Electrical Engineering

Czech Technical University in Prague

Karlovo Náměst́ı 13, 121 35 Prague 2, Czech Republic

Fax: +420 224 357 385, phone: +420 224 357 465
http://cmp.felk.cvut.cz/

Abstract

Kernel methods are learning systems which employ embedding of the input data in high-
dimensional feature spaces. The embedding is implemented via kernel functions which
act as a dot product in Reproducing Kernel Hilbert Spaces (RKHS). Learning algorithms
which require only the canonical dot product of data represented in finite dimensional
linear spaces can be generalized to perform in RKHS. This generalization, called a kernel
trick, is implemented by substituting a kernel function for the dot products. This tech-
nique is useful whenever the kernel functions represent similarity between data better or
more efficiently than the canonical dot product.

This thesis concentrates mainly on the Support Vector Machines (SVM) learning of
classifiers which is a particular example of kernel methods. Learning of the SVM classi-
fier aims to minimize the empirical error while the complexity of the classification rule
is controlled at the same time. The learning is expressed as a specific convex Quadratic
Programming (QP) task. A design of QP solvers is a challenging problem for two reasons
at least: (i) a large training data are often available for learning which give rise to large
QP tasks with many variables and (ii) the solvers should be fast because a lot of instances
of SVM classifiers must be learned during the model selection stage. The first part of the
thesis concentrates on the QP solvers based on known algorithms for the Minimal Norm
Problem (MNP) and the Nearest Point Problem (NPP). The main contributions of the
thesis involve: (i) known algorithms for MNP and NPP are described in a common frame-
work, (ii) the algorithms are generalized to solve more complex QP tasks and convergence
proofs in a finite number of iterations are given and (iii) a novel and faster QP solver is
proposed. The proposed QP solvers are simple to implement and they were successfully
tested on problems with hundred thousands variables.

A novel greedy algorithm for approximation of the training data embedded in the RKHS
is proposed in the second part of the thesis. The method is called Greedy Kernel Prin-
cipal Component Analysis (Greedy KPCA). Similarly to the ordinary Kernel Principal
Component Analysis (KPCA), the aim is to minimize the squared reconstruction error of
the approximated data. In contrast to the ordinary KPCA, the Greedy KPCA also aims
to find a simple model in which the data are described. The proposed method is suitable
for reduction of computational and memory requirements of the kernel methods. It can
be also applied for reduction of complexity of functions learned by the kernel methods. It
was experimentally verified that the method can reduce computational complexity of the
Kernel Least Squares Regression and it can speed up evaluation of the SVM classifier.

A basic SVM learning is formulated for the binary classifiers. There exists a multiclass
formulation which, however, leads to a considerable more complex QP task compared to
the binary case. A novel method which allows to transform the learning of the multiclass
SVM to the singleclass SVM classifier is proposed in the third part of the thesis. The trans-
formation is based on a simplification of the original problem and employing the Kesler’s
construction. The entire transformation is performed solely by a specially designed kernel
function. As a result, any solver for a singleclass SVM problem can be readily used to
solve the multiclass problem. The proposed method was successfully applied to learning
of the Optical Character Recognition systems for a commercial application.

The proposed methods were incorporated to the Statistical Pattern Recognition (STPR)
toolbox http://cmp.felk.cvut.cz/~xfrancv/stprtool written in Matlab. A substan-
tial part of the toolbox was designed and implemented by the author of the thesis. The
toolbox contains an ensemble of pattern recognition techniques, e.g., methods for learning
the linear discriminant functions, feature extraction, density estimation and clustering,
Support Vector Machines, various kernel methods, etc.

Resumé

Jádrové metody jsou uč́ıćı se systémy reprezentuj́ıćı vstupńı data v př́ıznakovém prostoru
vysoké dimenze pomoćı jádrových funkćı. Př́ıznakový prostor je v tomto př́ıpadě Hilbert̊uv
prostor s reprodukčńımi jádry (RKHS). Uč́ıćı se algoritmy pracuj́ıćı pouze se skalárńımi
součiny dat representovaných v lineárńım prostoru s konečnou dimenźı lze zobecnit tak,
aby pracovaly v RKHS. Toto zobecněńı, známé jako “jádrový trik”, se provede nahrazeńım
skalárńıch součin̊u zvolenou jádrovou funkćı. Tato technika je vhodná v př́ıpadech, kdy
jádrové funkce vyjadřuj́ı podobnost mezi daty lépe nebo efektivněji než kanonický skalárńı
součin.

Tato disertačńı práce je zaměřena na metodu učeńı klasifikátor̊u zvanou Support Vector
Machines (SVM), jenž je typickým př́ıkladem jádrových metod. Při učeńı SVM klasi-
fikátoru je ćılem minimalizovat empirickou chybu a současně udržovat ńızkou složitost
klasifikátoru. Problém učeńı je vyjádřen jako konvexńı optimalizačńı problém kvadrat-
ického programováńı (QP). Návrh optimalizátor̊u pro učeńı SVM je těžký problém hlavně
ze dvou d̊uvodu: (i) typicky je ťreba učit z rozsáhlých trénovaćıch dat, což vede na QP s
mnoha proměnnými a (ii) optimalizace muśı být rychlá, protože je ťreba učit mnoho SVM
klasifikátor̊u během fáze výběru modelu. Prvńı část disertačńı práce je věnovaná návrhu
QP optimalizátor̊u, které jsou založeny na známých algoritmech pro řešeńı tzv. Minimal
Norm Problem (MNP) a Nearest Point Problem (NPP) z výpočetńı geometrie. Hlavńımi
př́ınosy disertačńı práce jsou: (i) známé algoritmy řeš́ıćı MNP a NPP jsou popsány ve
společném rámci, (ii) tyto algoritmy jsou zobecněny pro řešeńı složitěǰśıho QP problému
a je dokázána jejich konvergence v konečném počtu krok̊u a (iii) je navržen nový rychleǰśı
algoritmus. Navržené algoritmy jsou jednoduché a byly úspěšně testovaný na velkých
problémech se sto tiśıci proměnnými.

Ve druhé části disertačńı práce je navržen hladový algoritmus pro aproximaci trénovaćıch
dat v RKHS. Metoda je nazvána Greedy Kernel Principal Component Analysis (Greedy
KPCA). Stejně jako u klasická Kernel Principal Component Analysis (KPCA) je i zde
ćılem minimalizovat rekonstrukčńı chybu aproximovaných dat. Na rozd́ıl od KPCA,
se Greedy KPCA snaž́ı nav́ıc popsat data jednoduchým modelem. Navržená metoda
je vhodná pro sńıžeńı paměťové a výpočetńı náročnosti jádrových metod a současně
ke zjednodušeńı analytického popisu funkćı, které se jádrovými metodami uč́ı. Exper-
imentálně bylo ukázáno, že lze navrženou metodu použ́ıt ke sńıžeńı výpočetńı náročnosti
regresńı metody Kernel Least Squares a k urychleńı SVM klasifikátoru.

Základńı verze SVM učeńı je navržena pouze pro př́ıpad binárńıch klasifikátor̊u. Formu-
lace SVM učeńı klasifikátor̊u do v́ıce ťŕıd existuje, ale vede na problém QP podstatně těžš́ı
v porovnáńı k binárńımu př́ıpadu. Ve ťret́ı části disertačńı práce je navržena transformace,
která umožňuje převést problém SVM učeńı v́ıceťŕıdńıho klasifikátoru na problém učeńı
klasifikátoru do jedné ťŕıdy. Transformace je založena na zjednodušńı p̊uvodńıho problému
a použit́ı Keslerovy konstrukce. Celá transformace je provedena pouze použit́ım speciálně
navržené jádrové funkce. To znamená, že jakákoliv metoda pro učeńı jednoťŕıdńıho SVM
klasifikátoru může být okamžitě použita pro učeńı klasifikátoru do v́ıce ťŕıd. Navržená
metoda byla úspěšně použita pro návrh komerčńıho systému pro rozpoznáváńı znak̊u.

Všechny navržené metody byly začleněny do Statistical Pattern Recognition Toolboxu
http://cmp.felk.cvut.cz/~xfrancv/stprtool pro Matlab. Podstatná část toolboxu
byla navržena a implementována autorem této disertačńı práce. Toolbox obsahuje soubor
nástroj̊u pro rozpoznáváńı jako např́ıklad metody pro učeńı lineárńıch diskriminačńıch
funkćı, metody pro odhad hustot pravděpodobnosti a shlukováńı, Support Vector Ma-
chines, jádrové metody a jiné.

Acknowledgement

I am indebted to my supervisor Professor Václav Hlaváč for leading me and giving me
an opportunity to study at the Center For Machine Perception. He showed me how to
conduct research and help me with writing and researching of this thesis. I wish also to
thank Professor Michail Ivanovič Schlesinger whose work was a source of many ideas and
largely formed my view of pattern recognition. My special thanks go to Professor Mirko
Navara for careful reading and commenting on the thesis. His suggestions and comments
had a substantial impact on the final form of the thesis. Last but not least I would like
to thank all colleagues from CMP who made me possible to work in an inspiring and a
nice atmosphere.

The research presented in this thesis was supported by the Ministry of Education, Youth
and Sports of the Czech Republic under the grant No. MSM6840770013 and the European
Commission under project IST-004176 COSPAL and by the Czech Science Foundation
under project GACR 102/03/0440 and by the Austrian Ministry of Education under
project CONEX GZ 45.535 and by the EU INTAS project PRINCESS 04-77-7347.

Contents

1 Introduction 5

1.1 Learning theory and kernel methods . 5

1.2 Thesis road map . 7

1.3 Kernel methods . 8

1.3.1 Linear methods . 9

1.3.2 Feature space straightening . 11

1.3.3 Kernel functions . 12

1.4 Support Vector Machines . 13

1.4.1 Binary Support Vector Machines 14

1.4.2 Multiclass Support Vector Machines 17

1.4.3 Singleclass Support Vector Machines 19

1.5 Kernel Principal Component Analysis . 21

1.6 Used results of the optimization theory . 23

2 Motivation and goals 26

3 State of the art 27

3.1 Quadratic Programming solvers for SVM learning 27

3.2 Decomposition algorithms . 28

3.3 Nearest point algorithms . 30

3.3.1 Nearest point and minimal norm problems 30

3.3.2 Kozinec algorithm . 32

3.3.3 Keerthi algorithm . 34

3.3.4 Kowalczyk algorithm . 37

3.4 Sparse matrix approximation . 38

3.5 Modified multiclass SVM formulation . 40

4 Quadratic Programming solvers 42

4.1 Generalized minimal norm and nearest point problems 42

4.2 Sequential algorithm . 43

4.3 Stopping conditions . 44

4.4 Solution for a line segment . 46

4.5 Solution for a triangle . 48

4.6 Algorithms for the generalized minimal norm problem 50

4.6.1 Kozinec algorithm for GMNP . 50

4.6.2 Kowalczyk algorithm for GMNP 53

4.6.3 Mitchell-Demyanov-Malozemov algorithm for GMNP 54

4.6.4 Improved Mitchell-Demyanov-Malozemov algorithm for GMNP . . 56

4.6.5 Keerthi algorithm for GMNP . 58

4.7 Algorithms for the generalized nearest point problem 59

1

Contents

4.7.1 Kozinec algorithm for GNPP . 60
4.7.2 Kowalczyk algorithm for GNPP . 63
4.7.3 Mitchell-Demyanov-Malozemov algorithm for GNPP 64
4.7.4 Improved Mitchell-Demyanov-Malozemov algorithm for GNPP . . 66
4.7.5 Keerthi algorithm for GNPP . 67

4.8 Efficient implementation . 68
4.9 Applications of proposed QP solvers . 69

4.9.1 Support Vector Machines for classification 69
4.9.2 Minimal enclosing ball . 72
4.9.3 Reduced Set Density Estimator . 74

4.10 Experiments . 75
4.10.1 Comparison of QP Solvers on Multiclass BSVM L2 Problem . . . 75
4.10.2 Comparison of binary SVM with L1-soft and L2-soft margin . . . 77
4.10.3 Comparison of QP solvers on binary SVM L2 problem 78

4.11 Summary to QP solvers . 80

5 Greedy Kernel Principal Component Analysis 87

5.1 Motivation . 87
5.2 Problem formulation . 88
5.3 Upper bound minimization . 89
5.4 Greedy KPCA algorithm . 91
5.5 Approximation to regularized risk minimization 93
5.6 Experiments . 95

5.6.1 Minimization of reconstruction error 95
5.6.2 Approximated regularized least squares 95
5.6.3 Reducing complexity of SVM classifier 99

5.7 Summary to Greedy KPCA . 103

6 Multiclass Support Vector Machines 104

6.1 From multiclass BSVM to singleclass SVM 104
6.2 Experiments . 107

6.2.1 Benchmarking on UCI repository 107
6.2.2 Benchmarking on OCR system . 108

6.3 Summary to multiclass SVM . 111

7 Thesis contributions 113

7.1 Quadratic Programming Solvers . 113
7.2 Greedy Kernel Principal Component Analysis 113
7.3 Multiclass Support Vector Machines . 114
7.4 Statistical Pattern Recognition Toolbox 114

8 Future research 115

Bibliography 116

2

Notation

Upper-case bold letters denote matrices, for instance X. Vectors are implicitly col-
umn vectors. Vectors are denoted by lower-case bold italic letters. For instance, X =
[x1,x2, . . . ,xm] is a matrix which contains m column vectors xi, i = 1, . . . ,m. The i-th
entry of the vector xj is denoted as [xj]i. For non-indexed vectors, e.g., the vector x, the
notation x = [x1, . . . , xn]T is also used to refer to the vector entries. Entry at the i-the
row and j-th column of the matrix X is denoted by [X]i,j .

Symbols
N the set of natural numbers
R the set of real numbers
X input space (space of observable states)
Y output space (space of hidden states)
D set of decisions
H feature space
f decision function (or discriminant function) f :X → D
q classification rule q:X → Y
〈x,x′〉 dot product between x and x′

k(x, x′) kernel function
p(x, y) probability distribution function

‖ · ‖ Euclidean norm, ‖x‖ =
√

〈x,x〉
µ mean vector
S scatter matrix S =

∑m
i=1(xi − µ)(xi − µ)T

TX unlabeled training set TX = {x, . . . , xm}
TXY labeled training set TXY = {(x1, y1), . . . , (xm, ym)}
n dimension of input space
m number of training examples
δ(i, j) Kronecker delta δ(i, j) = 1 for i = j and δ(i, j) = 0 otherwise
(

m
l

)
binomial coefficient

E identity matrix

3

Notation

Abbreviations
AB AdaBoost
BSVM Bounded formulation of Support Vector Machines
DAGs Direct Acyclic Graphs
ERM Empirical Risk Minimization
GMNP Generalized Minimal Norm Problem
GNPP Generalized Nearest Point Problem
IMDM Improved Mitchell-Demyanov-Malozemov algorithm
KFD Kernel Fisher Discriminant
KPCA Kernel Principal Component Analysis
MDM Mitchell-Demyanov-Malozemov algorithm
MNP Minimal Norm Problem
NPP Nearest Point Problem
PCA Principal Component Analysis
QP Quadratic Programming
RKHS Reproducing Kernel Hilbert Space
RSDE Reduced Set Density Estimator
SMO Sequential Minimal Optimizer
SRM Structural Risk Minimization
SVDD Support Vector Data Description
SVM Support Vector Machines
VC Vapnik-Chervonenkis (dimension)
OCR Optical Character Recognition

4

1 Introduction

1.1 Learning theory and kernel methods

A basic task of learning theory is to estimate a functional dependency between states of the
analyzed object given a finite set of examples. The analyzed object is described by its input
(observable) state x ∈ X and output (hidden) state y ∈ Y. The space X is referred to as
the input space and the space Y as the output space. The relation between the elements of
X and Y is assumed to be given by a probability distribution p(x, y) over the set X × Y.
The distribution p(x, y) is unknown but a training set TXY = {(x1, y1), . . . , (xm, ym)}
of examples drawn from the distribution is provided. The goal is to learn a function
f :X → D which makes a decision about the object based on the observable input state
x ∈ X . The symbol D denotes the set of possible decisions. The space F of all admissible
functions f is referred to as the hypothesis space. Let V :Y × D → R be a loss function
which penalizes a decision f(x) when the true output was y. A common approach is to
transform the learning of function f into an optimization problem of the risk minimization.
The expected risk (also Bayesian risk) to minimize is defined by

R[f] =

∫

X×Y
V (y, f(x)) p(x, y) dxdy , (1.1)

i.e., it is the mathematical expectation of value of the loss function V (y, f(x)) with respect
to the distribution p(x, y). Learning of f is expressed as a problem of selecting f∗ ∈ F
which minimizes the expected risk R[f].

A favorable case in which the distribution p(x, y) is completely known permits to use
well established Bayesian theory [44]. The Bayesian theory allows to infer the optimal
function f∗, also called the Bayesian strategy, which minimizes the expected risk R[f].
In practice, however, the knowledge available is very often confined to the training set of
examples TXY . If the training set is sufficiently rich and a priori knowledge about the
distribution is known then the distribution p(x, y) can be replaced by its estimate p̂(x, y).
However, the estimation p̂(x, y) is itself a difficult task and the inferred function is no
more optimal.

The learning of the decision function f directly without taking a detour over the esti-
mation of the probability distribution is a subject of the learning theory [7, 46, 53, 54]
(also called Vapnik-Chervonenkis theory). A straightforward approach is to replace the
expected risk with a good approximation which can be evaluated without the unknown
distribution. A natural approximation of the expected risk is the empirical risk

Remp[f] =
1

m

m∑

i=1

V (yi, f(xi)) . (1.2)

Learning of f based on the minimization of the empirical risk Remp[f] over the hypoth-
esis space F is called the empirical risk minimization (ERM) induction principle. The
empirical risk can be efficiently minimized by known algorithms for some loss functions

5

1 Introduction

V and function spaces F , e.g., Perceptron algorithm, back-propagation, etc. However,
the important result of the learning theory states that the minimization of the empirical
risk Remp[f] over general hypothesis space F does not imply desired minimization of the
expected risk R[f] regardless how large the training set is. If the hypothesis space is ex-
aggeratedly rich then arbitrary small empirical risk can be achieved but the expected risk
may be still high. This effect is called over-fitting. The difference between the empirical
and expected risk is known as the problem of generalization.

The statistical learning theory provides bounds on the expected error

R[f] ≤ Remp[f] +Rstr

(

m,
1

h
,
1

δ

)

, (1.3)

which holds true with a probability at least 1 − δ where δ ∈ (0, 1). The Rstr(m,
1
h
, 1

δ
) is

called the structural risk which bounds the difference between the expected risk and the
empirical risk. The structural risk is a function of the size m of the training set and a
capacity h which measures the size of the hypothesis space F . The best-known capacity
measure is the Vapnik-Chervonenkis (VC) dimension. Higher value of the VC dimension
means higher capacity of the hypothesis space and consequently higher risk of over-fitting.
This implies that aside from the minimization of the empirical risk the capacity of the
hypothesis space must be controlled. The structural risk minimization (SRM) induction
principle implements this idea. First, a set of hypotheses spaces F1, F2, . . ., Fp with
respective capacities h1 < h2 < . . . < hp is selected. Second, the minimizers fi of the
empirical risk Remp[f] with respect to the hypothesis spaces Fi is found for all i = 1, . . . , p.
Finally, the function f ′ with the minimal bound (1.3) is selected out of f1, f2, . . ., fp.

The regularized risk minimization is another theoretical framework used to analyze
the learning algorithms [9, 42]. The learning can be seen as the function approximation
problem from a finite sample set. The approximation problem from small sample sets
can be ill-posed and thus the approximation can lead to numerical instabilities. A stan-
dard way to solve this problem in the approximation theory is to use the regularization
approach [52]. The regularization approach applied to the learning problem leads to the
regularized risk minimization. The learning of f is thus formulated as minimization of
the regularized risk functional

Rreg[f] = Remp[f] + λΩ[f] , (1.4)

where λ > 0 is called the regularization constant and Ω[f] is the added regularization term.
The first term guarantees that the empirical risk is minimized. The second, regularization,
term is selected such that complex and non-smooth functions f ∈ F are penalized. The
constant λ controls a trade-off between regularization and the empirical risk. The added
regularization term restricts the set of functions f ∈ F from which the resulting f is
learned similarly to the SRM principle. The regularized risk minimization is closely related
to the SRM principle [9].

This thesis concentrates on kernel methods, especially, on the support vector machines
(SVM) learning of classifiers [1, 3, 5, 7, 46, 53, 54]. These methods can be formalized both
in the framework of the structural risk or in the regularized risk minimization. Besides
the theoretical justification, kernel methods are worth studying for their good results in
practical applications1, e.g., hand-written character recognition [33], face detection [39],

1An up-to-date list of SVM applications is being maintained at
http://www.clopinet.com/isabelle/Projects/SVM/applist.html by Isabelle Guyon.

6

1.2 Thesis road map

text categorization [27], etc. The kernel methods denote approaches which use kernel
functions to represent similarities between instances of the input space X . The use of ker-
nel functions defines both the measure between inputs and it also specifies the hypothesis
space of the learned functions.

The kernel functions (also called Mercer kernels or positive definite kernels) are sym-
metric positive definite functions defined on X × X domain which can be regarded as a
dot product in the Reproducing Kernel Hilbert Space (RKHS). The embedding of input
data into the linear space with the dot products allows to employ many linear algorithms
for learning. Linear algorithms in question are such learning methods which assume that
the input domain X is a finite-dimensional linear space X ⊆ R

n and the similarities be-
tween input data are represented as a canonical dot product. The reformulation of linear
algorithms in the RKHS, done simply by substituting the kernel functions, leads to their
generalizations able to learn a broader class of functions.

An important aspect of the learning methods is the algorithmical solvability. In par-
ticular, the SVM learning of classifiers is expressed as a specific quadratic programming
(QP) task which has to be solved to obtain a desired classifier. The QP task associated
with SVM learning is a convex optimization problem with linear constraints. Although
such optimization tasks have been well studied, this particular QP task is still a challeng-
ing problem. The difficulty stems especially from the size of the matrix which defines the
quadratic term. The matrix scales quadratically with the number of training data. The
large QP tasks cause problems both for the memory and the long computational time
requirements.

This thesis focuses on the design of the optimization methods which make the learning
tasks feasible even if huge training data are to be processed. The results, however, are not
connected solely to the SVM learning but they can be found useful in other optimization
problems occurring in the machine learning and pattern recognition as will be shown.

1.2 Thesis road map

Chapter 1 aims to describe a background and problems arising in the kernel based
machine learning. Namely, attention is focused on the Support Vector Machines
(SVM) for classification. The main idea of using the kernel functions to extend
linear learning methods is outlined. Different formulations of classifier learning
based on SVM’s are introduced with focus on the optimization point of view. The
Kernel Principal Component Analysis is described. Also some basic tools of the
optimization theory relevant to the content of the thesis are summarized.

Chapter 2 summarizes the goals of the thesis. The goals are (i) to design the quadratic
programming (QP) solvers which can handle large tasks arising in the SVM learning,
(ii) to design a method which allows to control complexity of functions produced
by kernel methods and (iii) to facilitate optimization problem associated with the
learning of the multiclass SVM classifier.

Chapter 3 presents the state-of-the-art and the literature related to the problems dealt
with in the thesis. The topics include (i) the QP solvers for SVM design, (ii) the
idea of the sparse matrix approximation and (iii) the work relevant to the multiclass
SVM learning and its modified formulations.

7

1 Introduction

Chapter 4 proposes a new analysis of algorithms for optimization of special instances
of the QP task. Namely, the Generalized Minimal Norm Problem (GMNP) and
Generalized Nearest Point Problem (GNPP) are instances of the QP task in ques-
tion. The algorithms solving the original MNP and NPP are generalized, described
in a common framework and their convergence is proven. A novel QP solver is de-
rived. The applications of the proposed QP solvers are listed and their experimental
evaluation is given.

Chapter 5 proposes a new method named Greedy Kernel Principal Component Analy-
sis (Greedy KPCA). Applications of the greedy KPCA for controlling complexity
of the SVM classifier and the Regularized Kernel Least Squares is described with
experimental evaluation.

Chapter 6 proposes a new method which facilitates optimization of the QP task asso-
ciated to the learning of multiclass SVM classifiers. The method is based on the
transformation of the multiclass to the singleclass problem well known from the
analysis of linear discriminant functions. It is shown that the same idea can be ap-
plied for the learning of the multiclass SVM classifier. An experimental evaluation
on benchmark and real data is given as well.

Chapter 7 gives a summary of contributions proposed in the thesis and described in
Chapter 4, Chapter 5 and Chapter 6.

Chapter 8 presents directions of the future research.

1.3 Kernel methods

Learning methods can be classified according to the type of functions they learn and
according to the input data (representation of the input state). Linear methods constitute
one class of approaches to learning. The input state of the object is represented as a vector
(referred to as the feature vector) in a finite-dimensional linear space. It is assumed that
the data term of the learned function is linear in the parameters and the feature vector.
Moreover, a broad class of linear learning methods requires only the information which is
contained in the dot products between the feature vectors. This type of linear learning
methods is described in Section 1.3.1.

Linear methods can be simply extended to learn a broader class of functions which are
non-linear with respect to the input feature vector. This technique is based on the non-
linear mapping of the input vectors to a new (straightened) feature space. This method is
also referred to as the feature space straightening [44]. The learned function is non-linear
in the original feature space but is linear in the new space so that linear learning methods
can be applied. Section 1.3.2 describes the feature space straightening in more detail.

Kernel methods constitute another class of learning methods which extends linear meth-
ods. The kernel methods assume that similarities between input data can be completely
represented by kernel functions. The kernel functions are the dot products in some high
dimensional spaces. This allows to apply the linear method which uses only data in terms
of dot products in the high dimensional spaces. This is implemented simply by replacing
the dot products with the kernel function. Although the idea of using kernel functions is
very similar to the feature space straightening mentioned above, it has several advantages.

8

1.3 Kernel methods

First, this approach is in some cases computationally much more efficient than the explicit
non-linear data mapping, e.g., the polynomial data mapping. Second, the linear methods
can be used to learn a much broader class of functions. For example, there are kernel
functions with dot products in infinite dimensional function spaces and thus the explicit
non-linear data mapping cannot be used. Third, the kernel functions can be defined on
an arbitrary input set and not only over linear finite dimensional vector space. For in-
stance, there exist kernels which represent similarities between two images, sentences and
or graphs. These are the cases in which the representation of input data as vectors in a
finite dimensional space could be rather artificial. Some important results concerning the
kernel functions and their use for machine learning are given in Section 1.3.3.

1.3.1 Linear methods

Linear methods assume that the observable input state x ∈ X is represented as a vector
x = Φ(x) in a finite-dimensional linear space H ⊆ R

n. The space H is referred to as
the feature space and x ∈ H is the feature vector associated with the input x ∈ X .
The symbol Φ:X → H denotes the feature map. The function f to be learned is a linear
real-valued function f(x) = 〈w,x〉+b given by parameter vector w ∈ H and scalar b ∈ R.

An example of the linear method is the Perceptron algorithm. Let a training set
TXY = {(x1, y1), . . . , (xm, y1)} ∈ (Rn × {+1,−1})m of m examples of observations and
corresponding hidden states be given. The observations are represented as n-dimensional
feature vectors and the hidden states can attain only two values {+1,−1}. The aim is
to learn a linear discriminant function f(x) = 〈x,w〉 + b its sign can be used to classify
observations to classes (hidden states) such that

y = sgn(f(x)) = sgn (〈w,x〉 + b) =

{
+1 for f(x) ≥ 0 ,
−1 for f(x) < 0 .

(1.5)

The linear classifier which classifies all training examples correctly is sought. Assuming
that such classifier exists the training set is called linearly separable. The Perceptron
algorithm is an iterative procedure which finds such a linear classifier. It is proven that
the Perceptron halts in a finite number of iterations provided the training set is linearly
separable. The Perceptron algorithm is the following:

Algorithm 1: Perceptron

1. Initialization. Set w(0) = 0 and b(0) = 0.

2. Find any pair (xk, yk) ∈ TXY which is misclassified, i.e.,

yk(〈w(t),xk〉 + b(t)) ≤ 0 .

If no such pair exists than halt with solution (w(t), b(t)), otherwise go to Step 3.

3. Update solution

w(t+1) = w(t) + ykxk , and b(t+1) = b(t) + yk .

Continue to Step 2.

9

1 Introduction

It can be observed that both the evaluation of the linear classifier (1.5) and its learning
by the Perceptron Algorithm 1 works with feature vector representation of the input data.
In many cases, however, it is sufficient to use only the information contained in the dot
products between the feature vectors which represent the input data. The dot product of
two feature vectors x,x′ ∈ R

n is defined as

〈x,x′〉 =

n∑

i=1

[x]i [x′]i . (1.6)

This can be easily shown for the above mentioned example of the Perceptron Algorithm 1.
The key observation is that the vector w can be always expressed as a linear combination
of the training feature vectors, i.e.,

w =

m∑

i=1

αixi ,

where α = [α1, . . . , αm]T ∈ R
m is a weight vector. The mentioned fact follows directly

from the update formula in Step 3 of the Perceptron Algorithm 1. Therefore the discrim-
inant function of the linear classifier can be expressed equivalently as

f(x) =

〈
m∑

i=1

αixi,x

〉

+ b =

m∑

i=1

αi〈xi,x〉 + b . (1.7)

The discriminant function (1.7) is thus defined by the pair (α, b) ∈ (Rm × R). The
Perceptron Algorithm 1 can be readily rewritten to update the vector α instead of the
vector w. This reformulation is called the dual representation of the Perceptron algorithm
and it looks as follows:

Algorithm 2: Dual Perceptron

1. Initialization. Set α(0) = 0 and b(0) = 0.

2. Find an index k of any pair (xk, yk) ∈ TXY which is misclassified, i.e.,

yk

(
m∑

i=1

[α(t)]i〈xi,xk〉 + b(t)

)

≤ 0 .

If no such pair exists than halt with solution (α(t), b(t)), otherwise go to Step 3.

3. Update solution

[α(t+1)]i =

{
[α(t)]i + 1 for i = k ,

[α(t)]i for i 6= k ,
, and b(t+1) = b(t) + yk .

Continue to Step 2.

10

1.3 Kernel methods

It can be seen that both the evaluation of the linear classifier (1.7) and its learning by
the dual representation of Perceptron Algorithm 2 requires the input data in terms of the
dot products only. The explicit representation of the input data as feature vectors is not
used at all.

There are many linear learning methods which can be expressed in the form using
the dot products of input data only. The Representer Theorem 1.1 introduced bellow
describes a broad class of such learning methods designed not only for binary classifiers.
Well-known examples are the linear Support Vector Machines (SVM), the Fisher Linear
Discriminant (FLD), the Principal Component Analysis (PCA), etc.

The linear methods are often simple but the linear function does not have to fit well
to a given feature representation of data. If this situation occurs then one can change
the representation of the input data and used the same linear learning method. The
representation of the input data can be changed in two ways:

(i) The feature vector representation of the input observations is changed. It means that
the linear learning method is provided with different training vectors x′ = Φ′(x)
obtained from a different feature map Φ′:X → H′.

(ii) The dot product, i.e., the similarity measure of the input observations, is changed.
It means that the original dot products 〈Φ(x),Φ(x′)〉 used in the linear learning
method are replaced with a different dot product generally denoted as the kernel
(or positive definite) functions k(x, x′).

The extension of the linear method by using a different feature map is related to so called
feature space straightening described in Section 1.3.2. The thesis deals with the method
in which the dot products are replaced by general kernel functions. A definition and basic
properties of kernel functions are described in Section 1.3.3.

1.3.2 Feature space straightening

The feature space straightening is a technique which extends the linear learning algorithms
to produce non-linear decision functions. It is assumed that the input space X ⊆ R

n is
n-dimensional linear space. Let the input vectors {x1, . . . , xm} be mapped to their images
{x1, . . . ,xm} in d-dimensional feature space H ⊆ R

d by feature map Φ defined as

Φ(x) = [φ1(x), . . . , φd(x)]
T . (1.8)

The feature map Φ is composed of some non-linear functions φi: R
n → R, i = 1, . . . , d.

Usually, the dimension d of the feature space H is much higher than the dimension n of
the input space X .

An arbitrary linear method applied on the training data {x1, . . . ,xm} (it can be both
labelled or unlabelled) produces a linear function in the feature space H. However, the
function can be seen as the non-linear function in the input space X . It is important
that the function is still linear in its parameters and thus the linear learning method can
be applied. For instance, the discriminant function of the linear classifier (1.5) can be
expressed as a function of the vectors of input space X as

f(x) = 〈w,Φ(x)〉 + b =

d∑

i=1

φi(x)[w]i + b . (1.9)

11

1 Introduction

The non-linearity is controlled by the type of the used feature map (1.8). The above-
mentioned technique is called the non-linear data mapping or the feature space straight-
ening [44].

1.3.3 Kernel functions

This section briefly describes kernel functions and associated feature space H in which
the kernel functions act as the dot products. The introduced definitions and theorem are
adopted from [46, 56].

Let k:X × X → R be a kernel function which measures similarity between two input
patterns x, x′ ∈ X . The similarities between a finite set of input patterns {x1, . . . , xm}
can be represented as the kernel matrix (also called Gram matrix).

Definition 1.1 (Kernel matrix) Given a function k:X × X → R and patterns
{x1, . . . , xm} ∈ Xm, the real matrix K ∈ R

m×m with elements

[K]i,j = k(xi, xj) ,

is called the kernel matrix with respect to {x1, . . . , xm}.

The kernel functions (also called Mercer kernels, positive definite kernels) are defined
as follows:

Definition 1.2 (Positive definite kernel) Let X be a non-empty set. A function k on X×X
is called a kernel if for all m ∈ N and all {x1, . . . , xm} ∈ Xm the corresponding kernel
matrix K ∈ R

m×m is a symmetric and positive semi-definite, i.e., for all α ∈ R
m the

inequality
〈α,K α〉 ≥ 0

holds.

Some examples of broadly used kernel functions are listed in Table 1.1.
When using kernel functions, the input examples {x1, . . . , xm} ∈ Xm are assumed to

be represented as a set of functions kx:X → R such that kx(x′) = k(x, x′), ∀x′ ∈ X . The
pattern x ∈ X serves here as an index of the function kx. Let H0 be the space formed by
all finite linear combinations of functions kx, x ∈ X . It means that H0 is the linear span
of functions kx and, consequently, each f ∈ H0 can be expressed as

f(x) =

m∑

i=1

αikxi
(x) =

m∑

i=1

αik(xi, x) , ∀x ∈ X ,

where {x1, . . . , xm} ∈ Xm and α = R
m. Let g ∈ H0 be a function defined as g(x) =

∑m′

i=1 βik(x
′
i, x). The dot product between g, f ∈ H0 is defined as

〈f, g〉 =

m∑

i=1

m′
∑

j=1

k(xi, x
′
j) . (1.10)

It can be shown that (1.10) is well defined, i.e., it really is a dot product. The mathematical
concept used to describe the feature space H induced by kernel functions is called the
Reproducing Kernel Hilbert Space and is defined as follows:

12

1.4 Support Vector Machines

Kernel Function Name

k(x,x′) = 〈x,x′〉 Linear kernel

k(x,x′) = exp(−‖x−x′‖2

2σ2) Gaussian kernel
k(x,x′) = (〈x,x′〉 + 1)d Polynomial of degree d
k(x,x′) = tanh(〈x,x′〉 − θ) Multi Layer Perceptron

Table 1.1: Examples of kernel functions for input data from x,x′ ∈ R
n.

Definition 1.3 (Reproducing Kernel Hilbert Space (RKHS)) The RKHS is the closure of
space H0 with respect to the norm induced by the dot product (1.10), ‖ · ‖ =

√

〈·, ·〉.
Henceforth, H will be used to denote the RKHS if not stated otherwise.

The representer theorem mentioned below describes a broad class of learning methods
which allow to represent input data in the RKHS via kernel functions. It is assumed
that the labeled training set TXY = {(x1, y1), . . . , (xm, ym)} is given and the similarities
between patterns are represented by a kernel function k:X ×X → R. The goal is to learn
a real valued function f :X → R which estimates well the hidden state y ∈ Y ⊆ R from
the input pattern x. A single estimate of hidden state y with the learned f(x) is assessed
by the loss function V : R2 → R. The function space F is assumed to be formed by a
real-valued function f = g+ h, where g ∈ H and h ∈ Span({ψ1, . . . , ψM}). The functions
ψp:X → R, p = 1, . . . ,M , have the property that the matrix T ∈ R

m×M , [T]i,p = ψp(xi)
is of rank M .

Theorem 1.1 (Representer theorem) Each minimizer f = g+h, g ∈ Span({ψ1, . . . , ψM}),
h ∈ H of the regularized risk functional

Rreg[f] =
1

m

m∑

i=1

V (yi, f(xi)) + λ‖h‖2 ,

has a representation in the form

f(x) =

m∑

i=1

αik(xi, x) +

M∑

p=1

bpψp(x) ,

where α = [α1, . . . , αm]T ∈ R
m and b = [b1, . . . , bM]T ∈ R

M .

The Representer Theorem 1.1 can be applied to describe solution of the Support Vectors
Machines and kernel PCA which are introduced bellow. In these cases, M = 1 and
ψ1(x) = 1 is a constant function.

1.4 Support Vector Machines

The following sections describe formulations of learning tasks for binary, multiclass and
singleclass SVM classifiers. The SVM’s are studied here from the optimization point of
view, i.e., how to solve the associated quadratic programming (QP) tasks the formulation
of which is described in details. The background regarding the theoretical justification and
the generalization bounds is omitted with reference to the relevant literature [7, 46, 53, 54].
The key point used in the formulation of the SVM learning is the transformation between
the primal and dual optimization tasks. The relevant part of the optimization theory
concerning this problem is introduced in Section 1.6.

13

1 Introduction

1.4.1 Binary Support Vector Machines

The SVMs were originally designed for learning the binary classifier from the labeled
training set TXY = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m. Let I = {1, . . . ,m} be a set of
indices defined for convenient notation. The output state can attain a binary value from
Y = {+1,−1}. The input states are assumed to be represented in the feature space H via
the map Φ:X → H. The images of input examples in the feature space H are denoted as
xi = Φ(xi). The function f(x) = 〈Φ(x),w〉+ b to be learned is the discriminant function
the sign of which is used to classify input patterns. The output state is estimated as
y = sgn(f(x)). The aim is to design the classifier which minimizes the probability of
misclassification. This corresponds to minimization of expected risk R[f] (c.f. (1.1)) with
the 0/1-loss function

V (y, f(x)) =

{
0 for y = sgn(f(x)) ,
1 for y 6= sgn(f(x)) .

(1.11)

The minimization of the expected risk is in the SVM learning replaced by the regularized
risk minimization [9, 42]

(w∗, b∗) = argmin
w∈H,b∈R

(

1

m

∑

i∈I
V (yi, f(xi)) + λ‖w‖2

)

. (1.12)

However, the regularized risk minimization task (1.12) for the 0/1-risk loss function is
known to be intractable in polynomial time. Thus the SVM’s use approximations to the
0/1-loss function which are described below.

The task becomes tractable for the separable case, i.e., when the solution with zero
empirical risk exists. In the separable case, the hard margin loss function can be used.
The hard margin loss is defined as

V (y, f(x)) = (max{0, 1 − yf(x)})∞ =

{
0 if yf(x) ≥ 1 ,
∞ otherwise .

(1.13)

In practice, however, the non-separable case is more common. In the non-separable
case, the 0/1-loss function can be replaced by a linear and quadratic approximations.
The linear approximation is referred to as the L1-soft margin loss and is defined as

V (y, f(x)) = max{0, 1 − yf(x)} =

{
0 if yf(x) ≥ 1 ,
1 − yf(x) otherwise .

(1.14)

The quadratic approximation is referred to as the L2-soft margin loss function defined as

V (y, f(x)) = (max{0, 1 − yf(x)})2 =

{
0 if yf(x) ≥ 1 ,
(1 − yf(x))2 otherwise .

(1.15)

Figure 1.4.1 shows the desired 0/1-loss function compared to its approximation by the
L1-soft and L2-soft margin loss functions. It is seen that the L1-soft margin is a better
approximation for bigger errors yf(x) < 0 while the L2-soft margin is better for small
errors 0 < yf(x) < 1.

The regularized risk minimization task (1.12) with the hard, L1-soft, and L2-soft margin
loss functions lead to the quadratic programming (QP) tasks over a convex feasible set.

14

1.4 Support Vector Machines

0/1-loss function L1-soft margin L2-soft margin

111

1 11

V (y, f(x))V (y, f(x))V (y, f(x))

yf(x)yf(x) yf(x)

Figure 1.1: The desired 0/1-loss function and its approximation by the L1-soft and L2-soft
margin loss functions.

This task has only the global optima and can be well algorithmically solved. The QP
tasks in question are introduced below.

The linear function to be learned can be seen as the hyperplane f(x) = 〈Φ(x),w〉+b = 0
in the feature space separating the positive examples yi = +1 from the negative ones
yi = −1. The learning task involves both the minimization of the empirical and the
regularization term. The empirical term corresponds to the number of the misclassified
patterns when the 0/1-loss function is used. In fact, the linear and quadratic approx-
imations allow to minimize the upper bound on the number of misclassifications. The
regularization term restricts the class of hyperplanes to those which have a small normal
vector ‖w‖.

In the separable case, the minimization of the norm ‖w‖ has a clear geometrical inter-
pretation. It corresponds to the maximization of the margin which is the distance between
the hyperplane and the closest training vector defined as

ρ(w, b) = min
i∈I

yi
〈w,xi〉 + b

‖w‖ .

The hyperplane f(x) = 〈w∗,Φ(x)〉+b∗ = 0, which separates the positive from the negative
examples and has the maximal margin ρ(w∗, b∗), is referred to as the optimal separating
hyperplane, i.e.,

(w∗, b∗) = argmax
w∈H,b∈R

ρ(w, b) .

The concept of the optimal separating hyperplane can be generalized for non-separable
data. The learning of the generalized optimal separating hyperplane is expressed as the
following QP task

(w∗, b∗) = argmin
w,b,ξ

(

1

2
‖w‖2 + C

∑

i∈I
(ξi)

p

)

, (1.16)

subject to

yi(〈w,xi〉 + b) ≥ 1 − ξi , i ∈ I ,
ξi ≥ 0 , i ∈ I .

According to the conventions the regularization constant C ∈ R
+ was used instead of λ in

the formulation (1.12). The relation between these constants is given by C = 2/(mλ). The
slack variables ξ = [ξ1, . . . , ξm]T were used to handle the non-separable case. The constant

15

1 Introduction

p determines the type of used loss function: (i) hard margin loss function p = ∞, (ii) L1-
soft margin loss function p = 1 and (iii) L2-soft margin loss function p = 2. Notice that
the hard margin case (p = ∞), i.e., when the optimal separating hyperplane is sought,
is equivalent to the formulation (1.16) without all terms containing slack variables ξi
removed.

The task (1.16), also referred to as the primal formulation, can be transformed to its dual
formulation. The solution of the primal formulation can be analytically computed from
the solution of the dual task. The dual formulation is used for two reasons: (i) it is more
convenient for optimization due to a simpler set of linear constraints and, mainly, (ii) the
data vectors appear in terms of the dot products only. The transformation from the primal
to dual formulation is described in Section 1.6. The corresponding dual formulations are
introduced below without derivation which can be found for instance in [3, 7, 46].

First, the hard margin case (p = ∞) can be transformed to the dual formulation

α∗ = argmax
α




∑

i∈I
αi −

1

2

∑

i∈I

∑

j∈I
αiαjyiyj〈xi,xj〉



 , (1.17)

subject to
∑

i∈I
αiyi = 0 , and αi ≥ 0 , i ∈ I .

The solution of the dual task (1.17) determines the solution of the primal task (1.16) such
that

w =
∑

i∈I
yiαixi , and b = yi − 〈w,xi〉 , for any 0 < αi .

Second, the L1-soft margin case (p = 1) can be transformed to the dual formulation

α∗ = argmax
α




∑

i∈I
αi −

1

2

∑

i∈I

∑

j∈I
αiαjyiyj〈xi,xj〉



 , (1.18)

subject to
∑

i∈I
αiyi = 0 , and C ≥ αi ≥ 0 , i ∈ I .

The solution of the dual task (1.17) determines the solution of the primal task (1.16) such
that

w =
∑

i∈I
yiαixi , and b = yi − 〈w,xi〉 , for any 0 < αi < C .

Third, the L2-soft margin case (p = 2) can be transformed to the dual formulation

α∗ = argmax
α




∑

i∈I
αi −

1

2

∑

i∈I

∑

j∈I
αiαjyiyj

(

〈xi,xj〉 +
δ(i, j)

2C

)


 , (1.19)

subject to
∑

i∈I
αiyi = 0 , and αi ≥ 0 , i ∈ I .

16

1.4 Support Vector Machines

The solution of the dual task (1.17) determines the solution of the primal task (1.16) such
that

w =
∑

i∈I
yiαixi , and b = yi −

αi

2C
− 〈w,xi〉 , for any αi > 0 .

The solution vector w is expressed in all the formulations as a linear combination of
the training vectors. The training vectors xi corresponding to the non-zero multipliers
αi > 0 are called the support vectors and they are sufficient to determine the solution
vector and the resulting function. Let I∅ = {i ∈ I:αi > 0} contain the indices of the
support vectors. The important property of the SVM is that usually the support vectors
form a small part of the whole training set. Due to this property, the solution yielded
by the SVM is denoted as sparse. Geometrically, the support vectors xi, i ∈ I∅ are the
training examples which are closest to the hyperplane in the separable case. The learned
function can be expressed as

f(x) =
∑

i∈I∅
yiαi〈Φ(x),xi〉 + b .

It is seen that both the learning and the evaluation of f(x) can be done in terms of the
dot products only. Therefore replacing all dot products 〈xi,xj〉 with an arbitrary kernel
function k(xi, xj) allows to learn functions f from the corresponding RKHS.

1.4.2 Multiclass Support Vector Machines

In the multiclass case, the set of output states Y = {1, 2, . . . ,M} attains more than
two values M > 2. The task is to learn a classification rule which estimates the out-
put state y ∈ Y from the input state x ∈ X when a training set of examples TXY =
{(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m is given. The classification rule q:X → Y is com-
posed of discriminant functions fy(x) = 〈wy,Φ(x)〉 + by, y ∈ Y, which are here assumed
to be linear in the feature space H. The resulting classification rule is then

q(x) = argmax
y∈Y

fy(x) . (1.20)

There are two main approaches to design the multiclass SVM classifier of the form (1.20).
First, the multiclass SVM formulation and, second, the decomposition based methods.
The decomposition based methods are mentioned at the end of this section. In this
thesis, the attention is mainly focused on the the multiclass SVM formulation described
below.

The multiclass SVM [54, 57] is formulated analogically to the binary case. In contrast
to the decomposition-based approaches described below, the parameters of discriminant
functions fy(x) = 〈wy,Φ(x)〉 + by, y ∈ Y are learned all at once. The primal formulation
of the (p = 1, 2)-norm soft margin multiclass SVM task reads

(w∗, b∗, ξ) = argmin
w,b,ξ




1

2

∑

y∈Y
||wy||2 + C

∑

i∈I

∑

y∈Y\{yi}
(ξy

i)p



 , (1.21)

subject to

〈wyi
,xi〉 + byi

− (〈wy,xi〉 + by) ≥ 1 − ξy
i , i ∈ I, y ∈ Y \ {yi} ,

ξy
i ≥ 0 , i ∈ I, y ∈ Y \ {yi} .

17

1 Introduction

The multiclass formulation (1.21) can be again seen as regularized risk minimization.
The sum of squared norms of the parameter vectors corresponds to the regularization
term. The empirical risk with 0/1-loss function is approximated by the set of linear
inequalities and the associated slack variables. The satisfaction of the linear inequalities
implies zero empirical risk. In the non-separable case, the sum of non-zero slack variables
approximates the number of misclassified training examples. A disadvantage is that one
misclassification of one example can be counted several times to the empirical risk term,
i.e., the sum of slack variables is untight upper bound on the number of misclassifications.
This disadvantage was resolved by another reformulation of the task proposed by Crammer
and Singer [6]. However, they assume the discriminant functions without a bias. In
the literature, the hard margin (p = ∞) and L1-soft margin (p = 1) formulation were
introduced only. However, the L2-soft (p = 2) margin formulation can be defined in
analogy to the binary case as well.

The dual formulation of the L1-soft margin SVM task (1.21) reads

α∗ = argmax
α




∑

i∈I

∑

j∈I




1

2
δ(yi, j)SiSj −

∑

y∈Y
αy

i α
yi

j +
1

2

∑

y∈Y
αy

i α
y
j



 〈xi,xj〉 − 2
∑

i∈I

∑

y∈Y
αy

i



 ,

(1.22)
subject to

∑

i∈I
αy

i =
∑

i∈I
δ(yi, y)Si , y ∈ Y ,

0 ≤ αy
i ≤ C , i ∈ I , y ∈ Y ,

0 = αyi

i , i ∈ I ,
Si =

∑

y∈Y
αy

i , i ∈ I .

(1.23)

The discriminant functions of the classification rule are determined as

fy(x) =
∑

i∈I
(δ(y, i)Si − αy

i)〈xi,xj〉 + by , y ∈ Y ,

where biases by, y ∈ Y can be determined from the Karush-Kuhn-Tucker (KKT) optimal-
ity conditions (c.f. Section 1.6 for more details about KKT conditions).

It is apparent that the dual task (1.22) is considerably harder compared to the dual
task of the binary case (1.19). The complexity stems from the complicated set of linear
constraints (1.23). Hence the optimizers for this problem are inevitably more complex
which makes this approach less feasible in practice.

Next, the most often used technique of design of the multiclass rule from SVM classifiers
is the decomposition based-approach. In this case, the multiclass rule is decomposed into
a sequence of binary rules which are learned by a standard binary SVM. The one-against-
rest decomposition is most frequently used. The discriminant function fy is learned on a
modified training set of examples T y

XY = {(x1, y
′
1), . . . , (xl, y

′
m)} with modified class labels

y′i =

{
+1 for yi = y ,
−1 for yi 6= y .

It means that each single binary classifier fy, y ∈ Y is learned to distinguish the class y
from the rest Y \{y}. In many practical problems, the resulting classifier (1.20) composed

18

1.4 Support Vector Machines

of the binary ones performs well. There exist other decomposition approaches which,
however, use different strategies than (1.20) combining binary rules. The well known
approaches are, for instance, the one-against-one decomposition [24] and directed acyclic
graphs (DAGs) [40].

A detailed experimental-based comparison of both the multiclass SVM formulations
and the decomposition approaches is given in [25]. The authors claim that (i) there is
no approach which would significantly outperform the others in terms of classification
error, (ii) the learning time required by the decomposition based approaches (especially
one-against-one and DAGs) is shorter than the multiclass SVM formulations and (iii) the
multiclass SVM formulations yield simpler classification rules (i.e., with less number of
support vectors) and thus they require shorter testing times. These observations are in
accordance with the experimental results performed in this thesis, c.f. Chapter 6.

1.4.3 Singleclass Support Vector Machines

The SVM approach is also used for the problem of the novelty detection [45, 46, 51]
(also called outlier detection or quantile estimation). In this case, the training examples
{x1, . . . , xm} ∈ Xm are assumed to be generated by an underlying unknown distribution
p. The task is to learn a function able to decide whether a new incoming input x was
generated from the same distribution p(x) or not. The inputs are again assumed to be
represented in a feature space H via the feature map Φ:X → H. In the SVM framework,
this task was transformed to the problem of learning function f which separates the
training set or its portion from the rest of the feature space. Two similar formulations of
this learning task exist: (i) the examples are separated by the hyperplane passing through
the origin and maximizing distance from the examples and (ii) the examples are described
with the minimal enclosing ball. The first formulation is defined in analogy to the binary
SVM classifier and it is described below. The second formulation is referred to as the
Support Vector Data Description (SVDD) and it is mentioned in Section 4.9.

In contrast to the binary SVM, the singleclass SVM and SVDD for outlier description
do not possess such solid theoretical background. However, the tasks themselves are
meaningful for other reasons at least. For instance, the radius of the minimal ball is a
quantity used to bound the generalization error of the SVM classifier. Next, it will be also
shown that learning of the multiclass SVM can be transformed to the singleclass SVM
problem.

The singleclass separating hyperplane is formulated as follows. In the separable case,
the optimal singleclass separating hyperplane f(x) = 〈Φ(x),w〉 = 0 separates the training
examples {x1, . . . ,xm} represented in the feature space from the origin while margin ρ(w)
is maximized. The margin is again the distance of the closest training example to the
hyperplane defined as

ρ(w) = min
i∈I

〈w,xi〉
‖w‖ .

The optimal singleclass hyperplane is given by the vector

w∗ = argmax
w∈H

ρ(w) .

In analogy to the binary case, the concept of the optimal singleclass separating hyperplane
can be generalized to the non-separable case as well. The generalized optimal singleclass

19

1 Introduction

separating hyperplane is defined as the solution of the following QP task

w∗ = argmin
w,ξ

(

1

2
‖w‖2 + C

∑

i∈I
(ξi)

p

)

, (1.24)

subject to
〈xi,w〉 ≥ 1 − ξi , for i ∈ I .

The slack variables ξ = [ξ1, . . . , ξm]T ∈ R
m are introduced to allow for the patterns not

separable from the origin. The scalar C ∈ R
+ is the regularization constant. The size of

the regularization constant can be used to control the portion of the examples separated
by the hyperplane. The formulation (1.24) covers the hard margin (p = ∞), L1-soft
margin (p = 1) and L2-soft margin (p = 2) penalization of the overlapping patterns. The
optimal hyperplane for the separable case is found by solving (1.24) with p = ∞. This is
equivalent to removing all terms which contain the slack variables ξi from the formulation
of the task (1.24). Notice, that there exists a similar formulation which has an additional
term added to the objective function [45]. The added term allows to set up an upper
bound on the number of outliers in the training set.

It is convenient to express the primal task (1.24) in its dual formulation. First, the
hard margin case (p = ∞) leads to the dual formulation

α∗ = argmax
α




∑

i∈I
αi −

1

2

∑

i∈I

∑

j∈I
αiαj〈xi,xj〉



 , (1.25)

subject to
αi ≥ 0 , i ∈ I .

Second, the L1-soft margin case (p = 1) leads to the dual formulation

α∗ = argmax
α




∑

i∈I
αi −

1

2

∑

i∈I

∑

j∈I
αiαj〈xi,xj〉



 , (1.26)

subject to
C ≥ αi ≥ 0 , i ∈ I .

Third, the L2-soft margin case (p = 2) leads to the dual formulation

α∗ = argmax
α




∑

i∈I
αi −

1

2

∑

i∈I

∑

j∈I
αiαj

(

〈xi,xj〉 +
δ(i, j)

2C

)


 , (1.27)

subject to
αi ≥ 0 , i ∈ I .

In all cases, the resulting linear function is determined as

f(x) =
∑

i∈I∅
αi〈xi,Φ(x)〉 ,

where the subset I∅ = {i:αi > 0} contains indices of the support vectors. The rule
f(x) > b is used to approximate the unknown inequality p(x) > b′.

It can be again seen that both the learning and the evaluation of the learned function
requires data in terms of the the dot products only. Thus the patterns can be embedded
to the RKHS via the kernel function substituted for the dot products.

20

1.5 Kernel Principal Component Analysis

1.5 Kernel Principal Component Analysis

The Kernel Principal Component Analysis [47, 46] (KPCA) is an extension of the ordinary
Principal Component Analysis (PCA). The KPCA is formulated in the RKHS via the
kernel functions. The main idea is again to start with the linear version and to show that
only the dot products of the input data are needed.

The ordinary linear PCA is a broadly used technique for compression, denoising, unsu-
pervised feature extraction, etc. The goal is to find a linear orthonormal mapping

y = Wx + b , (1.28)

from the input space x ∈ R
n onto a lower dimensional space y ∈ R

d, d < n, which allows
to reconstruct training data X = [x1, . . . ,xm] ∈ R

n×m with the minimal quadratic error.
The representation of training data in the matrix X is used as it brings a more convenient
notation.

Let X̃ = [x̃1, . . . , x̃m] ∈ R
n×m be a matrix of vectors reconstructed by an inverse linear

transform from the images Y = [y1, . . . ,ym] ∈ R
d×m computed by (1.28). The quadratic

reconstruction error is defined as follows

εMS =
1

m

m∑

i=1

‖xi − x̃i‖2 . (1.29)

The well-known solution to the problem is based on computing eigenvectors of the scatter
matrix defined as

S =
m∑

i=1

(xi − µ)(xi − µ)T .

The sample mean vector is

µ =
1

m

m∑

i=1

xi .

There is a need to solve the eigenvalue decomposition problem: Find a real number λ > 0
and a vector w 6= 0 so that

λw = Sw .

Let λ1 ≥ λ2 ≥ . . . ≥ λd be the d highest eigenvalues and w1,w2, . . . ,wd, their correspond-
ing eigenvectors. Then W = [w1,w2, . . . ,wd]

T is the optimal transformation matrix for
which the criterion (1.29) is minimal. The optimal bias vector b is equal to b = −Wµ, so
that y = W(x−µ). Thanks to the linearity of the transformation (1.29) the reconstructed
vector x̃ can be explicitly computed from its image y by the inverse transformation

x̃ = WT y + µ .

The KPCA aims to approximate the training data embedded to the RKHS associated
with the selected kernel function. The kernel extension is possible as the linear PCA can
be expressed in terms of dot products as shown below.

Let X̂ = X−XM denote the centered training data where M ∈ R
m×m is a matrix with

all entries equal to 1/m. The dot product matrix of centered data is

X̂T X̂ = (X − XM)T (X − XM) (1.30)

= XT X − MT XT X − XT XM + MT XT XM .

21

1 Introduction

The key idea used in KPCA is the correspondence of eigenvectors and eigenvalues of the
dot product matrix X̂T X̂ and the scatter matrix X̂X̂T . The eigenvalue decomposition of
the dot product matrix X̂T X̂ is

X̂T X̂U = UΛ , (1.31)

where U = [u1, . . . ,ud] ∈ R
m×d is an orthonormal matrix of d eigenvectors and Λ =

diag(λ1, . . . , λd) ∈ R
d×d is a diagonal matrix of corresponding eigenvalues sorted in de-

scending order, i.e., λ1 ≥ λ2 ≥ . . . ≥ λd. Multiplying both sides of (1.31) by X̂ yields

(X̂X̂T)(X̂U) = (X̂U)Λ ,

which means that Λ are also eigenvalues of the scatter matrix X̂X̂T and X̂U is a matrix of
the corresponding eigenvectors. However, the eigenvectors X̂U are not orthonormal since

(X̂U)T (X̂U) = UT X̂T X̂U = UT UΛ = Λ ,

which follows from (1.31). Finally, the orthonormal eigenvectors V = [v1, . . . ,vl] of the
scatter matrix X̂X̂T can be computed as

V = X̂UΛ− 1
2 = X̂B , (1.32)

where Λ− 1
2 = diag(1√

λ1
, . . . , 1√

λl
) is a diagonal matrix and B = UΛ− 1

2 . It is apparent from

the equation (1.32) that the eigenvectors are linear combinations of the training data.
The linear PCA projection of a vector x on the eigenvectors V is

y = VT (x − µ)

= (XB − XMB)T (x − Xm) (1.33)

= (B − MB)T XT x − BT XT Xm + BT MT XT Xm .

The equation (1.33) was obtained by substituting (1.32), X̂ = X−XM and using µ = Xm,
where m ∈ R

m has all entries equal to 1/m.
It has been shown that the centering of data (1.30), eigenvector decomposition (1.32)

as well as the linear projection (1.33) require the data in terms of dot products only.
Therefore the kernel version of PCA can be simply derived by substituting kernels for
these dot products. The training data TX = {x1, . . . , xm} (they do not have to be vectors)
are embedded to the RKHS with the selected kernel function k. The KPCA algorithm is
introduced below:

22

1.6 Used results of the optimization theory

Algorithm 3: Kernel Principal Component Analysis (KPCA)

1. Compute kernel matrix K ∈ R
m×m of the training data TX = {x1, . . . , xm} ∈ Xm

such that [K]i,j = k(xi, xj), i = 1, . . . ,m, j = 1, . . . ,m.

2. Compute centered kernel matrix

K̂ = K − MT K − KM + MT KM .

3. Solve eigenvalue decomposition problem, i.e., find matrix U ∈ R
m×m with orthonor-

mal columns and a non-zero diagonal matrix Λ ∈ R
m×m which satisfy

K̂U = UΛ .

4. Compose matrix Λ = diag(λ1, . . . , λd), λ1 ≥ . . . ≥ λd and U = [u1, . . . ,ud] contain-
ing the d highest eigenvalues and eigenvector respectively. Compute

B = UΛ− 1
2 .

5. Compute coefficients of the kernel projection

A = (B − MB)T ,

θ = BT MT Km − BT Km .

The Kernel PCA Algorithm 3 produces a matrix A ∈ R
d×m and a vector θ ∈ R

d which
are coefficients of the non-linear kernel projection

y = Ak(x) + θ , (1.34)

where k(x) = [k(x, x1), . . . , k(x, xm)]T ∈ R
m. The vector k(x) is referred to as the

empirical feature map of the input x ∈ X .

1.6 Used results of the optimization theory

This section contains the basic results of the optimization theory relevant to the learning
problems dealt with in the thesis. These results were adopted mainly from [2, 10]. In
particular, the transformation between the primal and dual formulations of the optimiza-
tion tasks and their relation is of the interest. Next, the Karush-Kuhn-Tucker (KKT)
conditions which specify the necessary conditions for the optimal solution of a constraint
optimization problem are defined. Finally, the specific properties of the convex quadratic
programming (QP) tasks are pointed out.

Let the optimization task be defined as

θ∗ = argmin
θ∈D

f(θ) (1.35)

23

1 Introduction

subject to
gi(θ) ≤ 0 , i = 1, . . . , l ,
hi(θ) = 0 , i = 1, . . . ,m .

The symbol f stands for the real-valued objective function, gi, i = 1, . . . , l, hj , j =
1, . . . ,m, are equality and inequality constrains defined on the domain D ⊆ R

n. The
vector of parameters to be optimized is denoted by θ. The task (1.35) is referred to as
the primal optimization task. The Lagrangian function of the task (1.35) is defined as

L(θ,α,β) = f(θ) +

l∑

i=1

αigi(θ) +

m∑

j=1

βihi(θ) ,

where α = [α1, . . . , αl]
T ∈ R

l and β = [β1, . . . , βm]T ∈ R
m are Lagrangian multipliers

associated with the equality and inequality constrains respectively. The dual optimization
task is defined as

(α∗,β∗) = argmax
α,β

q(α,β) (1.36)

subject to
αi ≥ 0 , i = 1, . . . , l ,

where
q(α,β) = min

θ∈D
L(θ,α,β)

is the dual objective function. In some cases, the analytical form of the dual function
q(α,β) can be derived, e.g, for linear or quadratic programming problems. To this end,
the solution θ∗ = argmin

θ∈D
L(θ,α,β) is found by setting

∂L(θ,α,β)

∂θ
= 0 , (1.37)

and solving for θ. The solution θ∗ is substituted to the Lagrangian so that q(α,β) =
L(θ∗,α,β).

The difference between the primal objective function f(θ) and the dual objective func-
tion q(α,β) is called the duality gap. There are two useful theorems concerning the
duality gap.

Theorem 1.2 (Weak duality) Let θ∗ be the solution of the primal task (1.35) and (α∗,β∗)
be the solution of the dual task (1.36). Then f(θ∗) ≥ q(α∗,β∗).

Theorem 1.2 shows that the dual objective function can be used as the lower bound on
the primal objective function. The following theorem says that in some specific cases the
duality gap vanishes at the optimal solution.

Theorem 1.3 (Strong duality) If the domain D ⊆ R
n of the primal task (1.35) is convex,

the objective function f(θ) is convex and the constraints are affine, i.e.,

gi(θ) ≤ 〈ai,θ〉 + bi , i = 1, . . . , l ,
hi(θ) = 〈ci,θ〉 + di , i = 1, . . . ,m ,

where ai, ci are some vectors and bi, di some scalars, then the duality gap vanishes, i.e.,
f(θ∗) = q(α∗,β∗) in the optimal solution θ∗ and (α∗,β∗).

24

1.6 Used results of the optimization theory

The task is a convex optimization task if the objective function is convex and the con-
straints define a convex region. Convex optimization problems are known to have only
global optima. The Karush-Kuhn-Tucker (KKT) conditions in general define necessary
conditions for the optimal solution of the constrained optimization task. For the convex
optimization task the KKT conditions are also sufficient.

Theorem 1.4 (Karush-Kuhn-Tucker) Let (1.35) be a given task with convex domain D ⊆
R

n with f differentiable and with convex and affine constraints. Then a necessary and
sufficient condition for a point θ∗ to be an optimum is the existence of (α∗,β∗) such that

∂L(θ∗,α∗,β∗)
∂θ

= 0 ,

∂L(θ∗,α∗,β∗)
∂β

= 0 ,

α∗
i gi(θ

∗) = 0 , i = 1, . . . , l ,

gi(θ
∗) ≤ 0 , i = 1, . . . , l ,

α∗
i ≥ 0 , i = 1, . . . , l .

Although the convex optimization task has only global optima, they do not have to be
necessarily unique. If the non-unique solution occurs then the solution at one optimal
solution is continuously deformable into the other optimal solution, in such a way that all
intermediate points are also solutions:

Theorem 1.5 Let θ∗
1 and θ∗

2 be two points at which the convex objective function f attains
its minimum. There exists a path θ∗ = (1−τ)θ∗

1+τθ∗
2, τ ∈ [0, 1], such that θ∗ are optimal

solutions.

The quadratic programming (QP) tasks dealt with in the thesis are the convex opti-
mization problems. The matrix of the quadratic term is positive semidefinite and the
constraints are composed of linear equalities and inequalities. The duality gap of these
QP tasks is zero, i.e., the values of the primal and dual criterion coincide in the optimal
solution. The solution of the primal formulation can be analytically computed from the
solution of the dual formulation. The KKT conditions are necessary and sufficient for the
optimal solution.

25

2 Motivation and goals

The goals of the thesis were motivated by problems encountered during a design of clas-
sifiers based on the Support Vector Machines (SVM) used for practical applications.

• The first aim is to design such quadratic programming (QP) solver which can handle
large tasks, is reasonably fast, and is not exaggeratedly difficult for implementation.

The SVM learning is transformed to a special instance of the QP task. There is a
need to have an efficient QP solver able to optimize large problems quickly. The
large QP tasks originate from large data sets available for common applications. The
requirement on the fast optimization emerges from the need to learn many SVM
classifiers during the model selection stage. Even though the problem of designing
an efficient QP solver for SVM has been intensively studied there is still a room for
further improvements.

• The second aim is to design a method to control complexity of a resulting classifier.

The decision function learned by the SVM has a form of a weighted sum of nonlinear
functions centered in a subset of training data called support vectors. The complex-
ity of the rule is proportional to the number of the support vectors. A large number
of support vectors implies a long time required for evaluation of the classification
rule. A fast evaluation is a strong requirement in many practical applications. Even
though the support vectors usually form a small part of the training data, their
number can be still large. There is a need to control the complexity of the resulting
rule explicitly.

• The third aim is to ease the optimization problem associated with learning of the
multiclass SVM classifier.

The basic SVM learning of classifiers is formulated for the binary case only. There
exists a multiclass formulation which, however, leads to a QP task considerably
more complex for optimization as compared to the binary case. The complexity
stems from the complicated set of linear constraints of the QP task. This is the
main obstacle of design of efficient QP solvers contrary to the binary case for which
many optimizers exist. Any simplification of the QP task associated to the learning
problem of the multiclass SVM classifier is thus desirable.

26

3 State of the art

3.1 Quadratic Programming solvers for SVM learning

This sections outlines approaches to solve the specific quadratic programming (QP) tasks
arising in SVM learning. The QP tasks corresponding to the learning of binary SVM
classifiers were introduced in Section 1.4.1. The QP task associated with the binary SVM
classifier with L1-soft margin reads

α∗ = argmin
α∈Rm

Q(α) = argmin
α∈Rm

(
1

2
〈α,Hα〉 − 〈e,α〉

)

, (3.1)

subject to

〈α,y〉 = 0 ,
α ≥ 0 ,
α ≤ Ce ,

where H ∈ R
m×m is a symmetric positive definite matrix, e ∈ R

m is a vector of ones,
y = [y1, . . . , ym]T ∈ R

m is a vector of labels yi ∈ {+1,−1}, and C ∈ R
+ is a constant.

The QP task corresponding to learning of the binary SVM with L2-soft margin reads

α∗ = argmin
α∈Rm

Q′(α) = argmin
α∈Rm

(
1

2
〈α,H′α〉 − 〈e,α〉

)

, (3.2)

subject to

〈α,y〉 = 0 ,
α ≥ 0 ,

where H′ ∈ R
m×m is a symmetric positive definite matrix. The matrices H and H′ are

related by the equation H′ = H + E/(2C), where E ∈ R
m×m is the identity matrix.

Therefore both tasks coincide in the hard margin case in which C = ∞. It is seen that
the QP task for the L2-soft margin is slightly simpler then the L1-soft margin case because
it does not contain the upper bound constraint α ≤ Ce.

The QP tasks (3.1) and (3.2) are convex optimization tasks. The Karush-Kuhn-
Tucker (KKT) conditions (c.f. Section 1.6) are necessary and sufficient for these prob-
lems. The QP tasks are solved by iterative algorithms building a sequence of solutions
α(1),α(2), . . . ,α(t) which converges to the optimal solution α∗. A relaxed version of the
KKT conditions is usually used as the stopping conditions which indicate that current
solution α(t) is close to the optimal solution α∗. Another option is to use the duality gap,
i.e., the difference between the upper bound and the lower bound of the optimal value
Q(α∗) (or Q′(α∗)) to define the stopping conditions. Both the KKT conditions and the
duality gap can be efficiently evaluated for these QP tasks [7, 30, 34].

Common optimization methods for solving general QP tasks are not applicable to the
problems in question. The main obstacle is the size of the Hessian matrix H (or H′)
which grows quadratically with the number of training data. General techniques require

27

3 State of the art

expensive operations with the Hessian matrix which can be hardly stored in the memory
for common problems with thousands of training data.

The efficient QP solvers used in SVM learning exploit all special properties of the
tasks (3.1) and (3.2) which are the following:

• The constraints are particularly simple, i.e., box constraints and a single linear
equality constraint are present only.

• The optimal solution is sparse, i.e., only a portion of the variables α∗ is non-zero.

• The Hessian matrix is large, thus the access to its entries should be minimized.

Most QP solvers were developed for the SVM problem with L1-soft margin. These
solvers are based on decomposition strategies which are summarized in Section 3.2. Re-
cently, it was shown that the SVM problem with L2-soft margin is equivalent to the
Nearest Point Problem (NPP) which can be solved by simple iterative algorithms. This
idea and known algorithms are described in Section 3.3.

3.2 Decomposition algorithms

This section summarizes the decomposition strategies commonly applied to solve the QP
task (3.1) associated with the SVM learning problem and L1-soft margin. The idea is to
decompose the original QP task into a sequence of smaller QP tasks which can be already
efficiently solved. The algorithms are of an iterative nature, i.e., they build a sequence of
solutions α(1), α(2), . . ., α(t). In each iteration, the variables α(t) ∈ R

m are split into a
working set and a fixed set. Let IW denote the indices of the working set and IF be the
indices of the fixed set such that IW ∪ IF = {1, . . . ,m} and IW ∩ IF = ∅. Let α, H, y

and e from the definition of the QP task (3.1) be rearranged so that

α =

[
αW

αF

]

, H =

[
HWW HWF

HFW HFF

]

, y =

[
yW

yF

]

, e =

[
eW

eF

]

.

The objective function Q(α) of the QP task (3.1) can be equivalently expressed as a
function

Q(αW ,αF) = −〈αW , (eW −HWF αF)〉+ 1

2
〈αW ,HWW αW 〉+ 1

2
〈αF ,HFF αF 〉−〈αF ,eF 〉 .

The constraint can be also decomposed into the working and fixed part such that

〈αW ,yW 〉 + 〈αF ,yF 〉 = 1 ,
α ≥ 0 ,
α ≤ Ce .

(3.3)

Let AW (αF) denote a feasible set of solutions αW when αF is fixed, i.e., αW ∈ AW (αF)

satisfies the constraints (3.3). Let the vector α(t) = [α
(t)
W ;α

(t)
F] denote the solution in the

t-th iteration. The general decomposition algorithm works as follows:

28

3.2 Decomposition algorithms

Algorithm 4: General decomposition algorithm

1. Initialization. Select α(1) = [α
(1)
W ;α

(1)
F] satisfying constraints (3.3).

2. Repeat until stopping condition is satisfied:

a) Select variables for working set IW and fixed set IF = {1, . . . ,m} \ IW .

b) Set α
(t+1)
F = α

(t)
F and optimize with respect to the working set

α
(t+1)
W = argmin

αW ∈AW (α
(t)
F

)

Q(αW ,α
(t)
F) . (3.4)

It is seen that the size of the QP task (3.4) depends on the number q < m of selected
working variables αW . It is also obvious that the optimization in Step 2(b) cannot increase
the value of the criterion, i.e., Q(α(t)) − Q(α(t+1)) = ∆(t+1) ≥ 0 always holds. The
intention is, of course, to select such working set IW that the improvement ∆(t+1) will be
maximized while the size q of the set IW is sufficiently small. Provided that the method
for selection of the working set satisfies some elementary conditions, the decomposition
algorithm ultimately converges to the optimal solution. The convergence proofs of various
modifications of the decomposition algorithm can be found in [28, 34, 38].

Particular decomposition algorithms used in SVM learning differ in the size of the
working set, the selection method used in the Step 2(a) and the QP solver employed in
the Step 2(b) of Algorithm 4. Important representatives of the general decomposition
algorithm are the following:

Chunking methods proposed by Vapnik [55]. The working set contains all variables which
were non-zero at the last iteration plus some portion of variables which were zero and
violated the KKT conditions. The algorithm stops when the working set contains
all non-zero variables (support vectors) and the fixed variables do not violate the
KKT conditions. This method is simple to implement but becomes uneconomical
when the number of support vectors is large.

Decomposition algorithms with fixed size of working set proposed by Osuna [38]. The
working set size is fixed. In each iteration, a part of variables from the working set is
replaced by previously fixed variables which violate the KKT conditions. This idea
is used for instance in SVM light by Joachims [26]. SVM light is the state-of-the-art
SVM learning package.

Sequential Minimal Optimizer (SMO) by Platt [41]. The SMO is an extreme case of the
general decomposition algorithm in which the working set contains just two vari-
ables. This brings the advantage of solving the QP task of the Step 2(b) analytically.
The original paper [41] contains a set of heuristics how to select the two variables
for optimization. The selection method was further improved by Keerthi et al. [30].
The SMO approach has become very popular due to its implementational simplic-
ity and a fast convergence. It is implemented for instance in the popular LIBSVM
software package by Chang and Lin [4].

29

3 State of the art

3.3 Nearest point algorithms

This section describes works in which algorithms designed for specific tasks in computa-
tional geometry were employed in SVM learning. The tasks in question are the nearest
point problem (NPP) and minimal norm problem (MNP). The NPP is equivalent to the
learning of the linear binary SVM classifier with hard margin and the MNP is equivalent
to the learning of the linear singleclass SVM classifier with hard margin. There is a cou-
ple of simple iterative algorithms solving the NPP and the MNP which can be, therefore,
readily used as solvers for learning of the binary and linear SVM classifiers. Moreover,
these algorithms can be simply modified to use data in terms of dot products only. This
modification allows for two extensions. First, kernel functions can be applied and thus a
broad class of functions can be learned. Second, the algorithms can be used also for SVM
problems with L2-soft margin. This is true because the problem with L2-soft margin can
be transformed to the hard margin case via a particular kernel function (c.f. Section 1.4.1).

The idea of learning the separating hyperplane in the linear case and for separable
data by the use of a particular algorithm for the NPP was proposed by Kozinec [32].
A couple of variants of the Kozinec algorithm applied for the design of linear classifiers
are described in the book by Schlesinger and Hlaváč [44]. The use of NPP algorithms
explicitly for the learning of binary SVM classifiers was proposed in works by Keerthi et
al. [29] and Kowalczyk [31]. Keerthi et al. combined several known algorithms for NPP to
a new one. Kowalczyk derived his own algorithm for the NPP. Both the works show the
extension with the kernel functions and using the L2-soft margin. They do not explicitly
deal with the solvers for the singleclass SVM problem.

The rest of Section 3.3 is organized as follows. Section 3.3.1 describes MNP and NPP
and their connection to the SVM learning problems. Two variants of the Kozinec algo-
rithm for MNP and NPP are described in Section 3.3.2. The work of Keerthi et al. is
described in Section 3.3.3. The work of Kowalczyk is mentioned in Section 3.3.4.

3.3.1 Nearest point and minimal norm problems

This section describes NPP and MNP and their relation to the SVM learning. The
key point is the fact that the optimal separating hyperplane can be constructed from
the nearest points of the convex hulls of the training examples represented by two finite
vector sets. A similar relation can be stated for the singleclass optimal hyperplane and the
minimal norm point from a convex hull. This can be easily understood from a geometrical
interpretation, but exact proofs exist as well. The proof of equivalence between the MNP
and the singleclass optimal hyperplane can be found in [44]. The proof for the binary case
is in [31]. A new simpler proof for both the cases is also given in Section 4.9.1.

The NPP problem is defined as follows. Let TXY = {(x1, y1), . . . , (xm, y1)} be a finite
set of vectors in R

n which are endowed with the binary labels {+1,−1}. The input vectors
are assumed to be divided into the positive and negative class according to the labels. Let
the set I+ = {yi: yi = +1} contain indices of the vectors from the positive class and the
set I− = {yi: yi = −1} the indices of the vectors from the the negative class, respectively.
Let further X̃+ = {xi: i ∈ I+} and X̃− = {xi: i ∈ I−} be introduced for convenience of
notation. The NPP is defined as the following optimization task

(w∗
+,w

∗
−) = argmin

w+∈X+,w−∈X−

‖w+ − w−‖2 , (3.5)

30

3.3 Nearest point algorithms

where X+ and X− are the convex hulls of the vectors of the positive and the negative
class, respectively. The convex hulls are defined as

X+ =






x ∈ R

n:x =
∑

i∈I+

αixi ,
∑

i∈I+

αi = 1 , αi ≥ 0 , i ∈ I+






,

X− =






x ∈ R

n:x =
∑

i∈I−
αixi ,

∑

i∈I−
αi = 1 , αi ≥ 0 , i ∈ I−






.

The vectors w∗
+ and w∗

− are the nearest vectors from the two convex hulls X+ and X−.
The optimal separating hyperplane 〈w∗,x〉+ b∗ = 0 can be constructed from the vectors
w∗

+ and w∗
− such that

w∗ = w∗
+ − w∗

− and b∗ =
1

2

(
‖w∗

−‖2 − ‖w∗
+‖2

)
. (3.6)

More precisely, the hyperplane 〈w∗,x〉 + b∗ = 0 given by (3.6) is the optimal one, but
it is not in the canonical form 〈w∗

c ,x〉 + b∗c = 0 as defined by (1.16) (the canonical form
means that y(〈w∗

c ,x〉 + b∗c) = 1 for the closest vectors x with label y from the training
set). These two hyperplanes differ only in a scale factor. It is straightforward to show
that

w∗
c = 2

w∗

〈w∗,w∗〉 and b∗c = 2
b∗

〈w∗,w∗〉 .

A similar relation can be established between the singleclass optimal hyperplane and
the MNP. The singleclass optimal hyperplane 〈w∗

c ,x〉 = 0 defined by (1.24) can be com-
puted from the minimal norm point of the convex hull of the training vectors. Let
X̃ = {x1, . . . ,xm} be the set of vectors in R

n and I = {1, . . . ,m} be the set of indices.
The MNP is defined as

w∗ = argmin
w∈X

‖w‖2 , (3.7)

where

X =

{

x ∈ R
n:x =

∑

i∈I
αixi ,

∑

i∈I
αi = 1 , αi ≥ 0 , i ∈ I

}

,

is the convex hull of X̃ . The vector w∗ given by (3.7) defines the optimal singleclass hy-
perplane but its norm differs from the norm of the canonical solution w∗

c defined by (1.24).
These vectors are related by

wc =
w∗

〈w∗,w∗〉 .

It is easy to see that both the NPP and MNP are special instances of the QP task.
Namely, the NPP and MNP can be equivalently expressed as the task

α∗ = argmin
α∈A

〈α,Hα〉 ,

where the matrix H ∈ R
m×m is symmetric positive definite and A stands for the feasible

set. In the case of MNP, the feasible set A and matrix H are defined as

A =

{

α ∈ R
m:
∑

i∈I
αi = 1 , αi ≥ 0

}

and [H]i,j = 〈xi,xj〉 , i ∈ I , j ∈ I .

31

3 State of the art

y = −1

y = +1

w∗
+

w∗
−

〈w∗,x〉 = 0

〈w∗,x〉 + b∗ = 0

w∗

NPP MNP

Figure 3.1: Illustration of the nearest point problem (NPP) and the minimal norm prob-
lem. The linear classifiers constructed from the NPP and MNP are denote by
solid thick line.

In the case of NPP

A =






α ∈ R

m:
∑

i∈I+

αi =
∑

i∈I−
αi = 1 , αi ≥ 0 , i ∈ I+ ∪ I−






,

and

[H]i,j =

{
〈xi,xj〉 if yi = yj ,

−〈xi,xj〉 if yi 6= yj ,
i, j ∈ I+ ∪ I− .

The NPP and MNP in relation to the linear SVM classifiers are illustrated in Figure 3.1.
Iterative algorithms which find an approximate solution of the NPP and the MNP tasks

are described below. The aim is to give an idea how the algorithms work whereas their
detailed analysis is a subject of Chapter 4.

3.3.2 Kozinec algorithm

This section adopts results mainly from the book by Schlesinger and Hlaváč [44]. It
describes the connection between the MNP, NPP and the optimal separating hyperplanes.
The book contains a proof which shows that the singleclass optimal hyperplane can be
determined from the solution of the MNP. Several variants of the Kozinec algorithm [32]
solving the MNP and the NPP are analyzed as well. However, only the linear case and
separable training examples are assumed.

The Kozinec Algorithm 5 for MNP is an iterative procedure which aims to approximate
the minimal norm point w∗ defined by (3.7). The algorithm starts to iterate from an
arbitrary vector w(0) which belongs to X . In each step, the vector x(t) is found having
the minimal distance from the hyperplane 〈w(t),x〉 = 0. A new solution vector w(t+1) is
found as the minimal norm vector which lies on the line segment between x(t) and w(t).
The computation of the vector with the minimal norm lying on the line segment has an

32

3.3 Nearest point algorithms

analytical solution given by (3.10) below. It is easy to show that the norm of the vector
w(t) monotonically decreases. This procedure builds a sequence w(0),w(1), . . . ,w(t), which
converges to the optimal solution w∗. The algorithm works until it gets sufficiently close
to the optimal solution which is indicated by the stopping condition (3.9) below. The
satisfaction of the condition (3.9) implies that the inequality

min
x∈X̃

〈w∗,x〉
‖w∗‖

︸ ︷︷ ︸

ρ(w∗)

−min
x∈X̃

〈w,x〉
‖w‖

︸ ︷︷ ︸

ρ(w)

≤ ε , (3.8)

holds. This means that the margin ρ(w) (c.f. Section 1.4.3) of the found hyperplane differs
from the optimal margin ρ(w∗) at most by a prescribed ε. Any hyperplane 〈w,x〉 = 0
given by w which satisfies condition (3.8) is named the ε-optimal hyperplane [44].

Algorithm 5: Kozinec Algorithm for MNP

1. Initialization. Set w(0) to any vector from X .

2. Check the stopping condition

‖w(t)‖ − 〈w(t),x(t)〉
‖w(t)‖ ≤ ε , where x(t) = argmin

x∈X̃
〈x,w(t)〉 . (3.9)

If it holds then exit the algorithm with the solution w(t). Otherwise continue to
Step 3.

3. Update

w(t+1) = w(t)(1 − τ) + τx(t) , where τ = min

(

1,
〈w(t),w(t) − x(t)〉
‖w(t) − x(t)‖2

)

, (3.10)

and continue to Step 2.

The Kozinec Algorithm 6 can be also used to solve the NPP in the same fashion as

the MNP. In this case, however, two vectors w
(t)
+ ∈ X+ and w

(t)
− ∈ X− are sought

simultaneously. In each step, the point x(t) closest to the hyperplane

f(x) = 〈w(t)
+ − w

(t)
− ,x〉 +

1

2

(

‖w(t)
− ‖2 − ‖w(t)

+ ‖2
)

= 0 ,

is used for an update. If the vector x(t) is from the set X̃+ then the new vector w
(t+1)
+ is

computed as point on the line segment between vectors w
(t)
+ and x(t) which is the closest

to the w
(t)
− . The new vector w

(t+1)
− is set to w

(t)
− . In the case in which x(t) ∈ X̃− it is

proceeded vice versa, i.e., the w
(t)
+ is not changed and w

(t)
− is updated. It can be shown

again that the norm of the vector w
(t)
+ − w

(t)
− monotonically decreases and the sequence

33

3 State of the art

(w
(0)
+ ,w

(0)
−), (w

(1)
+ ,w

(1)
−),. . ., (w

(t)
+ ,w

(t)
−) converges to the optimal vectors (w∗

+,w
∗
−). The

algorithm works until the stopping condition

‖w(t)
+ − w

(t)
− ‖ − min

x∈X̃+∪X̃−

g(x) ≤ ε

2
, (3.11)

is satisfied, where g(x) is given by (3.12). The satisfaction of the stopping condition (3.11)
implies that the margin ρ(w, b) of the found hyperplane differs from the optimal one
ρ(w∗, b∗) by prescribed ε at most.

Algorithm 6: Kozinec Algorithm for NPP

1. Initialization. Set w
(0)
+ to any vector from X+ and w

(0)
− to any vector from X−.

2. Find the vector x(t) closest to the current hyperplane such that x(t) = argmin
x∈X̃+∪X̃−

g(x)

and

g(x) =







〈x − w
(t)
− ,w

(t)
+ − w

(t)
− 〉

‖w(t)
+ − w

(t)
− ‖

for x ∈ X̃+ ,

〈x − w
(t)
+ ,w

(t)
− − w

(t)
+ 〉

‖w(t)
+ − w

(t)
− ‖

for x ∈ X̃− .

(3.12)

If the stopping condition ‖w(t)
+ − w

(t)
− ‖ − g(x(t)) ≤ ε

2 holds then exit the algorithm

with the solution w = w
(t)
+ − w

(t)
− and b = 1

2(‖w(t)
− ‖2 − ‖w(t)

+ ‖2). Otherwise go to
Step 3.

3. If x(t) ∈ X̃+ then set w
(t+1)
− = w

(t)
− and update

w
(t+1)
+ = w

(t)
+ (1 − τ) + τx(t) , where τ = min

(

1,
〈w(t)

+ − w
(t)
− ,w

(t)
+ − x(t)〉

‖w(t)
+ − x(t)‖2

)

.

Otherwise if x(t) ∈ X̃− then set w
(t+1)
+ = w

(t)
+ and update

w
(t+1)
− = w

(t)
− (1 − τ) + τx(t) , where τ = min

(

1,
〈w(t)

− − w
(t)
+ ,w

(t)
− − x(t)〉

‖w(t)
− − x(t)‖2

)

.

Continue to Step 2.

3.3.3 Keerthi algorithm

Keerthi et al. [29] proposed to use the NPP algorithms to learn the SVM classifier with
L2-soft margin. They used the relation between the hard margin and L2-soft margin
formulation. This relation was described in Section 1.4.1. Keerthi et al. also employed
the kernel functions to learn the non-linear SVM classifiers because they showed that
all computations with data can be expressed in terms of dot products. The Keerthi

34

3.3 Nearest point algorithms

algorithm1 combines ideas of two methods proposed earlier to solve the NPP. Namely,
it is based on the algorithms proposed by Gilbert [20] and Mitchell et al. [36]. Gilbert
algorithm is essentially the same as the Kozinec algorithm described in Section 3.3.2. The
algorithm by Mitchell et al. and the Keerthi algorithm, which combines both methods,
are described below.

The Mitchell-Demyanov-Malozemov (MDM) Algorithm 7 is designed to solve the MNP.
The MDM algorithm uses inherently the representation of the solution as a convex com-
bination of the input vectors, i.e.,

w =
∑

i∈I
αixi .

The weight vector α = [α1, . . . , αm]T ∈ R
m can attain the value from A = {α ∈

R
m:
∑

i∈I αi = 1, αi ≥ 0 , i ∈ I} to guarantee that the vector w lies in the convex
hull X . Let w∗ =

∑

i∈I α
∗
i xi be the optimal solution given by (3.7). It can be shown

based on the KKT conditions that the equality 〈w∗,xi〉 = 〈w∗,w∗〉 holds true for all
support vectors xi ∈ {xj :α

∗
j > 0}. For any other w =

∑

i∈I αixi 6= w∗, may it be very
close to the optimal w∗, there could be vectors xi with corresponding weights αi > 0 such
that

〈w,xi〉 ≫ 〈w,w〉 .

It is important both for the efficient (sparse) representation and performance of the algo-
rithm to exclude such vectors from the representation of w. It can be further shown that
the inequality

κ(w) = max
i∈{j∈I:αj>0}

〈w,xi〉 − min
i∈I

〈w,xi〉 ≥ 0 ,

holds true for all w and the equality occurs only for the optimal w∗. The MDM algorithm
aims to decrease the quantity κ(w) in each iteration. The MDM algorithm builds a
sequence of vectors w(0), w(1), . . ., w(t), which converges to the optimal w∗. Let indices
u and v be defined by (3.13). Then κ(w(t)) = 〈w(t),xv〉 − 〈w(t),xu〉. The update rule
decreases the weight [α(t)]v and, at the same time, increases the weight [α(t)]u. It is easy
to show that the MDM algorithm monotonically decreases the norm of the vector w(t).

Algorithm 7: MDM Algorithm for MNP

1. Initialization. Select any α(0) such that
∑

i∈I [α(0)]i = 1, [α(0)]i ≥ 0, i ∈ I.

2. Repeat until stopping condition is satisfied.

a) Find indices

u ∈ argmin
i∈I

〈w(t),xi〉 , and v ∈ argmax
i∈{j∈I:[α(t)]j>0}

〈w(t),xi〉 , (3.13)

1The authors named their method the “nearest point algorithm (NPA)”. However, all the algorithms of
this sections solve NPP and thus they deserve the same name. Due to this reason the name Keerthi
algorithm is used here to distinguish this specific approach described in paper [29].

35

3 State of the art

where w(t) =
∑

i∈I
xi[α

(t)]i. Then create vector

[β(t)]i =







[α(t)]u + [α(t)]v if i = u ,
0 if i = v ,

[α(t)]i otherwise .

b) Update α(t+1) = α(t)(1 − τ) + β(t)τ , where

τ = min

(

1,
〈w(t),w(t) − x(t)〉
‖w(t) − x(t)‖2

)

,

where x(t) =
∑

i∈I
[β(t)]ixi.

Both the Gilbert algorithm (alias Kozinec algorithm) and MDM algorithm can be seen
as follows. They approximate the convex hull X by a line segment between the current
solution w(t) ∈ X and the vector x(t) ∈ X which is selected by different rules. A new
solution vector w(t+1) is computed as the minimal norm vector over the line segment
which approximates the whole convex hull. The advantage of this approach is that the
solution of the minimal norm problem for the line segment has an analytical form. Another
advantage is that the selection of the vector x(t) which guarantees decrease of the norm
w(t) is simple (see rules of the Kozinec and MDM algorithm).

Keerthi et al. proposed to extend this idea so that a triangle is used to approximate
the convex hull instead of the line segment. Finding the minimal norm vector over the
triangle has also an analytical solution though a little bit more complex. A question
arises how to construct the three vertices of the triangle which approximates the convex
hull well. Keerthi et al. tried many combinations and they proposed to use the triangle
(w(t),x(t),z(t)) where x(t) is constructed by the rule of Gilbert (Kozinec) algorithm and
z(t) by the rule of MDM algorithm. Algorithm 8 describes the version for the MNP.
The analytical form of the subtask (3.14) is omitted as it will be analyzed in details in
Chapter 4.

Algorithm 8: Keerthi Algorithm For MNP

1. Initialization. Select any α(0) such that
∑

i∈I
[α(0)]i = 1, [α(0)]i ≥ 0, i ∈ I holds.

2. Repeat until stopping condition is satisfied.

a) Find indices

u ∈ argmin
x∈X̃

〈w(t),x〉 , and v ∈ argmax
x∈{xi:[α(t)]i>0}

〈w(t),x〉 ,

where w(t) =
∑

i∈I
xi[α

(t)]i. Create vectors

[β]i =

{
1 if i = u ,
0 otherwise ,

[γ]i =







[α(t)]u + [α(t)]v if i = u ,
0 if i = v ,

[α(t)]i otherwise.

36

3.3 Nearest point algorithms

b) Update α(t+1) = α(t)(1 − τ − ω) + β(t)τ + ωγ(t) such that

(τ, ω) = argmin
τ ′∈[0,1],ω′∈[0,1]

∥
∥
∥w(t)(1 − τ ′ − ω′) + x(t)τ ′ + z(t)ω′

∥
∥
∥ , (3.14)

where x(t) =
∑

i∈I
[β(t)]ixi and z(t) =

∑

i∈I
[γ(t)]ixi.

The Keerthi algorithm for the NPP is derived in the same fashion as the Kozinec

Algorithm 6. It means that two vectors w
(t)
+ and w

(t)
− are being updated. In each iteration,

one of these vectors is fixed and the second is updated. The algorithm iterates until the

vectors w
(t)
+ and w

(t)
− get sufficiently close to the optimal solution w∗

+ and w∗
−. Keerthi

et al. proposed to use the following stopping condition

min
x∈X̃+

〈w(t)
+ − w

(t)
− ,x〉 + min

x∈X̃−

〈w(t)
+ − w

(t)
− ,x〉 ≥ (1 − ε)‖w(t)

+ − w
(t)
− ‖2 . (3.15)

The satisfaction of the stopping condition (3.15) implies that the inequality ρ(w∗, b∗) ≤
ρ(w, b)(1 − ε) holds, where ρ(w∗, b∗) is the optimal margin, ρ(w, b) is the margin of the
found hyperplane and ε is a prescribed constant.

3.3.4 Kowalczyk algorithm

Independently, Kowalczyk [31] proposed to learn the SVM binary classifier with the L2-
soft margin using the NPP algorithm. However, he derived a different algorithm to
solve the NPP which is described below2. The Kowalczyk Algorithm 9 for NPP uses
a line approximation of the convex hull. The line is constructed between the current

solution w(t) = w
(t)
+ − w

(t)
− and a vector x(t) which is selected out of candidates x

(t)
i ,

i ∈ I+ ∪ I−. The candidates are constructed by two rules (3.16) and (3.17). The vector
x(t) is selected out of the candidates such that the optimization over the line segment

between the current solution w(t) and x(t) yields the biggest decrease of ‖w(t)
− −w

(t)
+ ‖. It

can be simply shown that the algorithm monotonically decreases the norm of the vector

w
(t)
+ − w

(t)
− and the sequence (w

(0)
+ ,w

(0)
−), (w

(1)
+ ,w

(1)
−), . . ., (w

(t)
+ ,w

(t)
−) converges to the

optimal solution (w∗
+,w

∗
−). The algorithm works until it gets sufficiently close to the

optimal solution which is indicated by the stopping conditions. The stopping condition
used by Kowalczyk is essentially the same as the condition (3.15) used by the Keerthi
algorithm.

Algorithm 9: Kowalczyk Algorithm For NPP

1. Initialization. Select any α(0) such that
∑

i∈I+

[α(0)]i = 1,
∑

i∈I−
[α(0)]i = 1 and [α(0)]i ≥

0, i ∈ I+ ∪ I−.

2. Repeat until stopping condition is satisfied.

2Kowalczyk originally named his algorithm the maximal margin Perceptron. The name Kowalczyk
algorithm is used here instead to have consistent notation which allows to clearly distinguish the
algorithm according to the name of the author.

37

3 State of the art

a) Construct candidate vectors β
(t)
i , i ∈ I+ ∪ I−. The vectors β

(t)
i , i ∈ I+, are

constructed (i) by the rule

[β
(t)
i]j =







1 if j = i ∧ j ∈ I+ ,
0 if j 6= i ∧ j ∈ I+ ,

[α(t)]j if j ∈ I− ,
(3.16)

if 〈xi,w
(t)
+ − w

(t)
− 〉 < 〈w(t)

+ ,w
(t)
+ − w

(t)
− 〉 or (ii) by the rule

[β
(t)
i]j =







0 if j = i ∧ j ∈ I+ ,
[α(t)]j

1−[α(t)]i
if j 6= i ∧ j ∈ I+ ,

[α(t)]j if j ∈ I− ,
(3.17)

if 〈xi,w
(t)
+ − w

(t)
− 〉 > 〈w(t)

+ ,w
(t)
+ − w

(t)
− 〉 and [α(t)]i < 1. Otherwise ∆

(t)
i = 0.

The vectors β
(t)
i , i ∈ I−, are constructed by the same rules except for the

sets I+ and I− interchanged. The “if conditions” are changed to 〈xi,w
(t)
− −

w
(t)
+ 〉>

<
〈w(t)

− ,w
(t)
− − w

(t)
+ 〉.

For all candidate vectors compute possible improvement

∆
(t)
i = ‖w(t)

+ − w
(t)
− ‖2 − min

τ∈[0,1]
‖(w(t)

+ − w
(t)
−)(1 − τ) + γx

(t)
i ‖2 , (3.18)

where w
(t)
+ =

∑

j∈I+

[α(t)]jxj, w
(t)
− =

∑

j∈I−
[α(t)]jxj, x

(t)
i =

∑

j∈I+

[β
(t)
i]jxj−

∑

j∈I−
[β

(t)
i]jxj.

Finally set

r ∈ argmax
i∈I+∪I−

∆
(t)
i .

b) Update

α(t+1) = α(t)(1 − τ) + τβ(t)
r ,

where

τ = min

(

1,
〈w(t),w(t) − x

(t)
r 〉

‖w(t) − x
(t)
r ‖2

)

.

3.4 Sparse matrix approximation

This section outlines the idea of sparse greedy matrix approximation which was proposed
by Smola and Schölkopf [46, 48]. Let K ∈ R

m×m be a kernel matrix which represents
the training examples {x1, . . . , xm} in the RKHS given by a selected kernel function
k:X ×X → H, i.e., [K]i,j = k(xi, xj). The size of the kernel matrix K scales quadratically
with the number m of training examples. A large kernel matrix can cause problems due to
memory and computational requirements. A possible solution to this problem is to find a
matrix K̃ ∈ R

m×m which would approximate the original kernel matrix K well. Moreover,
the approximated matrix K̃ is required to be represented in a more compressed form than

38

3.4 Sparse matrix approximation

the original K. The computation of the approximated kernel matrix was posed by Smola
and Schölkopf as the following optimization task

J ∗ = argmin
J⊂I

εK(J) = argmin
J⊂I

‖K − K̃‖2
F , (3.19)

where the approximated matrix K̃ is defined by

[K̃]:,i =
∑

j∈J
[T]j,i[K]:,j .

The symbol [K̃]:,i is the i-th column vector of the matrix K, ‖ · ‖2
F is Frobenius matrix

norm, T ∈ R
l×m denotes a matrix of coefficients and J ⊂ I is a subset of indices of all

matrix columns I = {1, . . . ,m}. The approximation error εK(J) is in fact a function of
both the selected columns J and the coefficient matrix T. However, it can be shown that
for fixed set J the optimal coefficient matrix T can be analytically computed because
the problem (3.19) becomes an unconstrained convex QP task. For this reason, T is not
included in the definition of the error because it can be uniquely determined by J .

The approximation of the kernel matrix based on the task (3.19) brings two advantages:
(i) the learning of kernel based classifiers simplifies as the kernel matrix has more compact
representation and (ii) the learned function simplifies as well because it will be represented
in a linear span of a smaller number of functions. Therefore there is a hope that the
learning and the evaluation stage becomes faster.

The idea is to select a subset J of columns of the kernel matrix K and express all
remaining columns as linear combinations. Such columns J should be selected that the
approximation error εK(J) is minimized. The number l of selected columns J can be
determined explicitly or implicitly by using such l which yields a desired limit on the
approximation error. To guarantee the optimal subset J ∗ ⊂ I which contains l columns
selected out of m one has to try

(
m
l

)
possibilities which is an intractable combinatorial

problem.
Smola and Schölkopf proposed to use a greedy procedure to select the subset J . The

basic idea is to start from the empty set J = {∅} and iteratively add one column vector
such that the criterion (3.19) is stepwise decreased. In each iteration, the r-th column is
sought which maximally decreases the criterion εK(J ∪{r}). However, an implementation
of this idea is computationally very expensive as a selection of the best column requires
at least O(m3) operations. Therefore Smola and Schölkopf proposed a probabilistic speed
up. A subset M ⊂ I \ J of p column vectors is randomly drawn. The best vector to
be added is sought in this subset M, thus only p candidates are checked instead of m.
Even if the probabilistic speed up is used, the computational complexity of the algorithm
scales with O(m2) which can be still too expensive. Therefore Smola and Schölkopf also
proposed an alternative approach based on an approximation of the training examples
represented as functions in the RKHS instead of columns of the matrix K. This approach
is described below.

Let Φ(x)(·) = k(x, ·) denote a function from the feature space H to which the input x ∈
X is mapped. The input patterns represented in the feature space H form a set of functions
{Φ(x1), . . . ,Φ(xm)}. The aim is to find approximated functions {Φ̃(x1), . . . , Φ̃(xm)} such
that the squared error is minimized, i.e., the problem is posed as the following optimization
task

J ∗ = argmin
J⊂I

εΦ(J) = argmin
J⊂I

∑

i∈I
‖Φ(xi) − Φ̃(xi)‖2 , (3.20)

39

3 State of the art

where approximated functions are determined as

Φ̃(xi) =
∑

j∈J
[T]j,iΦ(xj) .

It is important that (3.20) can be expressed in terms of dot products and thus the kernel
functions can be employed instead of working with functions Φ(xi) explicitly. The optimal
coefficient matrix T ∈ R

l×m can be again computed analytically when J is fixed. It can
be simply shown that the later task (3.20) is an approximation of the former task (3.19).
More precisely, the trace of the matrix K − K̃ equals the objective function εΦ(J) of
task (3.20). The problem is to select the optimal subset J ∗ in a reasonable computational
time. Smola and Schölkopf proposed the same greedy approach to optimize (3.20). The
procedure is outlined in Algorithm (10).

Algorithm 10: Sparse Matrix Approximation

1. Initialization. Set J = {∅}.

2. Repeat until εΦ(J) ≤ ε:

a) Draw random subset M from I \ J .

b) Select the index r = argmax
r∈M

εΦ(J ∪ {r}) and update J = J ∪ {r}.

3.5 Modified multiclass SVM formulation

The problem of learning the multiclass SVM classifier was described in Section 1.4.2.
Namely, the decomposition based approaches and the formulation of the multiclass SVM
problem were mentioned. The use of decomposition approaches is computationally more
effective compared to the multiclass SVM formulation. There was an attempt to derive an
approximated multiclass SVM problem which is more convenient for optimization. This
approach is described here.

The original multiclass SVM learning problem is expressed as a specific QP task (1.21)
and its dual formulation (1.22) which contains data in terms of dot products. There
are many QP solvers developed for the binary SVM problem which were mentioned in
Section 3.1. The same holds for the singleclass SVM problem which is even simpler
than the binary class problem. In contrast, the linear constraints of the multiclass SVM
problem (1.22) are considerably more complicated. This fact is the main obstacle to
design efficient algorithms which can deal with large problems. For instance, Weston and
Watkins [57], who proposed the multiclass SVM formulation performed, its experimental
evaluation on small training sets only (the maximal number of training examples was
about 500).

Hsu and Lin [25] proposed to modify the objective function (1.21) of the multiclass SVM
formulation by adding the term 1

2

∑

y∈Y b
2
y (by is the bias of the y-th linear discriminant

40

3.5 Modified multiclass SVM formulation

function). This modification causes constraints of the dual task becomes simpler compared
to the original one. The modified objective function is

(w∗
y, y ∈ Y, b∗y, y ∈ Y, ξ) = argmin

wy,y∈Y

by,y∈Y
ξ




1

2

∑

y∈Y
(‖wy‖2 + b2y) + C

∑

i∈I

∑

y∈Y\yi

ξy
i



 , (3.21)

while the linear constraints remain the same

〈wyi
,xi〉 + byi

− (〈wy,xi〉 + by) ≥ 1 − ξy
i , i ∈ I, y ∈ Y \ yi ,

ξy
i ≥ 0 , i ∈ I, y ∈ Y \ yi .

The authors named the modified problem (3.21) as “bounded formulation”, abbreviated
BSVM. The dual expression of the primal formulation (3.21) becomes

α∗ = argmax
α




∑

i∈I

∑

j∈I




1

2
δ(yi, j)SiSj −

∑

y∈Y
αy

iα
yi

j +
1

2

∑

y∈Y
αy

i α
y
j



 (〈xi,xj〉 + 1) − 2
∑

i∈I

∑

y∈Y
αy

i



 ,

(3.22)
subject to

0 ≤ αy
i ≤ C , i ∈ I , y ∈ Y ,

0 = αyi

i , i ∈ I ,
Si =

∑

y∈Y
αy

i , i ∈ I .
(3.23)

Comparing the constrains (1.23) of the original dual multiclass SVM task with the con-
strains (3.23) of the BSVM dual formulation shows that a set of M linear constraints
disappeared in the later case. Hsu and Lin [25] designed a decomposition method able
to solve the dual of the BSVM formulation efficiently. The authors also experimentally
compared the multiclass BSVM formulation to other approaches.

The addition of the term b2 to the definition of the binary SVM was previously used
in [19, 35] which also simplifies the binary task. A theoretical analysis of a connection
between the original and modified binary task is given in [35]. Namely, it was shown that
the optimal solutions of the original and the modified task are usually very close.

41

4 Quadratic Programming solvers

This chapter presents a contribution of the thesis which is related to the problem of
solving the Quadratic Programming (QP) task. Namely, the QP solvers designed for the
Generalized Minimal Norm Problem (GMNP) and the Generalized Nearest Point Problem
(GNPP) are in question. The GMNP and GNPP arise from the MNP and NPP after
adding a linear term into the quadratic criterion and assuming that the Hessian of the
criterion is an arbitrary symmetric positive definite matrix. In other words, the original
problems are recovered after the linear term is removed and the Hessian equals to the
product of two identical matrices. A summary of known algorithms for solving the MNP
and the NPP was given in Section 3.3. Even though the algorithms are different it will be
shown that they can be described in a common framework. Moreover, the algorithms will
be extended to solve the generalized formulations, i.e., the GMNP and the GNPP. A novel
and faster algorithm for optimization of the GMNP and the GNPP will be proposed. The
performance of algorithms will be compared on synthetical and real problems. The NPP
algorithms were originally used for learning of the binary SVM classifier with L2-soft
margin. The generalized formulations, however, match more optimization problems from
machine learning. A list of some applications of the proposed QP solvers will be presented.

4.1 Generalized minimal norm and nearest point problems

Let a quadratic objective function

Q(α) =
1

2
〈α,Hα〉 + 〈c,α〉 , (4.1)

be determined by a vector c ∈ R
m and a symmetric positive definite matrix H ∈ R

m×m.
Let A ⊆ R

m be a convex set of feasible solutions α ∈ A. The goal is to solve the following
task

α∗ = argmin
α∈A

(
1

2
〈α,Hα〉 + 〈c,α〉

)

. (4.2)

Let I1 and I2 be non-empty disjoint sets of indices such that I1 ∪I2 = I = {1, 2, . . . ,m}.
Let vectors e,e1,e2 ∈ R

m be defined as follows

[e]i = 1 , i ∈ I , [e1]i =

{
1 for i ∈ I1

0 for i ∈ I2
, [e2]i =

{
0 for i ∈ I1

1 for i ∈ I2
.

The optimization problems (4.2) with two distinct feasible sets A are assumed. In the
first case, the Generalized Minimal Norm Problem (GMNP) is the optimization prob-
lem (4.2) with the feasible set A determined by

A = {α ∈ R
m: 〈α,e〉 = 1,α ≥ 0} . (4.3)

In the second case, the Generalized Nearest Point Problem (GNPP) is the optimization
problem (4.2) with the feasible set A determined by

A = {α ∈ R
m: 〈α,e1〉 = 1, 〈α,e2〉 = 1 ,α ≥ 0} , (4.4)

42

4.2 Sequential algorithm

where vectors e,e1,e2 ∈ R
m are defined as follows

[e]i = 1 , i ∈ I , [e1]i =

{
1 for i ∈ I1

0 for i ∈ I2
, [e2]i =

{
0 for i ∈ I1

1 for i ∈ I2
.

The GMNP and GNPP are convex optimization problems as both the objective func-
tions (4.1) and the feasible sets (4.3) and (4.4), respectively, are convex.

4.2 Sequential algorithm

The optimization problem (4.2) with the feasible set A can be transformed to a sequence
of auxiliary optimization problems with the same objective function (4.1) but with much
simpler auxiliary feasible sets A(0), A(1), . . . ,A(t). Solving the problem (4.2) with respect
to the auxiliary feasible sets yields a sequence of solutions α(0),α(1), . . . ,α(t). The se-
quence of feasible sets A(0), A(1), . . . ,A(t) is assumed to be constructed such that (i) the
sequence Q(α(0)) > Q(α(1)) > . . . > Q(α(t)) converges to the optimal solution Q(α∗) and
(ii) the auxiliary problems can be solved efficiently. The sequential algorithm solving the
QP task which implements the idea mentioned above is summarized by Algorithm 11.

Algorithm 11: A Sequential Optimization Algorithm

1. Initialization. Select α(0) ∈ A.

2. Repeat until stopping condition is satisfied:

a) Select a feasible set A(t+1) such that

Q(α(t)) > min
α∈A(t+1)

Q(α) . (4.5)

b) Solve the auxiliary task

α(t+1) = argmin
α∈A(t+1)

Q(α) . (4.6)

Two cases of simple auxiliary feasible sets A(t+1) will be assumed:

• A line segment

A(t+1)
L = {α ∈ R

m:α = (1 − τ)α(t) + τβ(t), 0 ≤ τ ≤ 1} ,

where α(t) is the current solution and β(t) ∈ A is selected such that the set A(t+1)
L

satisfies the condition (4.5).

• A triangle

A(t+1)
T = {α ∈ R

m:α = α(t)+τ(β(t)−α(t))+ω(γ(t)−α(t)), 0 ≤ τ, 0 ≤ ω, τ+ω ≤ 1},

where α(t) is the current solution and β(t) ∈ A, γ(t) ∈ A are selected such that the

set A(t+1)
T satisfies the condition (4.5).

43

4 Quadratic Programming solvers

The optimization task (4.6) has an analytical solution for the case that the feasible set is
a line segment or a triangle. Moreover, there exist simple rules to construct the vectors
β(t), γ(t) which guarantee that condition (4.5) is satisfied.

The next sections describe particular algorithms to solve the QP task which are special
instances of the sequential Algorithm 11. The algorithms differ in the used auxiliary
feasible set, i.e., whether the line segment or the triangle approximation is used. Another
difference lies in the rule to construct the vectors β(t) and γ(t). On the other hand, the
optimization problem (4.6) over auxiliary feasible set has the same analytical solution
for all algorithms. The analytical solution of task (4.6) for a line segment is derived in
Section 4.4 and for a triangle in Section 4.5.

Algorithm (11) monotonically decreases the objective function Q(α) until it gets suffi-
ciently close to the optimal valueQ(α∗), which is indicated by the used stopping condition.
The stopping conditions are derived in Section 4.3.

Particular algorithms for the GMNP are described in Section 4.6. Section 4.7 describes
algorithms for the GNPP. The convergence proofs are introduced in sections describing
the corresponding algorithm.

4.3 Stopping conditions

There is a need to stop the algorithm when it gets sufficiently close to the optimum. Two
reasonable stopping conditions are assumed:

1. ε-optimal solution. The algorithm stops if the inequality

Q(α) −Q(α∗) ≤ ε , (4.7)

holds for a prescribed ε > 0.

2. Scale invariant ε-optimal solution. The algorithm stops if the inequality

Q(α) −Q(α∗) ≤ ε|Q(α)| , (4.8)

holds for a prescribed ε > 0.

The stopping conditions (4.7) and (4.8) can be evaluated despite the unknown optimal
value Q(α∗) because a lower bound QLB(α) can be used instead. Let the inequality
Q(α∗) ≥ QLB(α) hold. Then the satisfaction of the condition

Q(α) −QLB(α) ≤ ε ,

implies that condition (4.7) holds as well. Similarly, if the condition

Q(α) −QLB(α) ≤ ε|Q(α)| ,

holds then (4.8) is also satisfied.
The current value of the objective function Q(α) can be used as an upper bound of

the optimal value Q(α∗). The lower bound QLB(α) has to be determined such that the
following inequality holds

Q(α) ≥ Q(α∗) ≥ QLB(α) , ∀α ∈ A .

44

4.3 Stopping conditions

The equality occurs if α is the solution of the task (4.2). The computation of the lower
bound QLB(α) depends on the feasible set used. The lower bounds below are derived
separately for the feasible set (4.3) and (4.4), respectively.

In the case of the GMNP with the feasible set A defined by (4.3), the following lower
bound QLB(α) can be used

QLB(α) = min
i∈I

[Hα + c]i −
1

2
〈α,Hα〉 .

The inequality Q(α∗) ≥ QLB(α), ∀α ∈ A is proven in the following derivation. Let the
vector ∇Q(α∗) be the gradient of the quadratic function Q evaluated at the vector α∗.
It follows from the convexity of the function Q(α) that

Q(α∗) + 〈(α − α∗),∇Q(α∗)〉 ≤ Q(α) ,

1

2
〈α∗,Hα∗〉 + 〈α∗, c〉 + 〈(α − α∗), (Hα∗ + c)〉 ≤ 1

2
〈α,Hα〉 + 〈α, c〉 ,

which can be further arranged to

〈α∗, (Hα + c)〉 − 1

2
〈α,Hα〉 ≤ 1

2
〈α∗,Hα∗〉 + 〈α∗, c〉 ,

min
i∈I

[Hα + c]i −
1

2
〈α,Hα〉 ≤ 1

2
〈α∗,Hα∗〉 + 〈α∗, c〉 .

The last inequality holds true as the convex combination of real numbers cannot be less
than their minimum. It remains to show that the equality QLB(α∗) = Q(α∗) occurs in
the optimum. The Lagrangian of the optimization problem (4.2) and the feasible set (4.3)
reads

L(α, λ,µ) =
1

2
〈α,Hα〉 + 〈c,α〉 + λ(〈α,e〉 − 1) − 〈α,µ〉 ,

and the corresponding KKT conditions (c.f. Section 1.6) are defined as

∂L(α, λ,µ)

∂α
= Hα + c + λe − µ = 0 , (4.9)

〈α,e〉 = 1 , (4.10)

α ≥ 0 , (4.11)

〈α,µ〉 = 0 , (4.12)

µ ≥ 0 . (4.13)

From conditions (4.9), (4.11), (4.12), and (4.13) it follows that

[Hα + c]i + λ ≥ 0 , i ∈ I ,
[Hα + c]i + λ = 0 , i ∈ I∅ = {αi ∈ I:αi > 0} . (4.14)

Multiplying (4.9) by α and using (4.10), (4.12) yields

〈α,Hα〉 + 〈α, c〉 + λ = 0 . (4.15)

Combination of (4.14) and (4.15) gives

〈α,Hα〉 + 〈α, c〉 = min
i∈I

[Hα + c]i ,

45

4 Quadratic Programming solvers

which proves the equality QLB(α∗) = Q(α∗).
In the case of the GNPP with the feasible set A defined by (4.4), the lower bound QLB

reads

QLB(α) = min
i∈I1

[Hα + c]i + min
i∈I2

[Hα + c]i −
1

2
〈α,Hα〉 .

The derivation of the inequality Q(α∗) ≥ QLB(α), α ∈ A, is similar to the previous case
and thus is omitted. The equality QLB(α∗) = Q(α∗) occurs in the optimum which can
be shown as follows. The Lagrangian of the optimization problem (4.2) and the feasible
set (4.4) reads

L(α, λ1, λ2,µ) =
1

2
〈α,Hα〉 + 〈c,α〉 + λ1(〈α,e1〉 − 1) + λ2(〈α,e2〉 − 1) − 〈α,µ〉 .

The corresponding KKT conditions are defined as

∂L(α, λ1, λ2,µ)

∂α
= Hα + c + λ1e1 + λ2e2 − µ = 0 , (4.16)

〈α,e1〉 = 1 , (4.17)

〈α,e2〉 = 1 , (4.18)

α ≥ 0 , (4.19)

〈α,µ〉 = 0 , (4.20)

µ ≥ 0 . (4.21)

From conditions (4.16), (4.19), (4.20), and (4.21) follows that

[Hα + c]i + λ1 ≥ 0 , i ∈ I1 ,
[Hα + c]i + λ2 ≥ 0 , i ∈ I2 ,
[Hα + c]i + λ1 = 0 , i ∈ I1 ∩ I∅ ,
[Hα + c]i + λ2 = 0 , i ∈ I2 ∩ I∅ ,

(4.22)

where the set I∅ = {αi ∈ I:αi > 0}. Multiplying (4.16) by α and using (4.17), (4.18), (4.20)
yields

〈α,Hα〉 + 〈α, c〉 + λ1 + λ2 = 0 . (4.23)

Combination of (4.22) and (4.23) gives

〈α,Hα〉 + 〈c,α〉 = min
i∈I1

[Hα + c]i + min
i∈I2

[Hα + c]i ,

which proves the equality QLB(α∗) = Q(α∗).

4.4 Solution for a line segment

Let the feasible set A(t+1)
L be a line segment between vectors α(t) and β(t) so that

A(t+1)
L = {α ∈ R

m:α = α(t)(1 − τ) + τβ(t), 0 ≤ τ ≤ 1} . (4.24)

The quadratic objective function (4.1) defined over the line segment A(t+1)
L reads

Q
(t+1)
L (τ) = Q

(

α(t)(1 − τ) + τβ(t)
)

=
1

2
(1 − τ)2〈α(t),Hα(t)〉 + τ(1 − τ)〈β(t),Hα(t)〉

+
1

2
τ2〈β(t),Hβ(t)〉 + (1 − τ)〈c,α(t)〉 + τ〈c,β(t)〉 .

(4.25)

46

4.4 Solution for a line segment

The objective function is now parametrized by a single τ . The solution of the QP task (4.2)

with respect to the feasible set A(t+1)
L can be written as

α(t+1) = α(t)(1 − τ∗) + τ∗β(t) , (4.26)

where τ∗ is the solution of the following task

τ∗ = argmin
0≤τ≤1

Q
(t+1)
L (τ) .

It is obvious thatQ
(t+1)
L (0) = Q(α(t)) andQ

(t+1)
L (1) = Q(β(t)). The derivative ofQ

(t+1)
L (τ)

with respect to τ reads

∂Q
(t+1)
L (τ)

∂τ
= (τ−1)〈α(t),Hα(t)〉+(1−2τ)〈β(t),Hα(t)〉+τ〈β(t),Hβ(t)〉+〈c, (β(t)−α(t))〉 .

(4.27)
The derivative (4.27) at zero equals to

∂Q
(t+1)
L (τ)

∂τ

∣
∣
∣
∣
∣
τ=0

= 〈(β(t) − α(t)), (Hα(t) + c)〉 . (4.28)

If the vector β(t) is selected such that the derivative (4.28) is negative, i.e., the following
inequality holds

〈(β(t) − α(t)), (Hα(t) + c)〉 < 0 , (4.29)

then it implies an improvement in the optimized criterion so that

min
0≤τ≤1

Q
(t+1)
L (τ) < Q(α(t)) .

The optimal τ∗ which minimizes the objective Q
(t+1)
L (τ) can be found by setting the

derivative (4.27) to zero and solving for τ . This yields

τ∗ = min

(

1,
〈(α(t) − β(t)), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t),Hα(t)〉 + 〈β(t),Hβ(t)〉

)

, (4.30)

where the minimum min(1, ·) guarantees that the solution does not leave the feasible

set A(t+1)
L .

The above derivation can be used to solve the auxiliary subtasks (4.6) of Algorithm 11.
The new solution α(t+1) computed by (4.30) and (4.26) guarantees that α(t+1) minimizes

the objective function Q(α) over the line segment A(t+1)
L . The condition (4.29) implies

that the optimization over the line segment A(t+1)
L to an improvement

∆(t+1) = Q(α(t)) −Q(α(t+1)) = Q(α(t)) − min
0≤τ≤1

Q
(t+1)
L (τ) > 0 .

From (4.25) and (4.30) it follows that for τ < 1 the improvement ∆(t+1) equals

∆(t+1) =
〈(α(t) − β(t)), (Hα(t) + c)〉2

2(〈α(t),Hα(t)〉 − 2〈α(t),Hβ(t)〉 + 〈β(t),Hβ(t)〉) , (4.31)

and for τ = 1 it is

∆(t+1) =
1

2
〈α(t),Hα(t)〉 + 〈c,α(t)〉 −

(
1

2
〈β(t),Hβ(t)〉 + 〈c,β(t)〉

)

= Q(α(t)) −Q(β(t)) . (4.32)

47

4 Quadratic Programming solvers

4.5 Solution for a triangle

Let the feasible set A(t+1)
T be a triangle given by the vectors α(t), β(t) and γ(t) so that

A(t+1)
T = {α ∈ R

m:α = α(t) + τ(β(t) − α(t)) + ω(γ(t) − α(t)), 0 ≤ τ, 0 ≤ ω, τ + ω ≤ 1} .
(4.33)

The quadratic objective function (4.1) defined over the triangle A(t+1)
T reads

Q
(t+1)
T (τ, ω) = Q(α(t) + τ(β(t) − α(t)) + ω(γ(t) − α(t)))

=
1

2
(1 − τ − ω)2〈α(t),Hα(t)〉 + τ(1 − ω − τ)〈α(t),Hβ(t)〉

+ω(1 − ω − τ)〈α(t),Hγ(t)〉 +
1

2
τ2〈β(t),Hβ(t)〉 + τω〈β(t),Hγ(t)〉

+
1

2
ω2〈γ(t),Hγ(t)〉 + (1 − τ − ω)〈c,α(t)〉 + τ〈c,β(t)〉 + ω〈c,γ(t)〉 .

The objective function is now parametrized by two variables τ and ω. The solution of the

task (4.2) with respect to the feasible set A(t+1)
T can be written as

α(t+1) = α(t) + τ∗(β(t) − α(t)) + ω∗(γ(t) − α(t)) , (4.34)

where τ∗ and ω∗ are the solutions of the following task

(τ∗, ω∗) = argmin
τ≥0
ω≥0

τ+ω≤1

Q
(t+1)
T (τ, ω) . (4.35)

It is obvious thatQ
(t+1)
T (0, 0) = Q(α(t)), Q

(t+1)
T (1, 0) = Q(β(t)) andQ

(t+1)
T (0, 1) = Q(γ(t)).

The derivatives of Q
(t+1)
T (τ, ω) with respect to τ and ω, respectively, yield

∂Q
(t+1)
T (τ, ω)

∂τ
= (ω + τ − 1)〈α(t),Hα(t)〉 + (1 − ω − 2τ)〈α(t),Hβ(t)〉

−ω〈α(t),Hγ(t)〉 + τ〈β(t),Hβ(t)〉 + ω〈β(t),Hγ(t)〉
−〈c,α(t)〉 + 〈c,β(t)〉 . (4.36)

∂Q
(t+1)
T (τ, ω)

∂ω
= (ω + τ − 1)〈α(t),Hα(t)〉 − τ〈α(t),Hβ(t)〉

(1 − 2ω − τ)〈α(t),Hγ(t)〉 + τ〈β(t),Hγ(t)〉 + ω〈γ(t),Hγ(t)〉
−〈c,α(t)〉 + 〈c,γ(t)〉 . (4.37)

If the vectors β(t) ∈ A and γ(t) ∈ A are selected such that the derivatives (4.36) and (4.37)
at zero are negative, i.e.,

∂Q
(t+1)
T (τ, ω)

∂τ

∣
∣
∣
∣
∣

τ=0
ω=0

= 〈(β(t) − α(t)), (Hα(t) + c)〉 < 0

∂Q
(t+1)
T (τ, ω)

∂ω

∣
∣
∣
∣
∣

τ=0
ω=0

= 〈(γ(t) − α(t)), (Hα(t) + c)〉 < 0 ,

48

4.5 Solution for a triangle

then the optimization subtask (4.35) leads to the improvement, i.e.,

Q(α(t+1)) = min
τ≥0
ω≥0

τ+ω≤1

Q
(t+1)
T (τ, ω) < Q(α(t)) .

The vector α(t+1) which minimizes the objective function Q(α) over the set A(t+1)
T can

be computed analytically by solving the unconstrained problem

(τ, ω) = argmin
τ ′,ω′

Q
(t+1)
T (τ ′, ω′) . (4.38)

If the conditions
τ ≥ 0 , ω ≥ 0 and τ + ω ≤ 1 ,

hold then the α(t+1) = α(t) + τ(β(t) − α(t)) + ω(γ(t) − α(t)). This occurs if the optimal
α(t+1) lies inside the triangle AT . In the opposite case, α(t+1) lies on one of the three edges
of the triangle AT . If this occurs then the optimal α(t+1) is computed by optimizing over
the line segments (α(t),β(t)), (α(t),γ(t)) and (β(t),γ(t)). The solution which yields the
biggest improvement is taken. The optimization over a line segment was described in
Section 4.4.

The analytical solution of the unconstrained problem (4.38) can be found by setting
the derivatives (4.36) and (4.36) to zero and solving for τ and ω which yields

τ =
a3a4 − a1a5

a2
1 − a2a4

and ω =
a2a5 − a3a1

a2
1 − a2a4

, (4.39)

where

a1 = 〈α(t),Hα(t)〉 − 〈α(t),Hβ(t)〉 − 〈α(t),Hγ(t)〉 + 〈β(t),Hγ(t)〉
a2 = 〈(α(t) − β(t)),H(α(t) − β(t))〉
a3 = 〈(β(t) − α(t)), (Hα(t) + c)〉
a4 = 〈(α(t) − γ(t)),H(α(t) − γ(t))〉
a5 = 〈(γ(t) − α(t)), (Hα(t) + c)〉 .

Algorithm 12 summarizes how to optimize the quadratic criterion Q(α) over the triangle

A(t+1)
T given by vectors (α(t),β(t),γ(t)).

Algorithm 12: Optimization of Q(α) over triangle A(t+1)
T

1. Solve the unconstrained problem

(τ, ω) = argmin
τ ′,ω′

Q
(t+1)
T (τ ′, ω′) ,

using (4.39). If τ ≥ 0 and ω ≥ 0 and 1 − τ − ω > 0 then the solution vector reads

α(t+1) = α(t) + τ(β(t) − α(t)) + ω(γ(t) − α(t)) ,

otherwise continue with Step 2.

49

4 Quadratic Programming solvers

2. Optimize Q(α) over the edges of the triangle A(t+1)
T :

a) Compute vectors α
(t+1)
1 , α

(t+1)
2 and α

(t+1)
3 which minimize the function Q(α)

over the line segments between vectors (α(t),β(t)), (α(t),γ(t)) and (β(t),γ(t)).

The vector α
(t+1)
i is computed for given pair (ai, bi) as:

α
(t+1)
i =







ai for τi ≤ 0 ,
bi for τi ≥ 1 ,

ai(1 − τi) + τibi otherwise ,

where

τi =
〈(ai − bi), (Hai + c)〉

〈ai,Hai〉 − 2〈bi,Hai〉 + 〈bi,Hbi〉
.

b) Select the vector with the minimal value of Q, i.e.,

α(t+1) = argmin
i∈{1,2,3}

Q(α
(t+1)
i) .

4.6 Algorithms for the generalized minimal norm problem

The GMNP to solve is

α∗ = argmin
α∈A

(
1

2
〈α,Hα〉 + 〈c,α〉

)

, (4.40)

where the feasible set is defined by

A = {α ∈ R
m: 〈α,e〉 = 1,α ≥ 0} . (4.41)

The algorithms introduced bellow are special cases of the general framework described
by Algorithm 11. Particular algorithms differ in the way how the auxiliary feasible set
A(t+1) is constructed in Step 2(a) of Algorithm 11. The optimization over A(t+1) has for
all cases an analytical solution because the line segment or the triangle approximation is
used in all algorithms.

The algorithms introduced below are extensions of the original algorithms for the MNP
and the NPP. Namely, the algorithm proposed by Kozinec [32], Mitchell et al. [36], Kowal-
czyk [31] and Keerthi et al. [29] will be extended. The original variants are recovered
after H = XXT , c = 0 is substituted and the vector w = Xα is updated instead of the
vector α. A novel proposed method, named Improved Mitchell-Demyanov-Malozemov
algorithm, combines ideas of the work by Mitchell et al. [36] and Kowalczyk [31].

4.6.1 Kozinec algorithm for GMNP

The Kozinec Algorithm 13 approximates the feasible set A by a line segment A(t+1)
L .

The line segment A(t+1)
L is constructed between the current solution α(t) and a vector

50

4.6 Algorithms for the generalized minimal norm problem

β(t) ∈ A. The vector β(t) ∈ A is defined such that the derivative of the function QL at
zero is minimal, i.e.,

∂QL(τ)

∂τ

∣
∣
∣
∣
τ=0

= 〈(β(t) − α(t)), (Hα(t) + c)〉

= min
β∈A

〈(β − α(t)), (Hα(t) + c)〉 (4.42)

= min
i∈I

[Hα(t) + c]i − 〈α(t), (Hα(t) + c)〉 < 0 .

Notice that the task (4.42) is a special instance of the linear programming its solution
can be simply found. The negative derivative implies that the optimization over the line

segment A(t+1)
L leads to the improvement in the optimized criterion Q.

Algorithm 13: Kozinec Algorithm for GMNP

1. Initialization. Set α(0) ∈ A.

2. Repeat until stopping condition is satisfied:

a) Construct vector β(t) ∈ A such that

[β(t)]i =

{
1 for i = u ,
0 for i 6= u ,

∀i ∈ I , (4.43)

where
u ∈ argmin

i∈I
[Hα(t) + c]i . (4.44)

b) Update
α(t+1) = α(t)(1 − τ) + τβ(t) ,

where

τ = min

(

1,
〈(α(t) − β(t)), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t),Hα(t)〉 + 〈β(t),Hβ(t)〉

)

.

The Kozinec Algorithm 13 stops after a finite number of iterations if the ε-optimality
condition (4.7) is applied. The upper bound on the maximal number of iterations tmax

can be derived using the following quantities: the initial value of the criterion Q(α(0)),
the value of the optimal solution Q(α∗), the number of variables m ∈ N and the diameter
D ∈ R

+ of the minimal ball enclosing column vectors of the matrix R = [r1, . . . , rm], where
H = RT R. The existence of matrix R ∈ R

m×m follows from the positive definiteness
and symmetry of the input matrix H, because any such matrix can be decomposed as
H = RT R. Thus the diameter D is the solution of the following task

D2 = max
α∈A,β∈A

(〈α,Hα〉 − 2〈α,Hβ〉 + 〈β,Hβ〉)
= max

α∈A,β∈A
(〈Rα,Rα〉 − 2〈Rα,Rβ〉 + 〈Rβ,Rβ〉)

= max
α∈A,β∈A

‖Rα − Rβ‖2 > 0 .

(4.45)

51

4 Quadratic Programming solvers

Theorem 4.1 Kozinec Algorithm 13 started from an arbitrary vector α(0) ∈ A returns the
vector α satisfying for any ε > 0 the ε-optimality condition

Q(α) −Q(α∗) ≤ ε , (4.46)

after at most tmax <∞ iterations, where

tmax =
2D2

ε2
(Q(α(0)) −Q(α∗)) +m . (4.47)

proof: The proof is based on showing that in each iteration the improvement ∆(t+1) =
Q(α(t)) −Q(α(t+1)) of the optimized criterion Q is bounded by

∆(t+1) ≥ ε2

2D2
> 0 , (4.48)

except for at most m iterations. The violation of the stopping condition (4.46) implies
(c.f. Section 4.3) that

〈α(t),Hα(t)〉 + 〈α(t), c〉 − min
i∈I

[Hα(t) + c]i > ε . (4.49)

The improvement ∆(t+1) is, for general β(t), given by (4.31) if τ < 1. Substituting the
vector β(t) constructed by rule (4.43) to formula (4.31) yields

∆(t+1) =
(〈α(t),Hα(t)〉 + 〈α(t), c〉 − [Hα(t) + c]u)2

2(〈α(t),Hα(t)〉 − 2[Hα(t)]u + [H]u,u)
, (4.50)

where u = argmini∈I [Hα(t) + c]i. The inequality (4.49) can be used to bound the nu-
merator of (4.50). Similarly, the squared diameter D2 can be used as an upper bound on
the denominator of (4.50) which follows from (4.45). The combination of (4.49), (4.45)
and (4.50) gives directly the bound (4.48) on the minimal improvement for the case τ < 1.

The improvement ∆(t+1) for the case τ = 1 cannot be generally bounded. However, this
case can occur at most m times. This implies from three facts: (i) if τ = 1 then α(t+1) =
β(t), (ii) there are only m distinct vectors β(t) which can be constructed by (4.43) and
(iii) the sequence α(0), α(1), . . ., α(t) cannot contain two equal vectors as the inequalities
Q(α(0)) > Q(α(1)) > . . . > Q(α(t)) hold.

Using the bound (4.48) and the fact that the improvement of at most m iterations
cannot be bounded yields the inequality

Q(α∗) ≤ Q(α(t)) ≤ Q(α(0)) − ε2

2D2
(t−m) ,

which can be further rearranged to

t ≤ 2D2

ε2
(Q(α(0)) −Q(α∗)) +m ,

which ends the proof.

Notice that the term m can be excluded from the bound (4.47) if the Kozinec algorithm
starts from the vector

[α(0)]i =

{
1 for i = u ,
0 for i 6= u ,

(4.51)

where u ∈ argmini∈I([H]i,i + [c]i). The vector (4.51) is a good candidate for an initial
solution made in Step 1 of Kozinec Algorithm 13.

52

4.6 Algorithms for the generalized minimal norm problem

4.6.2 Kowalczyk algorithm for GMNP

The Kowalczyk Algorithm 14 approximates the feasible set A by a line segment A(t+1)
L .

The algorithm builds in each step a set of candidate line segments A(t+1)
L(i) , i ∈ I, con-

structed between the current solution α(t) and the vectors β
(t)
i , i ∈ I. The vector β

(t)
i

for given i ∈ I is constructed by one of two different rules. The first rule is the same as
the rule used in the Kozinec Algorithm 13, however, the second rule can be seen as its

inversion. Consequently, the line segment A(t+1)
L(r)

which leads to the biggest improvement
is used for approximation of the feasible set A. The Kowalczyk algorithm for the GMNP
reads:

Algorithm 14: Kowalczyk Algorithm for GMNP

1. Initialization. Set α(0) ∈ A.

2. Repeat until stopping condition is satisfied:

a) For all i ∈ I compute an improvement

∆
(t+1)
i = Q(α(t)) − min

α∈A(t+1)
L(i)

Q(α) , (4.52)

using formulas (4.30), (4.31) and (4.32). The line segments A(t+1)
L(i) , i ∈ I,

are given by the vectors β
(t)
i , i ∈ I defined as follows. If [Hα(t) + c]i <

〈α(t), (Hα(t) + c〉 then

[β
(t)
i]j =

{
1 for j = i ,
0 for j 6= i ,

∀j ∈ I . (4.53)

If [Hα(t)+c]i > 〈α(t), (Hα(t) +c)〉 and [α(t)]i < 1 then the vector β(t) is defined
by

[β
(t)
i]j =

{
0 for j = i ,

[α(t)]j
1−[α(t)]i

for j 6= i ,
∀j ∈ I . (4.54)

For [Hα(t) + c]i > 〈α(t), (Hα(t) + c)〉 and [α(t)]i = 1 set ∆
(t+1)
i = 0. Finally

choose

r ∈ argmax
i∈I

∆
(t+1)
i .

b) Update

α(t+1) = α(t)(1 − τ) + τβ(t)
r ,

where

τ = min

(

1,
〈(α(t) − β

(t)
r), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t)
r ,Hα(t)〉 + 〈β(t)

r ,Hβ
(t)
r 〉

)

.

53

4 Quadratic Programming solvers

There are two distinct rules (4.53) and (4.54) used to construct the line segment A(t+1)
L(i)

for given i ∈ I. It can be shown that just one of these two rules can lead to an improve-

ment. Let QL(i) be the criterion Q parametrized over the line segment A(t+1)
L(i) constructed

by rule (4.53). Substituting (4.53) to (4.27) yields the derivative of QL(i) at zero which
reads

∂QL(i)(τ)

∂τ

∣
∣
∣
∣
τ=0

= [Hα(t) + c]i − 〈α(t), (Hα(t) + c)〉 . (4.55)

Similarly for the rule (4.54) the derivative reads

∂QL(i)(τ)

∂τ

∣
∣
∣
∣
τ=0

=
[α(t)]i

1 − [α(t)]i

(

〈α(t), (Hα(t) + c)〉 − [Hα(t) + c]i

)

. (4.56)

The negative sign of the derivative of QL(i) implies an improvement in the optimized

criterion. Comparison between (4.55) and (4.56) shows that the sign of [Hα(t) + c]i −
〈α(t), (Hα(t) + c)〉 determines which rule is to be applied. In the case that the deriva-
tive (4.55) is positive and [α(t)]i = 1 then no improvement can be achieved.

Kowalczyk Algorithm 14 stops after a finite number of iterations if the ε-optimality
condition (4.7) is applied.

Theorem 4.2 Kowalczyk Algorithm 14 started from an arbitrary vector α(0) ∈ A returns
the vector α satisfying for any ε > 0 the ε-optimality condition

Q(α) −Q(α∗) ≤ ε , (4.57)

after at most tmax <∞ iterations, where

tmax =
2D2

ε2
(Q(α(0)) −Q(α∗)) +m . (4.58)

proof: Kowalczyk Algorithm 14 in each iterations selects the line segment A(t+1)
L(r) out of

candidates A(t+1)
L(i) , i ∈ I, which leads to the biggest improvement. The set of candidates

contains also the line segment which is used by the Kozinec Algorithm 13. This implies
that the bound on the maximal number of iterations derived for Kozinec Algorithm 13
holds also for Kowalczyk Algorithm 14.

4.6.3 Mitchell-Demyanov-Malozemov algorithm for GMNP

The Mitchell-Demyanov-Malozemov (MDM) algorithm reads:

Algorithm 15: MDM Algorithm for GMNP

1. Initialization. Set α(0) ∈ A.

2. Repeat until stopping condition is satisfied:

54

4.6 Algorithms for the generalized minimal norm problem

a) Construct vector β(t) ∈ A such that

[β(t)]i =







[α(t)]u + [α(t)]v for i = u ,
0 for i = v ,

[α(t)]i for i 6= u ∧ i 6= v,

∀i ∈ I , (4.59)

where

u ∈ argmin
i∈I

[Hα(t) + c]i , and v ∈ argmax
i∈I∅

[Hα(t) + c]i . (4.60)

b) Update
α(t+1) = α(t)(1 − τ) + τβ(t) ,

where

τ = min

(

1,
〈(α(t) − β(t)), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t),Hα(t)〉 + 〈β(t),Hβ(t)〉

)

.

The MDM Algorithm 15 approximates the feasible set A by a line segment A(t+1)
L

constructed between the current solution α(t) and a vector β(t) ∈ A. The vector β(t)

equals to the current solution α(t) except for two entries u and v. The indices u and v
are determined to maximize the quantity

κ(u, v) = [Hα(t) + c]v − [Hα(t) + c]u . (4.61)

This means that
(u, v) ∈ argmax

(u′,u′)∈I×I
κ(u′, v′) , (4.62)

which has the solution given by (4.60). It will be shown below that κ(u, v) approximates
value of the improvement ∆(t+1) = Q(α(t)) − Q(α(t+1)) which should be maximized.
Notice that the index v must be from I∅ = {i ∈ I: [α(t)]i > 0} otherwise β(t) would
equal to α(t). Further, it is easy to see that κ(u, v) > 0 except for α(t) equal to the
optimum which follows from the KKT conditions (4.9). The value of the derivative of QL

(c.f. (4.28)) for β(t) constructed by (4.59) reads

∂QL(τ)

∂τ

∣
∣
∣
∣
τ=0

= [α(t)]v

(

[Hα(t) + c]u − [Hα(t) + c]v

)

< 0 . (4.63)

The negative sign of the derivative (4.63) follows from κ(u, v) > 0 and thus the optimiza-
tion over the line segment must lead to an improvement in the optimized criterion.

MDM Algorithm 15 stops after a finite number of iterations if the ε-optimality condi-
tion (4.7) is applied:

Theorem 4.3 MDM Algorithm 15 started from an arbitrary vector α(0) ∈ A returns the
vector α satisfying for any ε > 0 the ε-optimality condition

Q(α) −Q(α∗) ≤ ε , (4.64)

after at most tmax <∞ iterations, where

tmax =
2D2(m− 1)

ε2
(Q(α(0)) −Q(α∗)) . (4.65)

55

4 Quadratic Programming solvers

proof: The proof is based on showing that in each iteration the improvement ∆(t+1) =
Q(α(t)) −Q(α(t+1)) is bounded by

∆(t+1) ≥ ε2

2D2
> 0 , (4.66)

except for the case when τ = 1 which can, however, happen at most (m − 1) times in a
line. The violation of the stopping condition (4.64) implies (c.f. Section 4.3) that

〈α(t),Hα(t)〉 + 〈α(t), c〉 − min
i∈I

[Hα(t) + c]i > ε , (4.67)

The improvement ∆(t+1) of the optimization over the line segment is given by (4.31) for
τ < 1. Substituting the vector β(t) constructed by the rule (4.59) to formula (4.31) yields
the value of the improvement equal to

∆(t+1) =
([Hα(t) + c]v − [Hα(t) + c]u)2

2([H]u,u − 2[H]u,v + [H]v,v)
, (4.68)

where u = maxi∈I∅ [Hα(t) + c]i and u = mini∈I [Hα(t) + c]i. The inequality (4.67) can be
used to derive an upper bound on the numerator of (4.68) because

〈α(t),Hα(t)〉 + 〈c,α(t)〉 ≤ max
i∈I∅

[Hα(t) + c]i ,

holds. Similarly, the squared diameter D2 can used as an upper bound on the denominator
of (4.68) which follows from (4.45). The combination of (4.67), (4.45) and (4.68) gives
directly the bound (4.66) on the minimal guaranteed improvement for the case τ < 1.

The minimal improvement bound (4.66) holds for the case τ < 1. For the case τ = 1,
a simple bound cannot be derived. However, it can be shown that the case τ = 1 cannot
occur more than (m − 1) times in a line. This follows from the fact that an application
of rule (4.59) for τ = 1 sets the v-th entry of α(t) to zero which, however, can happen
at most (m − 1) times, otherwise α(t+1) would not lie in the feasible set A. Using this
reasoning and the bound (4.66) yields the inequality

Q(α∗) ≤ Q(α(t)) ≤ Q(α(0)) − ε2

2D2

(
t

m− 1

)

,

which can be further rearranged to

t ≤ 2D2(m− 1)

ε2
(Q(α(0)) −Q(α∗)) ,

which ends the proof.

4.6.4 Improved Mitchell-Demyanov-Malozemov algorithm for GMNP

This section describes a novel method proposed in this thesis which is based on the MDM
Algorithm 15. The proposed improvement concerns the rule for construction of the vector

56

4.6 Algorithms for the generalized minimal norm problem

β(t) in Step 2(a) of the MDM algorithm. The original rule constructs the vector β(t) such
that it equals to the current solution α(t) except for two entries u and v, i.e.,

[β(t)]i =







[α(t)]u + [α(t)]v for i = u ,
0 for i = v ,

[α(t)]i for i 6= u ∧ i 6= v,

∀i ∈ I . (4.69)

If proper u and v are used then the optimization over the line segment between α(t) and
β(t) leads to an improvement ∆(t+1)(u, v) = Q(α(t)) −Q(α(t+1)). The exact value of the
improvement can be derived by substituting (4.69) to (4.31) which for τ < 1 gives

∆(t+1)(u, v) =
([Hα(t) + c]v − [Hα(t) + c]u)2

2([H]u,u − 2[H]u,v + [H]v,v)
, (4.70)

and substituting (4.69) to (4.32) which for τ = 1 gives

∆(t+1)(u, v) = [α(t)]v([Hα(t)+c]v−[Hα(t)+c]u)−1

2
[α(t)]2v([H]u,u−2[H]u,v+[H]v,v). (4.71)

From (4.63) it follows that u and v must be selected such that [α(t)]v > 0 and the inequality

κ(u, v) = [Hα(t) + c]v − [Hα(t) + c]u > 0 ,

holds to guarantee a non-zero improvement. The computation of τ for β(t) given by (4.69)
simplifies to

τ =
[Hα(t) + c]v − [Hα(t) + c]u

[α(t)]v([H]u,u − 2[H]u,v + [H]v,v)
. (4.72)

The quantity κ(u, v) can be seen as an approximation of the exact formulas (4.70) and (4.71)
for the improvement. The MDM algorithm selects u and v so that κ(u, v) is maximized.

A novel method proposed here is based on searching for the entries u and v which
maximize the exact value of the improvement instead of its approximation like in the
original MDM algorithm. The computation of the improvement for given u and v requires
evaluation of the (4.72) and, based on the value of τ , (4.70) or (4.71) is used. To select the

optimal pair (u, v) one has to try d(d+1)
2 combinations where d is the number of non-zero

entries of the current solution α(t). Moreover, the search for the optimal (u, v) would
require to access d columns of the matrix H which would be too expensive (this point
will be discussed in Section 4.8). To overcome this difficulty, the following strategy of
selecting (u, v) is proposed. The index u is computed by the same rule as used in the
MDM algorithm, i.e.,

u = argmin
i∈I

[Hα(t) + c]i .

For given u the index v is computed such that

v = argmax
i∈IV

∆(t+1)(u, i) ,

where IV = {i ∈ I: [Hα(t) + c]i > [Hα(t) + c]u ∧ [α(t)]i > 0} is a set of admissible indices
for v for which the improvement can be greater than zero. A similar strategy would be
to fix v and search for the optimal u or to apply both these searches together. All these

57

4 Quadratic Programming solvers

three combinations were experimentally tested and the proposed strategy required on
average the minimal access to the matrix H. The proposed strategy requires neglectable
computational augment compared to the original MDM algorithm and it requires no extra
access to the matrix H which was the main requirement. Algorithm 16 summarizes the
proposed improvement.

Algorithm 16: Improved MDM Algorithm for GMNP

1. Initialization. Set α(0) ∈ A.

2. Repeat until stopping condition is satisfied:

a) Construct vector β(t) ∈ A such that

[β(t)]i =







[α(t)]u + [α(t)]v for i = u ,
0 for i = v ,

[α(t)]i for i 6= u ∧ i 6= v,

∀i ∈ I ,

where
u ∈ argmin

i∈I
[Hα(t) + c]i , and v ∈ argmax

i∈IV

∆(t+1)(u, i) .

The improvement ∆(t+1)(u, i) is computed using formulas (4.72), (4.70) and (4.71).

b) Update
α(t+1) = α(t)(1 − τ) + τβ(t) ,

where

τ = min

(

1,
〈(α(t) − β(t)), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t),Hα(t)〉 + 〈β(t),Hβ(t)〉

)

.

The convergence Theorem 4.3 introduced for the original MDM algorithm holds obvi-
ously for the improved version as well.

4.6.5 Keerthi algorithm for GMNP

The Keerthi Algorithm 15 approximates the feasible set A by a triangle A(t+1)
T defined

by (4.33). The triangle A(t+1)
T is constructed between the current solution α(t) and the

vectors β(t), γ(t) ∈ A. The vector β(t) is defined by the rule (4.43) used in the Kozinec
algorithm and the vector γ(t) by the rule (4.59) used in the MDM algorithm. It was
shown in Section 4.6.1 and Section 4.6.3 that the optimization over line segments between
vectors (α(t), β(t)) and (α(t), γ(t)), respectively, leads to an improvement in the optimized

criterion Q. It is obvious that the optimization over the triangle A(t+1)
T must lead to an

improvement as well because the line segments are its subsets. The optimization of Q

over the triangle A(t+1)
T can be computed analytically by Algorithm 12 as described in

Section 4.5.

58

4.7 Algorithms for the generalized nearest point problem

Algorithm 17: Keerthi Algorithm for GMNP

1. Initialization. Set α(0) ∈ A.

2. Repeat until stopping condition is satisfied:

a) Construct vector β(t) ∈ A by rule (4.43) and vector γ(t) ∈ A by rule (4.59)
which define a triangle (4.33).

b) Solve the subtask
α(t+1) = argmin

α∈A(t+1)
T

Q(α) ,

using Algorithm 12.

Keerthi Algorithm 17 stops after a finite number of iterations if the ε-optimality con-
dition (4.7) is applied:

Theorem 4.4 Keerthi Algorithm 17 started from an arbitrary vector α(0) ∈ A returns the
vector α satisfying for any ε > 0 the ε-optimality condition

Q(α) −Q(α∗) ≤ ε , (4.73)

after at most tmax <∞ iterations, where

tmax =
2D2

ε2
(Q(α(0)) −Q(α∗)) +m . (4.74)

proof: Keerthi Algorithm 17 in each iteration optimizes the criterion Q over a triangle
α(t), β(t) and γ(t). Kozinec Algorithm 13 optimizes only over the line segment between
vector α(t) and β(t). Because the line segment is a subset of the triangle then the im-
provement of Keerthi Algorithm 17 cannot be smaller than that of Kozinec Algorithm 13
its improvement can be bounded from bellow by (4.50). This implies that the bound on
the maximal number of iterations derived for Kozinec Algorithm 13 holds also for Keerthi
Algorithm 17.

4.7 Algorithms for the generalized nearest point problem

The GNPP to solve is

α∗ = argmin
α∈A

(
1

2
〈α,Hα〉 + 〈c,α〉

)

, (4.75)

where the feasible set is defined by

A = {α ∈ R
m: 〈α,e1〉 = 1, 〈α,e2〉 = 1 ,α ≥ 0} . (4.76)

It is convenient to introduce the following notation

α(t) =

[

α
(t)
1

α
(t)
2

]

, β(t) =

[

β
(t)
1

β
(t)
2

]

, H =

[
H11 H12

H21 H22

]

, c =

[
c1

c2

]

,

59

4 Quadratic Programming solvers

where the vectors α
(t)
1 and α

(t)
2 contain entries of the vector α(t) with indices from I1 and

I2, respectively. Using this notation allows to rewrite the objective function Q(α(t)) as

Q(α(t)) =
1

2

(

〈α(t)
1 ,H11α

(t)
1 〉 + 2〈α(t)

1 ,H12α
(t)
2 〉 + 〈α(t)

2 ,H22α
(t)
2 〉
)

+〈α(t)
1 , c1〉 + 〈α(t)

2 , c2〉 .

Further, let A(t+1)
1 = {α ∈ A: [α]i = [α(t)]i, i ∈ I2} denote the set of vectors from the

feasible set A which have the entries I2 fixed to corresponding entries of the current

solution α
(t)
2 . Similarly, let A(t+1)

2 = {α ∈ A: [α]i = [α(t)]i, i ∈ I1} be vectors with the
entries I1 fixed.

The algorithms to solve the GNPP are of the same face as those solving the GMNP
problem (c.f. Section 4.6). Algorithms for the GNPP require a modification of the rules
used to construct the auxiliary feasible set. The rules are modified in such a way that

the vector β(t) which determines the auxiliary feasible set belongs either to A(t+1)
1 or to

A(t+1)
2 . For instance, let the auxiliary set be a line segment between the vectors α(t) and

β(t). A rule used in an algorithm for GMNP is applied to construct the vector β
(t)
1 and

to set the vector β
(t)
2 to the current solution α

(t)
2 or it proceeds vice versa.

4.7.1 Kozinec algorithm for GNPP

The Kozinec Algorithm 18 for the GNPP uses again the line segment approximation
constructed between the current solution vector α(t) and the vector β(t). The vector β(t)

is constructed to minimize the derivative of QL assuming that β(t) belongs either to the

set A(t+1)
1 or to A(t+1)

2 . The derivative of QL at zero is for general β(t) given by (4.28).

In the case when β(t) ∈ A(t+1)
1 , the minimal value of the derivative (4.28) equals

dQ1 = min
β(t)∈A(t+1)

1

〈(β(t) − α(t)), (Hα(t) + c)〉

= min
i∈I1

[Hα(t) + c]i − 〈α(t)
1 , (H11α

(t)
1 + H12α

(t)
2 + c1)〉 ,

(4.77)

and the vector β(t) ∈ A(t+1)
1 is constructed by (4.79). Similarly, for the vector β(t) ∈ A(t+1)

2

the minimal value of the derivative (4.28) equals to

dQ2 = min
β(t)∈A(t+1)

2

〈(β(t) − α(t)), (Hα(t) + c)〉

= min
i∈I2

[Hα(t) + c]i − 〈α(t)
2 , (H21α

(t)
1 + H22α

(t)
2 + c2)〉 ,

(4.78)

and the vector β(t) ∈ A(t+1)
2 is constructed by the rule (4.80). It can be simply verified

that both the derivatives (4.77) and (4.78) are negative unless α(t) is at the optimum.
Thus optimization over the corresponding line segments leads to an improvement of the
optimized criterion.

Algorithm 18: Kozinec Algorithm for GNPP

1. Initialization. Set α(0) ∈ A.

60

4.7 Algorithms for the generalized nearest point problem

2. Repeat until stopping condition is satisfied:

a) Compute derivatives dQ1 using (4.77) and dQ2 using (4.78). If dQ1 ≤ dQ2

then construct the vector β(t) by the rule

[β(t)]i =







1 for i = u1 ∧ i ∈ I1 ,
0 for i 6= u1 ∧ i ∈ I1 ,

[α(t)]i for i ∈ I2 ,

(4.79)

where u1 ∈ argmin
i∈I1

[Hα(t) + c]i. Otherwise, if dQ1 > dQ2, use the rule

[β(t)]i =







1 for i = u2 ∧ i ∈ I2 ,
0 for i 6= u2 ∧ i ∈ I2 ,

[α(t)]i for i ∈ I1 ,

(4.80)

where u2 ∈ argmin
i∈I2

[Hα(t) + c]i.

b) Update
α(t+1) = α(t)(1 − τ) + τβ(t) ,

where

τ = min

(

1,
〈(α(t) − β(t)), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t),Hα(t)〉 + 〈β(t),Hβ(t)〉

)

.

Kozinec Algorithm 18 stops after a finite number of iterations if the ε-optimality con-
dition (4.7) is applied. The upper bound on the maximal number of iterations requires a
definition of the diameter D of the matrix H with respect to the constraints (4.76). This
is defined as

D2 = max
(
D2

1,D
2
2

)
, (4.81)

where

D2
1 = argmax

α1∈A1,β1∈A1

(〈α1,H11α1〉 − 2〈α1,H11β1〉 + 〈β1,H11β1〉) > 0 ,

D2
2 = argmax

α2∈A2,β2∈A2

(〈α2,H22α2〉 − 2〈α2,H22β2〉 + 〈β2,H22β2〉) > 0 .

The sets A1 and A2 are defined so that for any α1 ∈ A1 and α ∈ A2 the vector α =
[α1;α2] belongs to A. The positivity of D1 and D2 follows from the positive definiteness
of the matrix H.

Theorem 4.5 Kozinec Algorithm 18 started from an arbitrary vector α(0) ∈ A returns the
vector α satisfying for any ε > 0 the ε-optimality condition

Q(α) −Q(α∗) ≤ ε , (4.82)

after at most tmax <∞ iterations, where

tmax =
8D2

ε2
(Q(α(0)) −Q(α∗)) + 2m . (4.83)

61

4 Quadratic Programming solvers

proof: The proof is very like the proof of Theorem 4.1 for the GMNP. The only difference
is the bound on the minimal improvement

∆(t+1) ≥ ε2

8D2
> 0 , (4.84)

which is derived as follows. The violation of the stopping condition (4.82) implies (c.f.
Section 4.3) that the inequality

〈α(t),Hα(t)〉 + 〈α(t), c〉 − min
i∈I1

[Hα(t) + c]i − min
i∈I2

[Hα(t) + c]i > ε (4.85)

holds. The improvement of the optimization over a line segment is given by (4.31) for
τ < 1. Substituting the vector β(t) constructed by rule (4.79) to formula (4.31) yields the
value of the improvement equal to

∆(t+1) =
([Hα(t) + c]u1 − 〈α(t)

1 , (H11α
(t)
1 + H12α

(t)
2 + c1)〉)2

2(〈α(t)
1 ,H11α

(t)
1 〉 − 2[H11α

(t)
1]u1 + [H11]u1,u1)

, for τ < 1 , (4.86)

where u1 = mini∈I1 [Hα(t) + c]i. The numerator of (4.86) equals to squared value of the
derivative dQ1 (c.f. (4.77)) which can be bounded using inequality (4.85). Condition (4.85)
can be rewritten as

〈α(t)
1 , (H11α

(t)
1 + H12α

(t)
2 + c1)〉 − min

i∈I1

[Hα(t) + c]i
︸ ︷︷ ︸

−dQ1

+ 〈α(t)
2 , (H21α

(t)
1 + H22α

(t)
2 + c2)〉 − min

i∈I2

[Hα(t) + c]i
︸ ︷︷ ︸

−dQ2

> ε .
(4.87)

The rule (4.79) is applied if dQ1 < dQ2 which allows to write

−dQ1 = 〈α(t)
1 , (H11α

(t)
1 + H12α

(t)
2 + c1)〉 − min

i∈I1

[Hα(t) + c]i ≥
ε

2
. (4.88)

Next, the squared diameter D2 can be used as an upper bound on the denominator
of (4.86) which follows from the definition (4.81). The combination of (4.88), (4.81)
and (4.86) gives directly the bound (4.84) on the minimal improvement for the case τ < 0
and the rule (4.79). The same bound can be derived for the case τ < 0 and the rule (4.80).

The case τ = 1 can occur at most 2m times using the same reasoning as in the proof of
Theorem 4.1. Using the bound (4.84) and the fact that the improvement of 2m iterations
cannot be bounded yields the inequality

Q(α∗) ≤ Q(α(t)) ≤ Q(α(0)) − ε2

8D2
(t− 2m) ,

which can be further rearranged to

t ≤ 8D2

ε2
(Q(α(0)) −Q(α∗)) + 2m ,

which ends the proof.

62

4.7 Algorithms for the generalized nearest point problem

4.7.2 Kowalczyk algorithm for GNPP

Kowalczyk Algorithm 19 for the GNPP uses the line segment approximation constructed
between the current solution α(t) and the vector β(t). First, a set of candidate vectors

β
(t)
i , i ∈ I1∪I2 is constructed using rules (4.90) and (4.91). Second, the vector β

(t)
i which

yields the biggest improvement ∆
(t+1)
i is applied. The candidate vector β

(t)
i is constructed

such that it belongs either to the set A(t+1)
1 if i ∈ I1 or to A(t+1)

2 if i ∈ I2. It can be
simply shown that for given i ∈ I1 ∪ I2 just one of the rules (4.90) and (4.91) leads to an
improvement. To decide which rule improves the criterion, the sign of the derivative (4.28)

is used. The exact value of the improvement is computed for given β
(t)
i analytically using

formulas (4.30), (4.31), and (4.32).

Algorithm 19: Kowalczyk Algorithm for GNPP

1. Initialization. Set α(0) ∈ A.

2. Repeat until stopping condition is satisfied:

a) For all i ∈ I compute an improvement

∆
(t+1)
i = Q(α(t)) − min

α∈A(t+1)
L(i)

Q(α) , (4.89)

where A(t+1)
L(i) = {α ∈ R

m:α = α(t)(1− τ) + τβ
(t)
i , τ ∈ [0, 1]}. The vectors β

(t)
i ,

i ∈ I1 are constructed (i) by the rule

[β
(t)
i]j =







1 for j = i ∧ j ∈ I1 ,
0 for j 6= i ∧ j ∈ I1 ,

[α(t)]j for j ∈ I2 ,
(4.90)

if [Hα(t) + c]i < 〈α(t)
1 , (H11α

(t)
1 + H12α

(t)
2 + c1〉 or (ii) by the rule

[β
(t)
i]j =







0 for j = i ∧ i ∈ I1 ,
[α(t)]j

1−[α(t)]i
for j 6= i ∧ i ∈ I1 ,

[α(t)]j for j ∈ I2 ,

(4.91)

if [Hα(t) + c]i > 〈α(t)
1 , (H11α

(t)
1 + H12α

(t)
2 + c1〉 and [α(t)]i < 1. Otherwise set

∆
(t+1)
i = 0.

The vectors β
(t)
i , i ∈ I2 are constructed by the same rules (4.90) and (4.91)

except for the sets I1 and I2 being interchanged. The “if conditions” are

changed to [Hα(t) + c]i
<
>
〈α(t)

2 , (H21α
(t)
1 + H22α

(t)
2 + c2〉. Finally select

r ∈ argmax
i∈I

∆
(t+1)
i .

63

4 Quadratic Programming solvers

b) Update
α(t+1) = α(t)(1 − τ) + τβ(t)

r ,

where

τ = min

(

1,
〈(α(t) − β

(t)
r), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t)
r ,Hα(t)〉 + 〈β(t)

r ,Hβ
(t)
r 〉

)

.

Kowalczyk Algorithm 19 stops after a finite number of iterations if the ε-optimality
condition (4.7) is applied which is stated by the following Theorem 4.6.

Theorem 4.6 Kowalczyk Algorithm 19 started from an arbitrary vector α(0) ∈ A returns
the vector α satisfying for any ε > 0 the ε-optimality condition

Q(α) −Q(α∗) ≤ ε , ,

after at most tmax <∞ iterations, where

tmax =
8D2

ε2
(Q(α(0)) −Q(α∗)) + 2m .

proof: The reasoning used in the proof of the Theorem 4.2 is applicable also for the
Theorem 4.6.

4.7.3 Mitchell-Demyanov-Malozemov algorithm for GNPP

MDM Algorithm 20 for the GNPP uses again the line segment approximation constructed
between the current solution vector α(t) and the vector β(t) constructed by the rule (4.94).
The vector β(t) equals to the current solution α(t) except for two entries u and v. Both
the indices u and v must belong either to the set I1 or to I2 in order to ensure that
the vector β(t) is from A. The indices are determined to maximize the quantity κ(u, v)
(c.f. (4.61)), i.e,

(u, v) ∈ argmax

(

max
u′∈I1,v′∈I1

κ(u′, v′), max
u′∈I2,v′∈I2

κ(u′, v′)
)

= argmax
(u′,v′)∈{(u1,v1),(u2,v2)}

κ(u′, v′) ,
(4.92)

where
u1 ∈ argmin

i∈I1

[Hα(t) + c]i , v1 ∈ argmax
i∈I1∩I∅

[Hα(t) + c]i ,

u2 ∈ argmin
i∈I2

[Hα(t) + c]i , v2 ∈ argmax
i∈I2∩I∅

[Hα(t) + c]i .

It can be seen that κ(u, v) is positive unless α(t) is already in the optimum. The vector
β(t) constructed by (4.94) substituted to the derivative (4.28) yields

∂QL(τ)

∂τ

∣
∣
∣
∣
τ=0

= [α(t)]v([Hα(t) + c]u − [Hα(t) + c]v) < 0 . (4.93)

The negative sign follows from κ(u, v) > 0 thus the optimization over the line segment
must lead to an improvement of the optimized criterion.

64

4.7 Algorithms for the generalized nearest point problem

Algorithm 20: MDM Algorithm for GNPP

1. Initialization. Set α(0) ∈ A.

2. Repeat until stopping condition is satisfied:

a) Construct vector β(t) ∈ A

[β(t)]i =







[α(t)]u + [α(t)]v for i = u ,
0 for i = v ,

[α(t)]i for i 6= u ∧ i 6= v,

(4.94)

where the indices u and v are given by (4.92).

b) Update
α(t+1) = α(t)(1 − τ) + τβ(t) ,

where

τ = min

(

1,
〈(α(t) − β(t)), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t),Hα(t)〉 + 〈β(t),Hβ(t)〉

)

.

MDM Algorithm 20 stops after a finite number of iterations if the ε-optimality condi-
tion (4.7) is applied which is stated by the following Theorem 4.7.

Theorem 4.7 MDM Algorithm 20 started from an arbitrary vector α(0) ∈ A returns the
vector α satisfying for any ε > 0 the ε-optimality condition

Q(α) −Q(α∗) ≤ ε , (4.95)

after at most tmax <∞ iterations, where

tmax =
8D2(m− 2)

ε2
(Q(α(0)) −Q(α∗)) . (4.96)

proof: The proof is very like the proof of Theorem 4.3 for the GMNP. The only difference
is the bound on the minimal improvement

∆(t+1) ≥ ε2

8D2
> 0 , (4.97)

which is derived as follows. The improvement for the case τ < 1 is derived by substituting
the vector β(t) constructed by the rule (4.94) to formula (4.31) which yields

∆(t+1) =
([Hα(t) + c]v − [Hα(t) + c]u)2

2([H]u,u − 2[H]u,v + [H]v,v)
. (4.98)

The formula (4.98) holds regardless to which index set (I1 or I2) the pair (u, v) belongs
to. The violation of condition (4.95) implies (c.f. (4.87))

−dQ1 − dQ2 ≥ ε . (4.99)

65

4 Quadratic Programming solvers

From (4.61) it follows that −dQ1 ≤ κ(u1, v1) and −dQ2 ≤ κ(u2, v2) which substituted
to (4.99), yields

κ(u1, v1) + κ(u2, v2) ≥ ε . (4.100)

Thus for (u, v) given by (4.92) the inequality κ(u, v) ≥ ε
2 holds. Using (4.100) as a bound

on the numerator of (4.98) and (4.81) as a bound on the denominator yields (4.97).
The bound (4.97) on minimal improvement holds for the case τ < 1. The improvement

for τ = 1 cannot be generally bounded. But the case τ = 1 cannot occur more than
(m−2) times in a line as it would lead to a vector α(t) having all entries zero. This would
mean that α(t) is not from A. Therefore

Q(α∗) ≤ Q(α(t)) ≤ Q(α(0)) − ε2

8D2

(
t

m− 2

)

,

which can be further rearranged to

t ≤ 8D(m− 2)

ε2
(Q(α(0)) −Q(α∗)) ,

which ends the proof.

4.7.4 Improved Mitchell-Demyanov-Malozemov algorithm for GNPP

The improved version of the MDM Algorithm 4.7.3 for the GNPP employs the same idea
as introduced for the GMNP variant (c.f. Section 4.6.4). That means, first the indices u1

and u2 are computed as
u1 ∈ argmin

i∈I1

[Hα(t) + c]i ,

u2 ∈ argmin
i∈I2

[Hα(t) + c]i .
(4.101)

Second, the optimal v1 and v2 are sought so that

v1 ∈ argmin
i∈IV 1

∆(t+1)(u1, i) ,

v2 ∈ argmin
i∈IV 2

∆(t+1)(u2, i) ,
(4.102)

where

IV 1 = {i ∈ I1: [Hα(t) + c]i > [Hα(t) + c]u1 ∧ [α(t)]i > 0} ,
IV 2 = {i ∈ I2: [Hα(t) + c]i > [Hα(t) + c]u2 ∧ [α(t)]i > 0} ,

are sets of admissible indices. Finally, the pair of indices (u1, v1) or (u2, v2) which yields
the bigger improvement is used to construct the vector β(t). The formula for the im-
provement ∆(t+1)(u, v) can be derived using the same way as in the the GMNP case. The
improvement is computed by the formula (4.70) if τ < 1 and (4.71) if τ = 1. The proposed
method is summarized in Algorithm 21.

66

4.7 Algorithms for the generalized nearest point problem

Algorithm 21: Improved MDM Algorithm for GNPP

1. Initialization. Set α(0) ∈ A.

2. Repeat until stopping condition is satisfied:

a) First, the pairs (u1, v1) and (u2, v2) are computed by (4.101) and (4.102). Sec-
ond, the pair which yields the bigger improvement ∆(t+1)(u, v) is taken for
(u, v) and the vector β(t) ∈ A is constructed as

[β(t)]i =







[α(t)]u + [α(t)]v for i = u ,
0 for i = v ,

[α(t)]i for i 6= u ∧ i 6= v.

b) Update

α(t+1) = α(t)(1 − τ) + τβ(t) ,

where

τ = min

(

1,
〈(α(t) − β(t)), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t),Hα(t)〉 + 〈β(t),Hβ(t)〉

)

.

The convergence Theorem 4.7 introduced for the original MDM algorithm holds obvi-
ously for the improved version as well.

4.7.5 Keerthi algorithm for GNPP

The Keerthi Algorithm 22 for the GNPP uses the triangle approximation of the feasi-
ble set. The triangle is constructed between the current solution and the vectors β(t)

and γ(t). First, the indices u and v are determined by (4.92) as defined in the MDM
Algorithm 20. Second, the vector β(t) is constructed using the rules (4.79), (4.80) of
the Kozinec Algorithm 18 and the γ(t) is constructed using the rule (4.94) of the MDM
Algorithm 20.

Algorithm 22: Keerthi Algorithm for GNPP

1. Initialization. Set α(0) ∈ A.

2. Repeat until stopping condition is satisfied:

a) Determine indices u and v using (4.92). If u and v belong to I1 then construct
the vector β(t) using the rule (4.79). Otherwise, if u and v belong to I2 then
construct the vector β(t) using the rule (4.80). The vector γ(t) is in both the
cases constructed using the rule (4.94).

67

4 Quadratic Programming solvers

b) Solve the subtask
α(t+1) = argmin

α∈A(t+1)
T

Q(α) ,

using Algorithm 12

Keerthi Algorithm 22 converges to the ε-optimal solution given by the condition (4.7)
in finite number of iterations as stated in the following theorem.

Theorem 4.8 Keerthi Algorithm 22 started from an arbitrary vector α(0) ∈ A returns the
vector α satisfying for any ε > 0 the ε-optimality condition

Q(α) −Q(α∗) ≤ ε ,

after at most tmax <∞ iterations, where

tmax =
8D2

ε2
(Q(α(0)) −Q(α∗)) + 2m .

proof: The reasoning used in the proof of the Theorem 4.4 applicable also for the The-
orem 4.8.

4.8 Efficient implementation

The main requirement on the developed QP solvers is the ability to deal with large
problems, i.e., problems where the matrix H in the definition of the QP task is large
and cannot be stored in the memory. The aim is to minimize access of the QP solver
to the entries of the matrix H. It is seen that the algorithms described in Sections 4.7
and 4.6 require at most two columns of the matrix H in each iteration. Moreover, in
many cases only a small subset of the columns is requested by the algorithms, i.e., those
which corresponds to the non-zero entries I∅ = {i ∈ I: [α]i > 0} of the vector α(t). This
allows to use a cache for the most often requested columns without the need to store the
whole matrix H. Namely, the First In First Out (FIFO) turned out to be suitable in the
experiments described below.

The efficient implementation of the algorithms lies in maintaining a cache of key vari-
ables. In the case of the GMNP problem, these variables are

δ(t)α = 〈α(t),Hα(t)〉 , h(t)
α = Hα(t) , δ

(t)
β = 〈β(t),Hα(t)〉 , (4.103)

where δ
(t)
α ∈ R is a scalar, h

(t)
α ∈ R

m is a vector and δ
(t)
β ∈ R is a scalar. Having the

variables (4.103), the number of computations in each iteration of any QP solvers scales
with O(m), i.e., it is linear with respect to the number of variables m.

Next, it will be shown how to compute the variables (4.103) efficiently for the Kozinec
Algorithm 13. The vector α(t) is arbitrary, whereas the vector β(t) has always the following
structure

[β(t)]i =

{
0 for i 6= u ,
1 for i = u ,

(4.104)

68

4.9 Applications of proposed QP solvers

i.e., all entries are zeros except for the u-th entry which is equal to one. The update of
α(t) is in each step computed as

α(t+1) = α(t)(1 − τ) + τβ(t) . (4.105)

The variables δ
(t+1)
α , h

(t+1)
α can be determined from the old values δ

(t)
α , h

(t)
α as

δ(t+1)
α = δ(t)α τ2 − 2τ(1 − τ)[h(t)

α]u + τ2[H]u,u

h
(t+1)
α = h(t)

α (1 − τ) + τ [H]:,u ,

δ
(t)
β = [h

(t)
α]u ,

(4.106)

which follows directly substituting (4.104) and (4.105) to (4.103). The symbol [H]:,u
denotes the u-th column vector of the matrix H. It is seen from (4.106) that the key
variables (4.103) do not have to be computed from a scratch which would require O(m2)
operations but they can be updated by (4.106) which requires only O(m) computations.
Moreover, the update in each iteration requires just one column vector [H]:,u instead of
the whole matrix H.

The updating of the key variables (4.103) for the remaining algorithms is derived sim-
ilarly and thus omitted here. The same idea is also applied to the GNPP. In this case,
however, there are more key variables to be cached. Namely, the updates must be used
for

δ
(t)
11 = 〈α(t)

1 ,H11α
(t)
1 〉 , δ

(t)
12 = 〈α(t)

1 ,H12α
(t)
2 〉 , δ

(t)
22 = 〈α(t)

2 ,H22α
(t)
2 〉 ,

h
(t)
11 = H11α

(t)
1 , h

(t)
21 = H21α

(t)
1 , h

(t)
12 = H12α

(t)
2 , h

(t)
22 = H22α

(t)
2 .

The number of computations required for updating the key variables is in all cases O(m)
regardless of algorithms for the GMNP or GNPP.

The requirements to access the matrix H differs according to a given algorithm: The
Kozinec and Kowalczyk algorithms require a single column, in contrast to the MDM and
Keerthi algorithms which require two columns in each iteration. The proposed improved
MDM algorithm requires also two columns thanks to the simple selection rule used.

4.9 Applications of proposed QP solvers

This section contains a list of several problems used in machine learning and pattern
recognition which lead to the QP task solvable by the algorithms proposed in this chapter.
It should be remarked that the original algorithms for MNP and NPP have been applied
only for design of the singleclass and binary SVM with L2-soft margin. Therefore the
application of the proposed generalized QP solvers on the mentioned problems is new.
Section 4.9.1 summarizes the application of the QP solvers for learning of the single,
binary, and multiclass SVM classifiers. The application for computation of the Reduced
Set Density Estimator (RSDE) is described in Section 4.9.3, computation of the minimal
enclosing ball and Support Vector Data Description (SVDD) is described in Section 4.9.2.

Other SVM-based learning problems for classification and regression which match the
GNPP are introduced in [22].

4.9.1 Support Vector Machines for classification

The equivalence between the NPP and the learning of the binary SVM classifier with the
hard and L2-soft margin was described in Section 3.3.1. The equivalence between the

69

4 Quadratic Programming solvers

MNP and the singleclass SVM with the hard and L2-soft margin was mentioned as well.
This equivalence allows to use the QP solvers proposed in this chapter for the learning
of the singleclass and binary SVM classifiers. Moreover, it will be shown in Chapter 6
how to use the QP solvers for the singleclass SVM classifier to learn the multiclass SVM
classifier.

The rest of this section contains a novel proof of the mentioned equivalence between
the NPP and the QP task associated to the binary SVM classifier and the equivalence
between the MNP and the QP task associated to the singleclass SVM classifier. The
singleclass case will be analyzed first as it is simpler.

The learning of the singleclass SVM classifier with hard and L2-soft margin loss func-
tions corresponds to the following QP task (c.f. Section 1.4.3)

α∗ = argmin
α

(
1

2
〈α,Hα〉 − 〈e,α〉

)

, (4.107)

subject to
α ≥ 0 .

The MNP reads

β∗ = argmin
β

1

2
〈β,Hβ〉 , (4.108)

subject to
〈β,e〉 = 1 , and β ≥ 0 .

Task (4.108) is a special instance of the GMNP which can be optimized by the QP solvers
proposed in this chapter. The aim is to show that the solution α∗ of task (4.107) can be
readily computed from the solution β∗ of task (4.108). The exact relation between these
two solutions is stated by the following theorem.

Theorem 4.9 Let β∗ be the optimal solution of the MNP (4.108). Then the vector

α∗ =
β∗

〈β∗,Hβ∗〉 ,

is the optimal solution of the QP task (4.107) associated to the singleclass SVM classifier
with the hard and L2-soft margin loss functions.

proof: Let r > 0 be a constant and the following QP task be defined

γ∗ = argmin
γ

1

2
〈γ,Hγ〉 − r = argmin

γ

1

2
〈γ,Hγ〉 , (4.109)

subject to
〈γ,e〉 = r , and γ ≥ 0 .

It is easy to see that the solution γ∗ of the task (4.109) coincides with the solution α∗ of
the task (4.107) if the equality r = 〈α∗,e〉 holds. Next, it will be shown that for arbitrary
r > 0 the equality

γ∗ = rβ∗ , (4.110)

holds, where γ∗ is the solution of the task (4.109) and β∗ is the solution of the MNP
task (4.108). The equality (4.110) follows directly from the KKT conditions for both the

70

4.9 Applications of proposed QP solvers

tasks (4.108) and (4.109). The KKT conditions are necessary and sufficient conditions for
the optimal solution for the convex QP tasks. The Lagrange function for the task (4.108)
reads

L(β,µ, λ) =
1

2
〈β,Hβ〉 + λ(〈β,e〉 − 1) − 〈µ,β〉 ,

and the corresponding KKT conditions are

∂L(β,µ, λ)

∂β
= Hβ + λe − µ = 0 ,

〈β,µ〉 = 0 ,
〈β,e〉 = 1 ,

µ ≥ 0 ,
β ≥ 0 .

(4.111)

Let (β,µ, λ) be any triplet which satisfies the KKT conditions (4.111). Then β is the
optimal solution of the task (4.108). The Lagrange function for the task (4.109) reads

G(γ,ω, σ) =
1

2
〈γ,Hγ〉 + σ(〈γ,e〉 − r) − 〈ω,γ〉 ,

and the corresponding KKT conditions are

∂G(γ,ω, σ)

∂γ
= Hγ + σe − ω = 0 ,

〈γ,ω〉 = 0 ,
〈γ,e〉 = r ,

ω ≥ 0 ,
γ ≥ 0 .

(4.112)

Let (γ,ω, σ) be any triplet which satisfies the KKT conditions (4.112). Then γ is the
optimal solution of the task (4.109). It is enough to show that the the solution (γ,ω, σ)
of the KKT conditions (4.112) can be directly computed from the solution (β,µ, λ) of the
KKT conditions (4.111). Indeed, it can be simply verified that the relation between the
variables (β,µ, λ) and (γ,ω, σ) is given by the following equalities

γ = rβ , ω = rµ , σ = rλ .

Thus equality (4.110) has been proved. It remains to determine r∗ such that α∗ = r∗β∗

solves the task (4.107). The optimal r∗ can be found by solving the task

r∗ = argmin
r

(
1

2
〈β∗,Hβ∗〉r2 − 〈β∗,e〉r

)

=
〈β∗,e〉

〈β∗,Hβ∗〉 =
1

〈β∗,Hβ∗〉 ,

which ends the proof.

The same relation can be proven for the NPP and the QP task associated to the binary
SVM with hard and L2-soft margin. The QP task associated to the learning of the binary
SVM classifier with the hard and L2-soft margin reads (c.f. Section 1.4.1)

α∗ = argmin
α

(
1

2
〈α,Hα〉 − 〈α,e〉

)

, (4.113)

71

4 Quadratic Programming solvers

subject to

〈α,e1〉 = 〈α,e2〉 , and α ≥ 0 .

The NPP reads

β∗ = argmin
β

1

2
〈β,Hβ〉 , (4.114)

subject to

〈β,e1〉 = 1 , 〈β,e2〉 = 1 , β ≥ 0 .

Theorem 4.10 Let β∗ be the optimal solution of the NPP (4.114). Then the vector

α∗ =
β∗

〈β∗,Hβ∗〉 ,

is the optimal solution of the QP task (4.113) associated to the singleclass SVM classifier
with the hard and L2-soft margin loss functions.

proof: The proof is very much like the proof for the singleclass case. The KKT conditions
for the binary case slightly differ as they contain one extra term corresponding to one extra
linear constraint. The rest of the proof remains completely the same and thus it is omitted.

4.9.2 Minimal enclosing ball

The problem of computing the minimal enclosing ball can be expressed as the QP task
solvable by the proposed QP solvers. The radius of the minimal enclosing ball is a quantity
required in evaluation of generalization bounds for SVM classifiers (for more details on
the bounds refer to [7, 46, 54]). A computation of the minimal enclosing ball is also a
headstone of the support vector data description (SVDD) [51].

Let training set TX = {x1, . . . , xm} ∈ Xm of examples be given. The examples are
assumed to be represented in the feature space H via the kernel function k:X × X → R.
Let {x1, . . . ,xm} ∈ Hm be the image of TX in the feature space H. The minimal enclosing
ball is defined as the ball around the vectors {x1, . . . ,xm} which has the minimal volume.
The SVDD describes data distribution by the minimal enclosing ball but it also assumes
that a portion of data can be outliers, i.e., there can be vectors lying outside the ball. The
outliers are penalized by linear or quadratic loss function. This leads to the soft margin
formulation of the minimal enclosing ball

(R∗, ξ∗,µ∗) = argmin
R,µ,ξ

(

R2 + C
∑

i∈I
(ξi)

p

)

, (4.115)

subject to
‖xi − µ‖2 ≤ R2 + ξi , i ∈ I ,

ξi ≥ 0 , i ∈ I ,
where µ is the center and R is the radius of the minimal ball. C ∈ R

+ is the regularization
constant. Task (4.115) covers three formulations: (i) hard margin case with p = ∞ (no
outliers are allowed), (ii) L1-norm soft margin with p = 1 and (iii) L2-soft margin case

72

4.9 Applications of proposed QP solvers

with p = 2. The hard margin formulation p = ∞ is equivalent to the removing all terms
from (4.115) which contain the slack variables ξi, i ∈ I. It is again more convenient to
solve the dual formulation of the QP task (4.115). The dual formulation can be obtain
using the standard procedure described in Section 1.6. The dual formulations for the hard
margin and the L2-soft margin case are introduced below. These cases can be solved by
the proposed algorithms in contrast to the L1-soft margin formulation.

First, the hard margin minimal ball leads to the dual task

α∗ = argmax
α




∑

i∈I
αi〈xi,xj〉 −

∑

i∈I

∑

j∈I
αiαj〈xi·,xj〉



 ,

subject to
∑

i∈I
αi = 1 , and αi ≥ 0 , i ∈ I .

The optimal variables of the primal task can be computed as

µ =
∑

i∈I∅
αixi , and R2 = ‖xi − µ‖2 for any i ∈ I∅ ,

where the set I∅ = {i ∈ I:αi > 0} contains indices of the support vectors. The computa-
tion of R follows from the KKT conditions.

Second, the L2-norm soft margin minimal ball leads to the dual task

α∗ = argmax
α




∑

i∈I
αi〈xi,xj〉 −

∑

i∈I

∑

j∈I
αiαj

(

〈xi,xj〉 +
1

4C
δ(i, j)

)


 ,

subject to
∑

i∈I
αi = 1 , and αi ≥ 0 , i ∈ I .

The optimal variables of the primal task can be computed as

µ =
∑

i∈I∅
αixi , and R2 = ‖xi − µ‖2 − αi

2C
for any i ∈ I∅ .

The radius R can be again from the KKT conditions. The distance between the center µ

and the vector Φ(x) can be computed by

f(x) = ‖Φ(x) − µ‖2 = 〈Φ(x),Φ(x)〉 − 2
∑

i∈I∅
αi〈xi,Φ(x)〉 +

∑

i∈I∅

∑

j∈I∅
αiαj〈xi,xj〉 ,

To determine whether the incoming vector Φ(x) belongs to the ball, it is sufficient to
evaluate the inequality f(x) ≤ R2.

It is again seen that both the learning and evaluation of the distance requires data
in terms of the dot products only. Thus the patterns can be embedded into the RKHS
via the kernel function substituted for the dot products. The dual formulations exactly
match the QP task (4.2) with feasible set (4.3) and the proposed QP solvers can be readily
applied.

73

4 Quadratic Programming solvers

4.9.3 Reduced Set Density Estimator

The Reduced Set Density Estimator (RSDE) [21] is a kernel-based density estimator
which employs a small percentage of the training data sample. Let a finite data sample
{x1, . . . ,xm} ∈ R

n×m be drawn from the underlying unknown probability density p(x)
defined on R

n. It is assumed that the density can be described by a weighted sum of
Gaussian kernels (it is also called Parzen model), i.e.,

p̃(x;α) =
∑

i∈I
αiN(x;xi, σ)

=
∑

i∈I
αi

1

(2π)
n
2 σn

exp

(

−‖x − xi‖2

2σ2

)

.
(4.116)

The symbol N(x;xi, σ) stands for the Gaussian kernel with the mean vector xi and the
standard deviation σ ∈ R

+ which is assumed to be known. The vector of real multipliers
α = [α1, . . . , αm]m ∈ R

m must be from A = {α ∈ R
n:
∑

i∈I αi = 1 , αi ≥ 0} to guarantee
that p̃(x;α) is a probability density. The RSDE aims to estimate the vector of multipliers
such that

α∗ = argmin
α∈A

∫

Rn

‖p(x) − p̃(x;α)‖2dx

= argmin
α∈A

(∫

Rn

p̃(x;α)2dx − 2

∫

Rn

p(x)p̃(x;α)dx

)

, (4.117)

i.e., the the integrated square error between the true and the estimated density is mini-
mized. The first term of (4.117) can be computed exactly after substituting (4.116) which
yields

∫

Rn

p̃(x;α)2dx =
∑

i∈I

∑

j∈I
αiαj

∫

Rn

N(x;xi, σ)N(x;xj, σ)dx

=
∑

i∈I

∑

j∈I
αiαjN(xi;xj,

√
2σ) .

(4.118)

The solution of the integral can be found in [21]. The second term of (4.117) contains the
expectation of the value of the −2p̃(x;α) with respect to the true unknown density p(x).
This expectation can be replaced by its estimate computed over the training sample

∫

Rn

p(x)p̃(x;α)dx =
∑

i∈I
αi

∫

Rn

p(x)N(x;xi, σ)dx

≈
∑

i∈I
αi

1

m

∑

j∈I
N(xi;xj, σ) .

(4.119)

Substituting (4.118) and (4.119) to the (4.117) gives rise to the following QP task

α∗ = argmin
α

(〈α,Hα〉 − 〈α, c〉) , (4.120)

subject to
∑

i∈I
αi = 1 , and αi ≥ 0 , i ∈ I .

74

4.10 Experiments

The elements of matrix H ∈ R
m×m and vector c ∈ R

m are defined as

[H]i,j = N(xi;xj,
√

2σ) , i ∈ I, j ∈ I and [c]i =
1

m

∑

j∈I
N(xi;xj , σ) , i ∈ I .

It is seen that the QP task (4.120) associated with the RSDE method exactly matches
the problem solved by the proposed optimizers.

4.10 Experiments

Experiments described in this section aim to compare the QP solvers proposed for the
GMNP and the GNPP. The QP tasks arising in the design of the multiclass and binary
SVM classifiers are used for testing.

Section 4.10.1 describes an experiment in which the QP solvers for the GMNP problem
are benchmarked on the learning problems associated to the multiclass BSVM formulation
with L2-soft margin. Standard benchmark data and data from one real application are
used in the experiments. The BSVM formulation and the data are described in details
in Chapter 6 devoted to the transformation of the multiclass BSVM formulation to a
suitable QP task.

The proposed QP solvers are appropriate for the SVM formulations in which the L2-
soft margin approximation of the loss function is used. However, the L1-soft margin has
been used more often especially in the learning of binary SVM classifiers. Section 4.10.2
presents comparison of the binary SVM classifiers with the L1-soft and L2-soft margins
using standard benchmark data.

Section 4.10.3 contains experimental comparison of the QP solvers for the GNPP. The
QP task arising in the design of the binary SVM classifier with L2-soft margin is used for
testing.

4.10.1 Comparison of QP Solvers on Multiclass BSVM L2 Problem

The aim of the experiment described in this section is to compare the QP solves for the
MNP on several real tasks. The QP task associated to the learning the multiclass BSVM
with L2-soft margin was selected for comparison. The transformation of the learning
problem to the MNP is a subject of Chapter 6. It is shown that the matrix H which
defines the quadratic term equals

H = K +
1

2C
E ,

where K is the kernel matrix, E is the identity matrix and C ∈ R
+ is a regularization

constant. The size m(M − 1) of the matrix H is given by the number m of training
examples and the number M of classes. The regularization constant C is a free parameter
to be tuned. The value of C controls similarity of the matrix H to the diagonal matrix
1

2C
E and thus it changes smoothly the geometry of the QP task. It is known that high

values of C imply low values of the optimal value Q(α∗) for which the QP task becomes
difficult to optimize. Therefore the constant C is used to smoothly change the complexity
of the QP task which allows for better comparison of the QP solvers. This approach of
changing the complexity of the QP task was adopted from the work of Kowalczyk [31].

75

4 Quadratic Programming solvers

From practical point of view, solving a range of the QP tasks corresponding to different
constants C has to be dealt with in the model selection procedure of the SVM classifiers.

The data sets with the multiclass classification problems were adopted from the exper-
iments described in Section 6.2 where the multiclass BSVM classifiers are benchmarked.
Table 4.1 summarizes the datasets used and gives the size (number of variables) of the
corresponding QP task to be solved. More details about the datasets can be found in
Section 6.2.

Problem # training # class size of H
data m M m(M − 1)

Iris 150 3 300
Wine 178 3 356
Glass 214 6 1,070
Vehicle 846 4 2,538
Vowel 528 11 5,280
Segment 2,310 7 13,860
OCR 49,030 32 1,519,930

Table 4.1: Summary of the multiclass BSVM L2 learning problems used to benchmark
the QP solvers. The number of training data m, the number of classes M and
the corresponding size of matrix H defining the QP task is listed.

The kernel parameters which yield the best classification performance were used here.
For each data set there are 15 different QP tasks with changed difficulty controlled by the
regularization constant C = {2−2, 2−1, . . . , 212}. All the QP solvers were applied to the
same QP problems. To compare their performance, the following statistics were measured:
(i) the number of columns of the matrix H required by the QP solver, (ii) the number of
iterations, (iii) the number of non-zero entries of the solution vector α and (iv) required
CPU time in seconds on common PC with AMD 2800 MHz processor. The measured
statistics were plotted with respect to the value Q(α). The value of Q(α) is an upper
bound on the optimal value Q(α∗) controlled by the constant C.

The algorithms were implemented in C language and linked to Matlab 6 which was used
as an experimental environment. To speed up the algorithms, a simple “First In First
Out” (FIFO) memory cache for 2000 columns of the kernel matrix was used (this issue
was discussed in Section 4.8). The scale invariant ε-optimality stopping condition (4.8)
with ε = 0.001 was used in all the experiments.

The algorithms tested were the Kowalczyk, Mitchell-Demyanov-Malozemov (MDM),
improved Mitchell-Demyanov-Malozemov (IMDM) and the Keerthi algorithm. The Kozi-
nec algorithm was found to be incomparably slow for these tasks. Therefore the Kozinec
algorithm was applied only on the first two problems their size is reasonably small.

The measured statistics (i), (ii) and (iv) are strongly correlated. Namely, the number
of requested columns of H equals to the number of iterations in the case of the Kozinec
and the Kowalczyk algorithm. It is doubled in the case of the MDM, IMDM and the
Keerthi algorithm. The computational complexity proportional to the CPU time is mainly
influenced by the number of the columns of H used during the optimization. On the other
hand, the number of non-zero entries of the solution vector α is equal for most algorithms
due to the high relative precision (ε = 0.001) of the solution found.

76

4.10 Experiments

The results for the Iris and Wine data sets are depicted in Figure 4.1. It is seen that
the performance of the Kozinec algorithm is inferior compared to the others especially
for small values of Q(α). The required computational time increases much faster with
decreasing value of Q(α) compared to the other algorithms. Also, the number of non-
zero elements of the solution vector α is higher. This supports the common sense as the
Kozinec algorithm does not have means to force the variables to zero due to its update
rule. This is probably the main reason why it is slow.

The performance of the MDM, IMDM, Keerthi and the Kowalczyk algorithms were
evaluated on other problems with results reported in Figures 4.2, 4.3 and 4.4. The IMDM
algorithm turned up to perform best in all the experiments in terms of the CPU time,
the number of required columns of H, as well as the number of iterations. The advantage
of the IMDM algorithm over the others is especially apparent for small values of Q(α).
The performance of the MDM, Keerthi and the Kowalczyk algorithm is on average very
similar. The Kowalczyk algorithm is slightly better than the MDM and the Keerthi
algorithm in terms of the number of required columns of H which is consistent with the
results by Kowalczyk [31].

4.10.2 Comparison of binary SVM with L1-soft and L2-soft margin

The QP solvers analyzed in this thesis are suitable for optimization of various SVM
formulations with the L2-soft margin loss function. The aim of the experiment described
in this section is to compare the binary SVM with L2-soft margin to commonly used
SVM with L1-soft margin and to other state-of-the-art methods for binary classification.
The data sets from the Intelligent Data Analysis (IDA) benchmark repository 1 and the
experimental protocol described in [37] were used for benchmarking.

The IDA repository consists of 13 artificial and real-world binary problems classification
collected from UCI, DELVE and STATLOG benchmark repositories (for more details refer
to [37]). For each data set there are 100 random partitionings into training and testing
part (except for Image and Splice data sets, where it is 20). Basic characteristics of the
datasets are listed in Table 4.2.

The experimental protocol adopted is the following. The training parts of the first 5
realizations are used for model selection. The model is determined by the kernel and
the regularization constant C which must be tuned. In this experiment, the Gaussian
kernel (c.f. Table 1.1) was used and its width σ was tuned. The parameter space is
two-dimensional, (σ,C) ∈ R

2. The optimal parameters were obtained by discretizing
the parameter space and selecting the values which gave the smallest classification error
estimated by the 5-fold cross validation. Having the parameters selected, the classifiers
are learned on all 100 realizations of the training set. The evaluation is computed on the
corresponding testing sets. Thus the reported statistics are mean values and standard
deviation computed over the 100 realizations.

The repository contains simulation results for a broad range of methods learning the
binary classifiers. For instance it involves results for RBF-Networks (RBFNet), AdaBoost
(AB), and Kernel Fisher Discriminant (KFD). These results were adopted for comparison.
In this thesis, the evaluation of SVM with L1-soft margin (SVM L1) and L2-soft margin
(SVM L2) was computed. The methods are compared in terms of a classification accuracy.

1The IDA repository can be downloaded from http://ida.first.fraunhofer.de/projects/bench/.

77

4 Quadratic Programming solvers

The summary of the results is given in Table 4.3. The best performance can be observed
for the KFD and SVM L1, L2 classifiers.

It can be seen that both the L1-soft and L2-soft margin formulations are comparable
in terms of the classification error. Further experiment aimed to compare both the SVM
formulations in terms of the number of support vectors which determines the classification
rule. The results obtained on the IDA problems are summarized in Table 4.4. It can be
seen that the L2-soft margin formulation yields on average 40% support vectors more
than the L1-soft margin. For completeness, the free parameters which yield the best
performance are listed in Table 4.4.

Problem #features #training #testing #realizations
data data

Banana 2 400 4900 100
Breast 9 200 77 100
Diabetes 8 468 300 100
German 20 700 300 100
Heart 13 170 100 100
Image 18 1300 1010 20
Ringnorm 20 400 7000 100
Flare 9 666 400 100
Splice 60 1000 2175 20
Thyroid 5 140 75 100
Titanic 3 150 2051 100
Twonorm 20 400 7000 100
Waveform 21 400 4600 100

Table 4.2: Basic characteristics of the problems of the IDA repository. The table contains
name of the problem, dimension of the feature vector, number of training and
testing examples and the number of realizations of the training and testing
part.

4.10.3 Comparison of QP solvers on binary SVM L2 problem

The aim of the experiment described in this section is to compare the QP solvers for
the GNPP. The QP tasks arising in the learning of the binary SVM classifier with L2-
soft margin were used. The datasets of the IDA repository were selected for testing (c.f.
Section 4.10.2 for more details). The performance of the QP solvers applied to the GNPP
very much resembles the performance on the GMNP. Therefore, only the results on the
Banana, German and Image data sets were reported. For each data set, the kernel which
yields the smallest classification error (see Section 4.10.2) was used. The regularization
constant was changed in range C ∈ {1, 10, 50, 100, 500, 1000} to control the complexity of
the QP task similarly to the experiment of Section 4.10.1.

For each data set there are 6 different QP tasks corresponding to various values of the
regularization constant C. All the QP solvers were applied to the same QP problems. The
following statistics were measured: (i) the number of columns of the matrix H requested
by the algorithm and (ii) the number of non-zero entries of the solution vector α. The

78

4.10 Experiments

Problem RBFNet AB KFD SVM L1 SVM L2

Banana 10.8 ± 0.6 12.3 ± 0.7 10.8 ± 0.5 10.4 ± 0.4 10.5 ± 0.5
Breast 27.6 ± 4.7 30.4 ± 4.7 25.8 ± 4.6 26.1 ± 4.9 26.0 ± 4.5
Diabetes 24.3 ± 1.9 26.5 ± 2.3 23.2 ± 1.6 23.2 ± 1.7 23.1 ± 1.8
German 24.7 ± 2.4 27.5 ± 2.5 23.7 ± 2.2 23.7 ± 2.2 23.4 ± 2.3
Heart 17.6 ± 3.3 20.3 ± 3.4 16.1 ± 3.4 15.7 ± 3.3 16.0 ± 3.1
Image 3.3 ± 0.6 2.7 ± 0.7 4.8 ± 0.6 3.0 ± 0.5 3.1 ± 0.6
Ringnorm 1.7 ± 0.2 1.9 ± 0.3 1.5 ± 0.1 1.6 ± 0.1 1.7 ± 0.1
Flare 34.4 ± 2.0 35.7 ± 1.8 33.2 ± 1.7 32.4 ± 1.8 33.9 ± 1.5
Splice 10.0 ± 1.0 10.1 ± 0.5 10.5 ± 0.6 11.1 ± 0.6 11.2 ± 0.7
Thyroid 4.5 ± 2.1 4.4 ± 2.2 4.2 ± 2.1 4.7 ± 2.3 4.5 ± 2.1
Titanic 23.3 ± 1.3 22.6 ± 1.2 23.2 ± 2.0 22.4 ± 1.0 22.4 ± 1.1
Twonorm 2.9 ± 0.3 3.0 ± 0.3 2.6 ± 0.2 3.0 ± 0.4 2.7 ± 0.2
Waveform 10.7 ± 1.1 10.8 ± 0.6 9.9 ± 0.4 10.1 ± 0.4 10.1 ± 0.4

Table 4.3: Simulation results on IDA repository for RBF-Network (RBFNet), AdaBoost
(AB), Kernel Fisher Discriminant (KFD), Support Vector Machines with L1-
soft margin (SVM L1) and Support Vector Machines with L2-soft margin (SVM
L2). The methods are compared in terms the classification error its mean and
the standard deviation are computed over the 100 realizations.

SVM L1 SVM L2

#SV (C, σ) #SV (C, σ)

Banana 139 ± 8 (1.48, 0.68) 210 ± 15 (5.94, 1.12)
Breast 113 ± 6 (38.48, 6.54) 187 ± 5 (1.00, 3.71)
Diabetes 255 ± 8 (3.85, 5.88) 414 ± 7 (1.92, 8.09)
German 420 ± 12 (5.94, 5.48) 613 ± 12 (1.14, 6.09)
Heart 98 ± 5 (1.00, 6.90) 137 ± 6 (1.00, 7.80)
Image 147 ± 8 (1092.55, 3.71) 365 ± 11 (11.40, 2.26)
Ringnorm 131 ± 7 (1.00, 2.43) 132 ± 8 (12.99, 2.43)
Flare 473 ± 14 (28.39, 5.88) 623 ± 14 (1.48, 3.00)
Splice 594 ± 16 (26.02, 6.90) 597 ± 16 (12.99, 7.80)
Thyroid 20 ± 3 (11.40, 1.65) 67 ± 4 (11.40, 0.58)
Titanic 69 ± 10 (3.38, 0.95) 150 ± 0 (3.38, 0.58)
Twonorm 57 ± 7 (28.39, 5.48) 123 ± 8 (1.14, 4.75)
Waveform 129 ± 9 (2.96, 5.29) 175 ± 13 (2.96, 7.27)

Table 4.4: Comparison of Support Vector Machines classifiers with L1-soft and L2-soft
margin on IDA repository in terms of the number of support vectors. The
regularization constant C and the kernel width σ which yields the best classi-
fication performance is also listed.

79

4 Quadratic Programming solvers

number of required columns is correlated with the number of iterations as well as the
computational time (c.f. discussion in Section 4.10.1). In all experiments, the scale
invariant ε-optimality stopping condition (4.8) with ε = 0.001 was used. The algorithms
were implemented in Matlab 6.

The algorithms tested were the Kowalczyk, Mitchell-Demyanov-Malozemov (MDM),
improved Mitchell-Demyanov-Malozemov (IMDM) and the Keerthi algorithm. The Kozi-
nec algorithm was found to be incomparably slow for this precision. The results obtained
are depicted in Figure 4.5. It can be seen that the trend of the curves resembles the
results obtained for the GMNP. The IMDM algorithm required in all experiments the
minimal number of columns of the matrix H which is directly correlated with the low
computational time. The performance of the remaining algorithms is on average similar
with slight superiority of the Kowalczyk algorithm.

4.11 Summary to QP solvers

This chapter analyzes the QP solvers based on known methods to solve the MNP and
NPP which were successfully applied to solve large scale problems arising in the learning
of the binary SVM classifier with the L2-soft margin.

The contributions of this part of the thesis involve:

• The application of the Kozinec algorithm for learning the binary SVM classifier
with L2-soft margin was proposed by the author of the thesis in [11, 15]. However,
the application of different kinds of algorithms solving the NPP for learning of
the SVM L2-soft margin classifier was proposed earlier by Keerthi et al. [29] and
Kowalczyk [31].

• The algorithms for the MNP and NPP were generalized to solve the QP tasks with
an additional linear term and arbitrary symmetric positive definite Hessian in the
objective function. These generalized formulations are denoted as the GMNP and
the GNPP. As a result the generalized algorithms can be applied for optimization
problems arising in a broader class of learning methods. Namely, the solvers can
be applied for the Reduced Set Density Estimation, computation of the minimal
enclosing ball, Support Vector Data Description, learning the single, binary and the
multiclass classifiers. Section 4.9 describes these applications in more details.

• A novel proof of the equivalence between the MNP and the QP task associated to
the learning of the singleclass SVM with hard and L2-soft margin was presented. A
novel proof was also given for the equivalence between the NPP and the QP task
associated to the learning of the binary SVM with hard and L2-soft margin.

• All the generalized methods were analyzed in a common framework which allows
for their comparison. The convergence to the ε-optimal solution in a finite number
of iterations was proven for all the methods.

• A novel method, named Improved Mitchell-Demyanov-Malozemov (IMDM) algo-
rithm, was derived by combining of ideas of two algorithms. Namely, the form of
the updating rule was adopted from the MDM algorithm. The idea of selecting the
optimal rule in each iteration was adopted from the Kowalczyk algorithm.

80

4.11 Summary to QP solvers

• The algorithms were experimentally evaluated on large scale problems and com-
pared between each other. The algorithm were proven to solve large problems (even
with millions of variables) in reasonable times. The proposed IMDM algorithm
outperformed the other algorithms in all experiments.

The listed contributions were partially published in [11, 15, 18].

81

4 Quadratic Programming solvers

Figure 4.1: Benchmarking QP solvers on Iris and Wine data sets.
Ir

is

10
−6

10
−4

10
−2

10
0

0

5

10

15
x 10

6

Q

R
eq

ui
re

d
co

lu
m

ns

MDM
IMDM
Keerthi
Kowalczyk
Kozinec

10
−6

10
−4

10
−2

10
0

0

5

10

15
x 10

6

Q

N
um

be
r

of
 it

er
at

io
ns

MDM
IMDM
Keerthi
Kowalczyk
Kozinec

10
−6

10
−4

10
−2

10
0

20

40

60

80

100

120

140

160

180

Q

N
on

−
ze

ro
 v

ar
ia

bl
es

MDM
IMDM
Keerthi
Kowalczyk
Kozinec

10
−6

10
−4

10
−2

10
0

0

50

100

150

200

250

300

350

Q

C
P

U
 ti

m
e

[s
]

MDM
IMDM
Keerthi
Kowalczyk
Kozinec

W
in

e

10
−3

10
−2

10
−1

0

2

4

6

8

10

12

14
x 10

5

Q

R
eq

ui
re

d
co

lu
m

ns

MDM
IMDM
Keerthi
Kowalczyk
Kozinec

10
−3

10
−2

10
−1

0

2

4

6

8

10

12

14
x 10

5

Q

N
um

be
r

of
 it

er
at

io
ns

MDM
IMDM
Keerthi
Kowalczyk
Kozinec

10
−3

10
−2

10
−1

20

40

60

80

100

120

140

160

180

Q

N
on

−
ze

ro
 v

ar
ia

bl
es

MDM
IMDM
Keerthi
Kowalczyk
Kozinec

10
−3

10
−2

10
−1

0

5

10

15

20

25

30

35

Q

C
P

U
 ti

m
e

[s
]

MDM
IMDM
Keerthi
Kowalczyk
Kozinec

82

4.11 Summary to QP solvers

Figure 4.2: Benchmarking QP solvers on Glass and Vehicle data sets.
G

la
ss 10

−6
10

−5
10

−4
10

−3
10

−2
0

0.5

1

1.5

2
x 10

7

Q

R
eq

ui
re

d
co

lu
m

ns
MDM
IMDM
Keerthi
Kowalczyk

10
−6

10
−5

10
−4

10
−3

10
−2

0

2

4

6

8

10
x 10

6

Q

N
um

be
r

of
 it

er
at

io
ns

MDM
IMDM
Keerthi
Kowalczyk

10
−6

10
−5

10
−4

10
−3

10
−2

100

200

300

400

500

600

700

Q

N
on

−
ze

ro
 v

ar
ia

bl
es

MDM
IMDM
Keerthi
Kowalczyk

10
−6

10
−5

10
−4

10
−3

10
−2

0

200

400

600

800

1000

1200

1400

Q

C
P

U
 ti

m
e

[s
]

MDM
IMDM
Keerthi
Kowalczyk

V
eh

ic
le

10
−6

10
−5

10
−4

10
−3

10
−2

0

1

2

3

4

5

6

7

8
x 10

6

Q

R
eq

ui
re

d
co

lu
m

ns

MDM
IMDM
Keerthi
Kowalczyk

10
−6

10
−5

10
−4

10
−3

10
−2

0

1

2

3

4

5
x 10

6

Q

N
um

be
r

of
 it

er
at

io
ns

MDM
IMDM
Keerthi
Kowalczyk

10
−6

10
−5

10
−4

10
−3

10
−2

200

400

600

800

1000

1200

1400

1600

1800

Q

N
on

−
ze

ro
 v

ar
ia

bl
es

MDM
IMDM
Keerthi
Kowalczyk

10
−6

10
−5

10
−4

10
−3

10
−2

0

500

1000

1500

Q

C
P

U
 ti

m
e

[s
]

MDM
IMDM
Keerthi
Kowalczyk

83

4 Quadratic Programming solvers

Figure 4.3: Benchmarking QP solvers on Vowel and Segment data sets.
V
ow

el 10
−2.9

10
−2.8

10
−2.7

1

2

3

4

5

6

7

8
x 10

4

Q

R
eq

ui
re

d
co

lu
m

ns

MDM
IMDM
Keerthi
Kowalczyk

10
−2.9

10
−2.8

10
−2.7

0

1

2

3

4

5

6
x 10

4

Q

N
um

be
r

of
 it

er
at

io
ns

MDM
IMDM
Keerthi
Kowalczyk

10
−2.9

10
−2.8

10
−2.7

1000

1500

2000

2500

3000

3500

4000

Q

N
on

−
ze

ro
 v

ar
ia

bl
es

MDM
IMDM
Keerthi
Kowalczyk

10
−2.9

10
−2.8

10
−2.7

0

10

20

30

40

50

60

70

Q

C
P

U
 ti

m
e

[s
]

MDM
IMDM
Keerthi
Kowalczyk

S
eg

m
en

t

10
−5

10
−4

10
−3

10
−2

0

1

2

3

4

5

6

7

8
x 10

5

Q

R
eq

ui
re

d
co

lu
m

ns

MDM
IMDM
Keerthi
Kowalczyk

10
−5

10
−4

10
−3

10
−2

0

1

2

3

4

5
x 10

5

Q

N
um

be
r

of
 it

er
at

io
ns

MDM
IMDM
Keerthi
Kowalczyk

10
−5

10
−4

10
−3

10
−2

500

1000

1500

2000

2500

Q

N
on

−
ze

ro
 v

ar
ia

bl
es

MDM
IMDM
Keerthi
Kowalczyk

10
−5

10
−4

10
−3

10
−2

0

100

200

300

400

500

600

700

800

Q

C
P

U
 ti

m
e

[s
]

MDM
IMDM
Keerthi
Kowalczyk

84

4.11 Summary to QP solvers

Figure 4.4: Benchmarking QP solvers on OCR data sets.

O
C

R 10
−2

10
−1

10
0

10
1

0

2

4

6

8

10
x 10

5

Q

R
eq

ui
re

d
co

lu
m

ns

MDM
IMDM
Keerthi
Kowalczyk

10
−2

10
−1

10
0

10
1

0

1

2

3

4

5

6
x 10

5

Q

N
um

be
r

of
 it

er
at

io
ns

MDM
IMDM
Keerthi
Kowalczyk

10
−2

10
−1

10
0

10
1

0

2

4

6

8

10
x 10

4

Q

N
on

−
ze

ro
 v

ar
ia

bl
es

MDM
IMDM
Keerthi
Kowalczyk

10
−2

10
−1

10
0

10
1

0

2

4

6

8

10
x 10

4

Q

C
P

U
 ti

m
e

[s
]

MDM
IMDM
Keerthi
Kowalczyk

85

4 Quadratic Programming solvers

Figure 4.5: Benchmarking QP solvers on Banana, German and Image data sets.

Banana

10
−5

10
−4

10
−3

10
−2

10
−1

0

1

2

3

4

5

6
x 10

5

Q

R
eq

ui
re

d
co

lu
m

ns

MDM
IMDM
Keerthi
Kowalczyk

10
−5

10
−4

10
−3

10
−2

10
−1

120

140

160

180

200

220

240

260

280

Q

N
on

−
ze

ro
 v

ar
ia

bl
es

MDM
IMDM
Keerthi
Kowalczyk

German

10
−5

10
−4

10
−3

10
−2

0

2

4

6

8

10

12

14
x 10

4

Q

R
eq

ui
re

d
co

lu
m

ns

MDM
IMDM
Keerthi
Kowalczyk

10
−5

10
−4

10
−3

10
−2

350

400

450

500

550

600

650

Q

N
on

−
ze

ro
 v

ar
ia

bl
es

MDM
IMDM
Keerthi
Kowalczyk

Image

10
−4

10
−3

10
−2

0

1

2

3

4

5

6

7

8
x 10

4

Q

R
eq

ui
re

d
co

lu
m

ns

MDM
IMDM
Keerthi
Kowalczyk

10
−4

10
−3

10
−2

100

200

300

400

500

600

700

Q

N
on

−
ze

ro
 v

ar
ia

bl
es

MDM
IMDM
Keerthi
Kowalczyk

86

5 Greedy Kernel Principal Component Analysis

5.1 Motivation

The kernel methods in general learn a function in the following form

f(x) =
m∑

i=1

αi〈Φ(x),Φ(xi)〉 + b =
m∑

i=1

αik(x, xi) + b . (5.1)

The function f is a linear combination of training examples of observations {x1, . . ., xm}
mapped to the feature space H. The feature map Φ:X → H of the input data does not
have to be known explicitly but it is rather given by a positive definite kernel function
k:X × X → R. The information contained in the training observations is expressed by
the kernel matrix K ∈ R

m×m the entries of which are [K]i,j = k(xi, xj). Two problems
can arise when dealing with the kernel methods:

(i) The training stage becomes demanding due to the size of the kernel matrix. The
storage of the kernel matrix becomes infeasible for a large training set as the kernel
matrix grows quadratically with the number of examples. On the other hand, a
frequent evaluation of the entries of the kernel matrix makes a given learning method
slow.

(ii) The evaluation stage becomes demanding due to a large number of non-zero coeffi-
cients of the kernel expansion (5.1). Even though the learning methods like the Sup-
port Vector Machines produce sparse solutions the number of non-zero coefficients
can be still large. This happens especially when the number of training examples
is high or the examples are heavily overlapping. Moreover, some kernel methods do
not enforce the solution to be sparse, e.g., the Kernel Principal Component Analysis
or the Kernel Fisher Discriminant.

In particular, the second problem is significant in most real applications where the eval-
uation time is important.

The method proposed in this chapter aims to mitigate both the mentioned problems.
Let T = {x1, . . . ,xm} be a training set of examples represented in the feature space H.
The idea is to select a subset S ⊂ T of the training examples such that the linear span of S
is similar to the linear span of all examples T . Let I = {1, . . . ,m} denote a set of indices
of the training examples T and J = {j1, . . . , jl} a set of indices of l selected examples
S. In such a case J ⊂ I. Let T̃ = {x̃1, . . . , x̃m} be an approximation of the training
examples T represented in the basis given by the selected subset S. If the function f is
learned from the approximated examples T̃ then two facts hold true:

(i) The kernel matrix of the approximated data can be factorized to K̃ = ZT Z, where
Z ∈ R

l×m is a matrix the columns of which are coordinates of training examples T
represented in the orthonormalized basis of the selected subset S. The validity of
this statement will be derived below.

87

5 Greedy Kernel Principal Component Analysis

(ii) The learned function lies in the span of selected examples. Thus

f̃(x) =
∑

j∈J
βj〈Φ(xj),Φ(x)〉 + θ =

∑

j∈J
βjk(xj , x) + θ .

The number l of selected examples J determines the complexity of the function f
(in the worst case).

It can be seen that using the approximated training examples T̃ yields a reduction both
in the training and the evaluation stage. A method to select a small subset S which allows
a good approximation of the training examples is proposed below.

5.2 Problem formulation

The aim is to approximate training examples T = {x1, . . . ,xm} by a new set T̃ =
{x̃1, . . . , x̃m} such that

x̃i =
∑

j∈J
xj[βi]j , ∀i ∈ I .

The set J ⊂ I contains indices of l selected examples S = {xj: j ∈ J } ⊂ T and βi ∈ R
l,

i ∈ I, are coefficients of linear combinations. The objective function to minimize is the
mean square error

εMS(T |J) =
1

m

∑

i∈I
‖xi − x̃i‖2 =

1

m

∑

i∈I

∥
∥
∥
∥
∥
∥

xi −
∑

j∈J
xj[βi]j

∥
∥
∥
∥
∥
∥

2

. (5.2)

The approximation error εMS(T |J) of the examples in the set T depends on the subset
J and the coefficients βi, i ∈ I. However, given the subset S the coefficients βi, i ∈ I can
be computed optimally to minimize the error εMS(T |J). Therefore they do not appear
as an argument of the error function. It is easy to see that the optimal coefficients can be
computed as

βi = argmin
β∈Rl

∥
∥
∥
∥
∥
∥

xi −
∑

j∈J
xj [βi]j

∥
∥
∥
∥
∥
∥

2

= (Ks)
−1ks(xi) , ∀i ∈ I ,

where Ks ∈ R
l×l is a kernel matrix of the selected examples S, i.e., [Ks]i,j = k(xji

, xjj
) =

〈xji
,xjj

〉, and the vector ks(xi) = [k(xj1 , xi), . . . , k(xjl
, xi)]

T ∈ R
l contains kernel func-

tions evaluated at the examples S and xi. Having the matrix Ks and the vector ks defined
the error εMS(T |J) can be written as

εMS(T |J) =
1

m

∑

i∈I
(k(xi, xi) − 2Ksks(xi) + 〈ks(xi),Ksks(xi)〉) . (5.3)

An important observation is that both the coefficients and the error function can be
expressed in terms of dot products and thus the kernel functions can be employed.

The selection of the subset S is stated as the following optimization problem

J ∗ = argmin
J⊂I

Card(J)=l

εMS(T |J) , (5.4)

88

5.3 Upper bound minimization

where Card(J) denotes the cardinality of the set J . It should be remarked that the
task (5.4) is connected to the Kernel Principal Component Analysis (KPCA) described in
Section 1.5. The KPCA also aims to minimize the mean square error but the basis vectors
are represented as linear combinations of all training examples. The approximation found
by the KPCA is optimal with respect to the mean square error but it is the worst possible
with respect to the number of training data required for data representation.

The selection of the optimal subset J ∗ is a combinatorial problem as there exist
(

m
l

)

possible selections. Instead of solving the problem (5.4) exactly, an approximated solution
can be found by a greedy Algorithm 23.

Algorithm 23: Naive Greedy KPCA

1. Initialization. Set J (0) = {∅}.

2. For t = 1 to l:
(a) jt ∈ argmin

j∈I\J (t−1)

εMS(T |J (t−1) ∪ {j}) .

(b) J (t) = J (t−1) ∪ {jt} .

Algorithm 23 implements a greedy strategy to minimization of the task (5.4). There
are two reasonable stopping conditions: (i) the algorithm halts if Card(J (t)) reaches
a given limit or (ii) the algorithm halts if the error εMS(T |J (t)) falls below a specific
limit. The use of a particular stopping condition depends on a given application. Even
though Algorithm 23 is simple to implement, it is not suitable for practical use due to its
high computational requirements. The bottleneck is the Step (b) which requires O(m2)
computations. The evaluation of εMS(T |J (t) ∪ j) using (5.3) requires O(m) operations
and it must be repeated m times. There is a need to adopt further approximations to the
solution to obtain a practically useful algorithm which is proposed below.

Section 5.3 presents a simple and fast algorithm which minimizes an upper bound
on εMS . This algorithm is fast but the obtained approximation of the input data is too
rough. Therefore this simple algorithm is further extended which gives rise to a practically
applicable method described in Section 5.4.

5.3 Upper bound minimization

The mean square error to be minimized εMS(T |J) can be upper bounded by

εMS(T |J) =
1

m

∑

i∈I
‖xi − x̃i‖2 ≤ 1

m
(m− l) max

j∈I\J
‖xj − x̃j‖2 , (5.5)

where l = Card(J) is number of selected examples in the set J . The bound (5.5) obviously
holds because (m− l) examples included to the set J are represented without error and
the mean cannot be higher than the maximum. A simple method for minimization of
the error εMS(T |J) can be based on a greedy minimization of the upper bound (5.5).
This method simply adds in each iteration the example with the biggest error to the
set of the selected examples S. Moreover, it will be shown that the evaluation of the

89

5 Greedy Kernel Principal Component Analysis

partial errors ‖xj − x̃j‖, j ∈ J can be efficiently evaluated when the approximated data
T̃ = {x̃1, . . . , x̃m} are represented in the orthonormal basis W = {w1, . . . ,wl} spanning
the selected subset S = {xj1, . . . ,xjl

}.
The orthonormal basis W can be computed gradually as the new examples are added

to the set S. The examples T are represented in the orthonormal basis W as

x̃i =

l∑

j=1

wj[zi]j , ∀i ∈ I ,

where the new representation Z = {z1, . . . ,zm} ∈ R
m×l is a set of l-dimensional real

vectors. The basis vectors wj ∈ H are determined as a linear combination of the selected
examples S, i.e.,

wj =
l∑

i=1

xji
[αj]i ,

where αj ∈ R
l, j = 1, . . . , l , are l-dimensional vectors. Let the matrix A = [α1, . . . ,αl] ∈

R
l×l. The basis W is required to be orthonormal which means that

KsAKs = E ,

where E ∈ R
l×l is the identity matrix. Having the orthonormal basis W the vectors

Z = {z1, . . . ,zm} can be computed as projections of T = {x1, . . . ,xm} onto the basis
vectors W = {w1, . . . ,wl}, i.e.,

[zi]j = 〈wj,xi〉, ∀i ∈ I, j = 1, . . . , l ,

or in a compact form
zi = AT ks(xi) .

The partial approximation errors can be evaluated simply as

εi = ‖xi − x̃i‖2 = 〈xi,xi〉 − 〈zi,zi〉 , i ∈ I , (5.6)

which follows directly from orthonormality of the basis W.
The vectors A = [α1, . . . ,αl] which makes the basis W orthonormal can be found by

the Gram-Schmidt orthogonalization process

α1 =
1√
ε1

δ(1) ,

αt =
1√
εt

(

δ(t) −
t−1∑

i=1

〈wi,xji
〉αi

)

for t > 1 ,

where the vectors δ(t) ∈ R
l has all entries equal 0 except for the t-th entry equal to 1.

The normalization constants εt which ensure 〈wt,wt〉 = 1 are computed as

εt = 〈xjt ,xjt〉 −
t−1∑

i=1

(〈wi,xjt〉) .

The greedy algorithm minimizing efficiently the upper bound on the mean square error
is described by Algorithm 24.

90

5.4 Greedy KPCA algorithm

Algorithm 24: Greedy minimization of upper bound on εMS(T |J)

1. Initialization. Set J (0) = {∅} and ε
(0)
i = k(xi, xi), i ∈ I.

2. For t = 1 to l:

(a) jt ∈ argmax
j∈I\J

ε
(t−1)
j .

(b) [zi]t =
1

√

ε
(t−1)
jt

(

k(xi, xjt) −
t−1∑

h=1

[zi]h[zjt]h

)

∀i ∈ I .

(c) αt =
1

√

ε
(t−1)
jt

(

δ(t) −
t−1∑

i=1

[zjt]iαi

)

.

(d) ε
(t)
i = ε

(t−1)
i − ([zi]t)

2 ∀i ∈ I .
(e) J (t) = J (t−1) ∪ {jt} .

Algorithm 24 finds in each iteration one example xjt which contributes to the mean
square error maximally. This example is included to the set S (or its index is included to
J respectively) and the approximation errors are recomputed. Algorithm 24 goes from
the iteration t = 1 to l and each iteration requires O(mt) computations. Therefore the
total computational complexity scales with O(ml2).

It is seen that Algorithm 24 is very simple to implement but the minimized upper bound
can be too coarse approximation of the mean square error. The next section proposes an
extension of the algorithm which aims to find a more precise approximation.

5.4 Greedy KPCA algorithm

The aim is to find basis vectors nearly as good as those selected by the naive greedy
KPCA Algorithm 23. At the same time, the method should have a low computational
requirements as Algorithm 24 which minimizes the upper bound on εMS . The idea is to
combine these two algorithms together as described below.

Let Z = {z1, . . . ,zm} ∈ R
l×m be a finite-dimensional representation of the training

examples T = {x1, . . . ,xm} found by Algorithm 24. Let it be further assumed that the
number l of the selected basis vectors S is sufficiently high so that the mean square error
εMS(T |J) is zero (in the worst case l = m). If the error εMS(T |J) is zero than obviously
〈zi,zj〉 = 〈xi,xj〉, i, j ∈ I, which follows directly from (5.6). Now, the aim is to select a
single vector xj1 which would minimize the error εMS(T |{j1}) maximally, i.e.,

j1 ∈ argmin
j∈I

1

m

m∑

i=1

∥
∥
∥
∥
xi − xj

〈xi,xj〉
〈xj ,xj〉

∥
∥
∥
∥

2

= argmin
j∈I

1

m

m∑

i=1

(

〈xi,xi〉 −
〈xi,xj〉2
〈xj ,xj〉

)

= argmin
j∈I

1

m

m∑

i=1

(

〈zi,zi〉 −
〈zi,zj〉2
〈zj ,zj〉

)

91

5 Greedy Kernel Principal Component Analysis

= argmax
j∈I

zT
j

‖zj‖

(
m∑

i=1

ziz
T
i

)

zj

‖zj‖
. (5.7)

The evaluation of (5.7) yields the best j1 minimizing εMS(T |{j1}). The number of com-
putations is O(ml2) even if the computations required by Algorithm 24 to obtain Z are
counted in. The idea is to use smaller number p < l of basis vectors S for approxima-
tion of T but the formula (5.7) is still used. Hence j1 is not optimal but the number
of computations is O(mp2) which can be set reasonably small. The consequent indices
jt+1, . . . , jl can be found using the same procedure but applied in the space perpendicular
to previously selected basis vectors S = {xj1, . . . ,xjt}.

The idea can be simply implemented by replacing Step (a) of Algorithm 24 by a new
procedure described by Algorithm 25. The resulting algorithm will be referred to as
the Greedy KPCA algorithm. The idea of selecting the basis vectors is illustrated in
Figure 5.1.

Algorithm 25: Basis vector selection for Greedy KPCA (Replacement for Step (a))

1. Initialization. Set π
(0)
i = ε

(t)
i , i ∈ I.

2. For k = 1 to p:

(a) rk ∈ argmax
j∈I

π
(k−1)
j .

(b) [ui]k =
1

√

π
(k−1)
rk



k(xi, xrk
) −

t−1∑

j=1

[zi]j [zrk
]j −

k−1∑

j=1

[ui]j [urk
]j



 , ∀i ∈ I .

(c) π
(k)
i = π

(k−1)
i − ([ui]k)

2 , ∀i ∈ I .

3. Select jt = argmax
j∈I\J (t−1)

=
uT

j

‖uj‖

(
m∑

i=1

uiu
T
i

)

uj

‖uj‖
.

The Greedy KPCA algorithm requires O(mpl2) operations as the procedure described
by Algorithm 25 requires O(mp(t+p)) operations and is repeated for t = 1 to l and p≪ l.

After the algorithm halts, the set J (l) contains indices of the selected training examples
which form the basis S. The matrix A = [α1, . . . ,αl] ∈ R

l×l defines the orthonormal basis
W which has the same linear span as the set S. The set Z = {z1, . . . ,zm} ∈ R

l×m contains
the training examples T = {x1, . . . ,xm} represented in the orthonormal basis W. The
mean square error can be simply evaluated as

εMS(T |J (l)) =
1

m

m∑

i=1

ε
(l)
i . (5.8)

Because the vectors Z represent the training examples T in the orthonormal basis W,
then the following formula clearly holds

〈x̃i, x̃j〉 = 〈zi,zj〉 .

92

5.5 Approximation to regularized risk minimization

1

1 2

2

3

3

4

4

t

i

m

l

l − 1

j1

j2

j3

j4

jl

jl−1

Figure 5.1: The idea of selecting the basis vectors by the Greedy KPCA algorithm. The
solid line shows indices of basis vectors selected in Step 3 of the procedure
described by Algorithm 25. The dashed line shows indices of p = 3 basis
vectors selected in Step 2(a) of the same procedure.

Let Z = [z1, . . . ,zm] ∈ R
l×m be vectors from the set Z represented in a matrix. The

matrix Z can be used to approximate the original kernel matrix K so that

K ≈ ZT Z .

The approximation is perfect, i.e., K = ZTZ, if the mean square error εMS(T |J (l)) is
equal to zero which follows from (5.6).

So far the number l of selected basis vectors has been assumed fixed beforehand. It
can be also useful in practice to select such a number l that the mean square error
εMS(T |J (t)) drops below a prescribed limit. This stopping condition can be implemented
simply because the error εMS(T |J (t)) is known in each iteration due to formula (5.8).

5.5 Approximation to regularized risk minimization

Let TXY = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m be a training set. The input states are
assumed to be represented in the feature space H via the map Φ:X → H. The learning

93

5 Greedy Kernel Principal Component Analysis

of function f(x) = 〈Φ(x),w〉 + b can be defined as the regularized risk minimization

(w∗, b∗) = argmin
w∈H,b∈R

1

m

m∑

i=1

V (yi, f(xi)) + λ‖w‖2 , (5.9)

where

f(x) = 〈w,Φ(x)〉 + b =
m∑

i=1

αi〈Φ(xi),Φ(x)〉 + b =
m∑

i=1

αik(xi, x) + b ,

according to the Representer Theorem 1.1. The vector w ∈ H lies in the linear span of
T = {x1, . . . ,xm}.

The Greedy KPCA algorithm selects a subset S = {xj1, . . . ,xjl
} such that Span(S)

approximates the Span(T). Let f̃(x) be a function defined as

f̃(x) = 〈w̃,Φ(x)〉 + θ =
∑

j∈J
βj〈Φ(xj),Φ(x)〉 + θ =

∑

j∈J
βjk(xj , x) + θ , (5.10)

i.e., w̃ ∈ H lies in the Span(S) and β = [β1, . . . , βl]
T ∈ R

l are its coordinates in the basis
S. The function f̃(x) can be learned using the regularized risk minimization

(w̃∗, θ∗) = argmin
w̃∈Span(S),θ∈R

1

m

m∑

i=1

V (yi, f̃(xi)) + λ‖w̃‖2 . (5.11)

The learning task (5.11) is an approximation to the task (5.9) because w̃ is selected from
Span(S) ⊂ H instead of the whole feature space H. The approximated task (5.11) can be
further simplified when the vector w̃ is sought in the orthonormal basis W = {w1, . . . ,wl}
instead of the basis S = {xj1, . . . ,xjl

}, i.e.,

w̃ =

l∑

i=1

βiΦ(xji
) =

l∑

i=1

viwi , (5.12)

where v = [v1, . . . , vl]
T ∈ R

l is a vector which determines w̃ in the basis W. Substitut-
ing (5.12) to (5.11) gives

(v∗, θ∗) = argmin
v∈Rl,θ∈R

1

m

m∑

i=1

V (yi, f̃(xi)) + λ‖v‖2 , (5.13)

and

f̃(x) =

l∑

i=1

vi〈wi,Φ(x)〉 + θ = 〈v,AT ks(x)〉 + θ .

An advantage is that the learning of task (5.13) requires only the finite-dimensional rep-
resentation Z = {z1, . . . ,zm} ∈ R

l×m of the input examples T = {x1, . . . ,xm} because
f̃(xi) = 〈v,zi〉 + θ, i ∈ I. It can be also convenient to work explicitly with the finite-
dimensional vectors Z instead of expressing the learning in terms of the dot products.

94

5.6 Experiments

5.6 Experiments

5.6.1 Minimization of reconstruction error

In this experiment, the Greedy KPCA algorithm is compared to the ordinary KPCA
(based on the eigenvalue decomposition) in terms of the mean square reconstruction error
and the sparseness of the data approximation. The aim is to investigate how fast the
Greedy KPCA decreases the reconstruction error compared to the optimal solution of the
ordinary KPCA. The sparseness of the data approximation means the number of training
data which determines the projection onto the basis vectors. The sparseness is linearly
proportional to the evaluation time of the data projection.

The training data and the kernel parameters are adopted from the experiment described
in Section 4.10.2. The first 6 data sets of the IDA benchmark repository are used only.
The comparison was performed on the first realizations of the training part. The kernel
parameters which produced the best binary SVM classifier with L2-soft margin are used
here.

The ordinary and the Greedy KPCA algorithms were implemented in Matlab 6 lan-
guage. The Matlab function eig was used to solve the eigenvalue problem of the ordinary
KPCA. The implementation was optimized neither for speed nor the memory require-
ments but it was found sufficient for all tested problems. However, there is still a large
space for improvements in this direction.

The number l of basis vectors required to achieve the mean square reconstruction errors
εMS ∈ {0.1, 0.01, 0.001} was recorded for both the Greedy KPCA and the ordinary KPCA.
The results obtained are listed in Table 5.1. As expected, the Greedy KPCA needs more
basis vectors to achieve desired error εMS than the optimal KPCA. This is especially
apparent at the first stages (εMS = 0.1). However, this difference decreases as the number
of basis vectors grows. The Greedy KPCA algorithm required on average 30% more basis
vectors than the optimal KPCA to achieve the reconstruction error εMS = 0.001. It is
worth mentioning that the Greedy KPCA requires only l training data to represent l basis
vectors while the ordinary KPCA always requires all the m training data. This implies
that the projection function found by the Greedy KPCA is much sparser and consequently
the evaluation of the projection function is faster. The evaluation time for the projection
function corresponding to the εMS = 0.001 is listed in the rightmost column of Table 5.1.

5.6.2 Approximated regularized least squares

This section describes how to use the proposed Greedy KPCA to find an approximated
solution of the regularized least squares problem [9]. Let TXY = {(x1, y1), . . . , (xm, ym)} ∈
(X ×R)m be a training set of examples. The hidden state is assumed to be a real number
y ∈ R. The input observations x ∈ X are assumed to be represented in the feature space
H via a kernel function k:X ×X → R. The aim is to learn a function f(x) ∈ H such that
the quadratic loss function V (y, f(x)) = (y − f(x))2 is minimized. The learning task can
stated as the regularized risk minimization

f∗ = argmin
f∈H

1

m

m∑

i=1

(yi − f(xi))
2 + λ‖f‖2 , (5.14)

where λ ∈ R
+ is some regularization constant. The value of λ has to be determined based

on other principle, e.g., using cross-validation or independent validation training data.

95

5 Greedy Kernel Principal Component Analysis

Problem Algorithm εMS Eval
0.1 0.01 0.001 time [%]

Banana Ordinary KPCA 5 14 22 100.0
(m=400) Greedy p = 1 10 24 38 9.5

KPCA p = 25 8 18 28 7.0
p = 50 8 17 28 7.0

Breast Ordinary KPCA 9 47 96 100.0
(m=200) Greedy p = 1 25 107 158 79.0

KPCA p = 25 18 73 121 60.5
p = 50 17 71 118 59.0

Diabetis Ordinary KPCA 1 8 32 100.0
(m=468) Greedy p = 1 5 16 57 12.2

KPCA p = 25 2 12 46 9.8
p = 50 2 12 43 9.2

Flare Ordinary KPCA 2 12 32 100.0
(m=666) Greedy p = 1 3 38 154 23.1

KPCA p = 25 3 38 43 6.5
p = 50 3 17 46 2.6

German Ordinary KPCA 18 165 400 100.0
(m=700) Greedy p = 1 45 360 665 95.0

KPCA p = 25 42 285 524 74.9
p = 50 38 277 513 73.3

Heart Ordinary KPCA 4 23 73 100.0
(m=170) Greedy p = 1 9 48 116 68.2

KPCA p = 25 7 43 101 59.4
p = 50 7 41 97 57.1

Table 5.1: Comparison between the Greedy KPCA and the ordinary KPCA in terms of
ability to decrease the mean square reconstruction error. The evaluation time
(projection on a single basis vector) required by the Greedy KPCA represen-
tation is reported relatively to the time of the ordinary KPCA.

96

5.6 Experiments

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
banana

l

m
se

KPCA
Greedy KPCA p=1
Greedy KPCA p=25
Greedy KPCA p=400

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
breast

l

m
se

KPCA
Greedy KPCA p=1
Greedy KPCA p=25
Greedy KPCA p=200

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
diabetis

l

m
se

KPCA
Greedy KPCA p=1
Greedy KPCA p=25

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
flare

l

m
se

KPCA
Greedy KPCA p=1
Greedy KPCA p=25

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
german

l

m
se

KPCA
Greedy KPCA p=1
Greedy KPCA p=25

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
heart

l

m
se

KPCA
Greedy KPCA p=1
Greedy KPCA p=25

Figure 5.2: Comparison of the Greedy KPCA and the ordinary KPCA algorithm on the
first six data sets of the IDA benchmark repository. The mean square recon-
struction error εMS with respect to the number of basis vectors l is displayed.

97

5 Greedy Kernel Principal Component Analysis

According to the Representer Theorem 1.1, the resulting function has the form

f(x) =

m∑

i=1

αik(xi, x) , (5.15)

where α = [α1, . . . , αm]T ∈ R
m is an unknown vector. Substituting (5.15) to (5.14) and

solving for α gives
α∗ = (K +mλE)−1y , (5.16)

where K ∈ R
m×m is the kernel matrix, E ∈ R

m×m is the identity matrix and y =
[y1, . . . , ym]m ∈ R

m is a vector which contains the values of hidden states. Thus the
learning consists of evaluation formula (5.16) which can be a demanding task due to the
computation of matrix inverse when m is large.

The problem can be alleviated using the approximation described in Section 5.5. The
Greedy KPCA finds a finite-dimensional representation Z = {z1, . . . ,zm} ∈ R

l×m of
input examples mapped to the feature space H. The resulting function reads

f̃(x) = 〈v,AT ks(x)〉 ,

where the vector v ∈ R
l is learned by solving

v∗ = argmin
v∈Rl

1

m

m∑

i=1

(yi − 〈v,zi〉)2 + λ‖v‖2 = (ZT Z +mλE)−1Zy . (5.17)

The matrix Z = [z1, . . . ,zm] ∈ R
l×m contains the vectors of the set Z and E ∈ R

l×l is the
identity matrix. The learning of the approximated function f̃ can be considerably simpler
as the formula (5.17) requires inversion of the matrix of size l < m.

The described method is evaluated on a synthetical problem with known ground truth
function to be learned from data. It is assumed that the input space is X = {x ∈ R

2:x =
[x1, x2]

T ,−2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2} and the statistical model is given by

P (y|x) = N1(y; f
⋆(x), 0.3) and P (x) = N2(x; 0; E) .

The symbol N1(y; f
⋆(x), 0.3) stands for an univariate Gaussian distribution with mean

value f⋆(x) and standard deviation 0.3 and N2(x; 0; E) stands for bivariate Gaussian with
zero mean and the identity covariance matrix. The function f⋆(x) is

f⋆(x) = x1 exp(−(x1)
2 − (x2)

2) .

It is easy to show that the function f⋆ minimizes the Bayesian risk with quadratic loss
function, i.e.,

f⋆(x) = argmin
y′∈R

∫

R

P (y|x)(y − y′)2dy =

∫

R

yP (y|x)dy =

∫

R

yN(y; f⋆(x), 0.3)dy . (5.18)

The aim is to learn a function f(x) which minimizes the Bayesian risk from training
examples TXY = {(x1, y1), . . . , (xm, ym)} ∈ (R2 × R)m. The number of m = 100000
training examples was generated from the known underlying model. The indices I =
{1, . . . ,m} of the training examples was split into two subsets I = Itrn ∪Ival both having
mtrn = mval = 50000 indices.

98

5.6 Experiments

A common approach in the kernel based machine learning is to replace the Bayesian
risk with the regularized risk (5.14). The minimization of (5.14) produces function f(x)
which, however, depends on the kernel function k(x, x′) and the regularization constant
λ. These unknown parameters can be selected based on minimization of the validation
risk

Rval[f] =
1

mval

∑

i∈Ival

(yi − f(xi))
2 . (5.19)

In this case the learning of f becomes intractable because of the computation of the in-
version of the matrix K which is of size mtrn = 50000. Moreover, this inversion must be
computed for each pair of a kernel function and a regularization constant. The approx-
imated solution (5.17) can be used instead. In this particular case, the setting was the
following:

The set of polynomial kernels k(x,x′) = (〈x,x′〉 + 1)d with d ∈ {1, 2, . . . , 12} and

Gaussian kernels k(x,x′) = exp(‖x−x′‖2

2σ2) with σ ∈ {0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5}
was used.

The set of regularization constants was λ ∈ {10−9, . . . , 104}.

The Greedy KPCA algorithm ran until the number of basis vectors reached number
l = 100 or the error εMS dropped below 0.1. The number of basis vectors in the
inner loop of the Greedy KPCA was set to p = 20.

The results obtained are summarized in Figure 5.3. The validation risk Rval[f] for the
function learning with the Gaussian kernel is displayed in Figure 5.3(a). The validation
risk for the function with polynomial kernel is displayed in Figure 5.3(b). The risk is a
function of the kernel parameter and the regularization constant. The displayed values
are the minimum values with respect to the regularization constant its influence was only
negligible. The function learned with the Gaussian kernel σ = 0.5 and the λ = 10−8 had
the smallest validation risk Rval = 0.090 and its shape can be seen in Figure 5.3(c). The
ground truth function f⋆ given by (5.18) had the validation risk Rval = 0.0898 and its
shape is displayed in Figure 5.3(d).

5.6.3 Reducing complexity of SVM classifier

This section describes how to use the proposed Greedy KPCA to find an approximated
solution of the binary SVM problem. This problem arises from the minimization of the
regularized risk (5.9) if the hard margin, L1-soft, or L2-soft margin loss functions are
used (c.f. Section 1.4.1). The approximation of this problem can be computed by (i)
applying the the Greedy KPCA on the input training set and (ii) solving the approximated
task (5.13). The result is the discriminant function of the form (5.13). Its complexity, i.e.,
the number l of selected training data, can be set up before the training of the classifier
begins. The open question is how to select the number l to obtain a classifier with a low
classification error. This question can be answered in the applications in which a limit
on the evaluation time is strictly given, thus there is no freedom in tuning the proper
value of l. In other cases, l must be tuned similarly to the kernel parameters and the
regularization constant.

99

5 Greedy Kernel Principal Component Analysis

(a) Gaussian kernel (b) Polynomial kernel

0 0.5 1 1.5
0.085

0.09

0.095

0.1

0.105

0.11

0.115

σ

R
v
a
l

learned
optimal

0 5 10 15
0.085

0.09

0.095

0.1

0.105

0.11

0.115

d

R
v
a
l

learned
optimal

(c) Learned function (d) Ground truth

−2
0

2

−2

0

2
−0.5

0

0.5

x2 x1

y

−2
0

2

−2

0

2
−0.5

0

0.5
y

x2 x1

Figure 5.3: Figure (a) shows the value of the validation risk Rval[f] with respect to the
width σ of the Gaussian kernel. Figure (b) shows Rval[f] with respect to the
degree d of the polynomial kernel. The ground truth function f⋆ is displayed
in Figure (c) and the learned function f with the smallest validation error is
displayed in Figure (d).

Figure 5.4 illustrates the application of the Greedy KPCA for approximation of the
SVM L1-soft margin classifier on a toy Ripley data set [43]. The Gaussian kernel with
σ = 1 and the regularization constant C = 2/(mλ) = 10 was used. Figure 5.4(a) shows
the SVM classifier without approximation and Figure 5.4(b),(c), and (d) displays the
approximated solution with increasing number of selected basis vectors l.

The approximation was also tested on the IDA repository and the associated exper-
imental protocol described in Section 4.10.2. The binary SVM classifier with both the
L1-soft and L2-soft margin is considered. The free parameters of the SVM, i.e., the reg-
ularization constant and the kernel argument of the Gaussian kernel, were adopted from
the experiment in Section 4.10.2. The number l of basis vectors which allowed to approx-
imate the training examples with εMS < 0.001 was used but l could not exceed the half
of the number m of the training examples.

The results on the IDA repository are listed in Table 5.2. It is seen that the approxi-
mated SVM classifier achieves similar recognition rates compared to the ordinary SVM.
Even more, in some cases the results are even better which could be a result of the reduced

100

5.6 Experiments

−1.5 −1 −0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 SVM boundary
Support Vectors

−1.5 −1 −0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Full SVM
Reduced SVM
Bases l=5

(a) (b)

−1.5 −1 −0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Full SVM
Reduced SVM
Bases l=7

−1.5 −1 −0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Full SVM
Reduced SVM
Bases l=10

(c) (d)

Figure 5.4: Illustration of the Greedy KPCA used to control complexity of the binary
SVM classifier with L1-soft margin. The figures show the SVM boundary
without approximation and the boundaries of approximated classifiers con-
structed in the lower dimensional space represented by l basis vectors. The
selected training data, i.e., basis vectors, are marked by circles.

complexity of the function space. It should be pointed out that the kernel parameter and
the regularization constant were not optimized for the approximated classifier. The com-
plexity of the ordinary SVM classifier is determined by the number of the support vectors.
The complexity of the approximated SVM classifier is given by the number of the basis
vectors selected by the Greedy KPCA. The complexity is linearly proportional to the
evaluation time of the classifier. The last column of Table 5.2 contains the evaluation
time of the approximated classifier relatively to the ordinary SVM classifier. In 60% of
cases, the number of basis vectors was smaller than the number of the support vectors
which yields the classification rule with reduced evaluation time. In the case of the L1-soft
margin SVM, the average evaluation time was reduced to 60% compared to the ordinary
SVM. In the case of the L2-soft margin SVM, the average evaluation time is reduced to
50%.

It can be seen that the approximation is useful for the cases in which the ordinary SVM
classifier has many support vectors, i.e., the cases with highly overlapping training data.

101

5 Greedy Kernel Principal Component Analysis

Problem Ordinary Greedy KPCA + Eval
SVM L1 Linear SVM L1 time

err [%] #SV err [%] l [%]

Banana 10.4 ± 0.4 139 ± 8 10.4 ± 0.4 61 ± 2 43.9
Breast 26.1 ± 4.9 113 ± 6 25.7 ± 4.7 60 ± 2 53.1
Diabetes 23.2 ± 1.7 255 ± 8 23.2 ± 1.7 82 ± 2 32.2
German 23.7 ± 2.2 420 ± 12 23.8 ± 2.2 350 ± 0 83.3
Heart 15.7 ± 3.3 98 ± 5 15.6 ± 3.3 85 ± 0 86.7
Image 3.0 ± 0.5 147 ± 8 3.3 ± 0.6 270 ± 8 183.7
Ringnorm 1.6 ± 0.1 131 ± 7 1.5 ± 0.1 200 ± 0 153.9
Splice 11.1 ± 0.6 594 ± 16 12.5 ± 0.7 500 ± 0 84.2
Thyroid 4.7 ± 2.3 20 ± 3 4.6 ± 2.3 63 ± 3 315.0
Titanic 22.4 ± 1.0 69 ± 10 22.4 ± 1.0 16 ± 9 23.2
Twonorm 3.0 ± 0.4 57 ± 7 3.6 ± 0.4 200 ± 0 350.9
Waveform 10.1 ± 0.4 129 ± 9 10.1 ± 0.4 200 ± 0 155.0

Problem Ordinary Greedy KPCA + Eval
SVM L2 Linear SVM L2 time

err [%] #SV err [%] l [%]

Banana 10.5 ± 0.5 210 ± 15 10.5 ± 0.5 28 ± 1 13.3
Breast 26.0 ± 4.5 187 ± 5 25.8 ± 4.5 100 ± 0 53.5
Diabetes 23.1 ± 1.8 414 ± 7 23.1 ± 1.8 43 ± 1 10.4
German 23.4 ± 2.3 613 ± 12 23.5 ± 2.2 350 ± 0 57.1
Heart 16.0 ± 3.1 137 ± 6 16.0 ± 3.0 85 ± 0 62.0
Image 3.1 ± 0.6 365 ± 11 3.2 ± 0.6 555 ± 15 152.1
Ringnorm 1.7 ± 0.1 132 ± 8 1.9 ± 0.2 200 ± 0 151.5
Splice 11.2 ± 0.7 597 ± 16 12.2 ± 0.9 500 ± 0 83.8
Thyroid 4.5 ± 2.1 67 ± 4 5.0 ± 2.1 70 ± 0 100.4
Titanic 22.4 ± 1.1 150 ± 0 22.4 ± 1.1 12 ± 2 54.6
Twonorm 2.7 ± 0.2 123 ± 8 2.7 ± 0.2 200 ± 0 162.6
Waveform 10.1 ± 0.4 175 ± 13 10.1 ± 0.4 200 ± 0 114.3

Table 5.2: An evaluation of the Greedy KPCA used to control complexity of the binary
SVM classifier on the IDA repository. The stopping condition of Greedy KPCA
is a limit on the error εMS < 0.001 and maximal number of basis vectors l < m

2 .

102

5.7 Summary to Greedy KPCA

5.7 Summary to Greedy KPCA

This chapter describes a novel method named the Greedy KPCA algorithm the prelim-
inary versions of which were published in [14, 16]. The Greedy KPCA algorithm aims
to find a lower-dimensional representation of data embedded into the RKHS space sim-
ilarly to the ordinary KPCA. In contrast to the KPCA, the basis vectors are selected
directly from the training set and are not expressed as a linear combination of all the
training vectors. As a result, the found representation of data is suboptimal in terms of
the reconstruction error but the representation is less complex compared to the ordinary
KPCA.

The Greedy KPCA can be employed to reduce computational and memory require-
ments of an arbitrary kernel method before. The method was tested in connection to the
regularized kernel least squares approximation and binary SVM classifier. The method
turned out to be useful in cases in which a big portion of training data is required to
represent the solution function.

The method was also intended to be used to accelerate evaluation of the multiclass SVM
classifier designed for Optical Character Recognition (OCR) system (see Section 6.2.2).
However, it turned out that the linear classifier is sufficiently precise in this case and
thus the approximation is not needed. Therefore practical applications which would be
resolved thanks to the proposed Greedy KPCA algorithm is still sought.

The Greedy KPCA is closely related to the Sparse Greedy Matrix Approximation pro-
posed by Smola and Schöelkopf [46, 48] as described in Section 3.4. The main difference
is that their method uses a randomized selection of the basis vectors instead of the deter-
ministic Greedy KPCA algorithm.

103

6 Multiclass Support Vector Machines

This section focuses on learning of SVM multiclass classifiers. More exactly, a modified
multiclass SVM formulation named the Bounded Support Vector Machines (BSVM) [25]
is in question. The multiclass BSVM formulation was described is Section 3.5. A novel
contribution proposed in this thesis will show that QP task associated with the multiclass
BSVM can be transformed to an equivalent singleclass SVM problem. The aim of this
transformation is to facilitate the optimization because the optimization of the singleclass
problem is simpler compared to the multiclass case. The proposed method for optimization
of the multiclass BSVM formulation is evaluated on the standard benchmark data and it
helped to solve a real application of Optical Character Recognition (OCR) system.

6.1 From multiclass BSVM to singleclass SVM

Let TXY = {(x1, y1), . . . , (xm, ym)} ∈ (X ×Y)m be a training set of examples. The output
state is assumed to attain a value from the set Y = {1, . . . ,M}, where M > 2. The
input states {x1, . . . , xm} are represented as vectors {x1, . . . ,xm} in the feature space H
given by a selected kernel function k:X × X → R. The task is to learn a classification
rule q:X → Y which estimates the output state y ∈ Y from the input state x ∈ X . The
classification rule q is composed of discriminant functions fy(x) = 〈wy,Φ(x)〉+ by, y ∈ Y
which are here assumed to be linear in the feature space H. The resulting classification
rule is defined as

q(x) = argmax
y∈Y

fy(x) . (6.1)

The learning of unknown parameters wy ∈ H, by ∈ R, y ∈ Y is expressed as the multi-
class BSVM formulation. The multiclass BSVM formulation arises from adding the term
1
2

∑

y∈Y(by)
2 to the multiclass SVM formulation (1.21), which yields

(w∗, b∗, ξ∗) = argmin
w,b,ξ

1
2

∑

y∈Y
(‖wy‖2 + b2y) + C

∑

i∈I

∑

y∈Y\{yi}
(ξy

i)p , (6.2)

subject to

〈wyi
,xi〉 + byi

− (〈wy,xi〉 + by) ≥ 1 − ξy
i , i ∈ I, y ∈ Y \ {yi} ,

ξy
i ≥ 0 , i ∈ I, y ∈ Y \ {yi} . (6.3)

The first term, which was modified, controls the complexity of the learned discriminant
functions. Of course, in the case of unbiased discriminant functions b = 0, the BSVM
and the original multiclass SVM formulation (1.21) coincide. The second term in the
criterion (6.2) approximates the empirical classification error as in the original formula-
tion (1.21). The constant p = {∞, 1, 2} determines the type of a loss function which
penalizes misclassifications.

In the following text, a transformation will be introduced which transforms the multi-
class BSVM problem (6.2) to the singleclass SVM problem. The singleclass SVM problem

104

6.1 From multiclass BSVM to singleclass SVM

was described in Section 1.4.3. The QP task associated to the singleclass SVM reads

(w∗, ξ∗) = argmin
w,ξ

1

2
‖w‖2 + C

∑

i∈I

∑

y∈Y\{yi}
(ξy

i)p , (6.4)

subject to
〈w,zu

i 〉 ≥ 1 − ξu
i , i ∈ I , y ∈ Y \ {yi} ,

ξu
i ≥ 0 , i ∈ I , y ∈ Y \ {yi} .

(6.5)

The task (6.4) is better solved in its dual form. The dual forms for individual types
of loss functions (p = ∞, 1, 2) were introduced in Section 1.4.3. An important point is
that the dual formulation requires the data in terms of dot products. The corresponding
QP task can be solved efficiently by various optimization algorithms. Chapter 4 contains
algorithms suitable for the hard margin (p = ∞) and L2-soft margin (p = 2) formulations.

The transformation from the multiclass BSVM problem to the singleclass SVM problem
is based on the Kesler’s construction1 [8, 44]. For simplicity, it is assumed that training
data are expressed in a finite-dimensional feature space H ⊆ R

n. The Kesler’s construction
maps the training data from the n-dimensional feature space H into to a new (n+ 1)M -
dimensional space Z in which the multiclass problem appears as a singleclass problem.
Each training vector xi is mapped to new (M − 1) vectors z

y
i , y ∈ Y \ {yi} defined as

follows. Let the coordinates of z
y
i be divided into M slots, i.e., z

y
i = [zy

i (1); . . . ;z
y
i (M)].

The individual slot z
y
i (j), j ∈ Y has n+ 1 coordinates which are defined as

z
y
i (j) =







[xi; 1] , for j = yi ,
−[xi; 1] , for j = y ,

0 , otherwise.
(6.6)

Let the vector w ∈ H be composed of vectors wy, y ∈ Y and scalars by, y ∈ Y such that

w = [[w1; b1]; [w2; b2]; . . . ; [wM ; bM]] . (6.7)

For instance, when M = 4 and yi = 3 then the vectors z
y
i , y = {1, 2, 3, 4} \ {3} are

constructed as

z1
i = [−[xi; 1] ; 0 ; [xi; 1] ; 0 ;]

z2
i = [0 ; −[xi; 1] ; [xi; 1] ; 0 ;]

z4
i = [0 ; 0 ; [xi; 1] ; −[xi; 1] ;]

Performing the transformation (6.6) yields a set TZ = {zm
i ∈ Z: i ∈ I , y ∈ Y \ {yi}}

containing (M − 1) ·m vectors. Having the transformed training set TZ , constraints (6.3)
of the multiclass BSVM problem can be expressed as constraints (6.5). For instance, the
constraints

〈w3,xi〉 + b3 − (〈w1,xi〉 + b1) ≥ 1 − ξ1i ,
〈w3,xi〉 + b3 − (〈w2,xi〉 + b2) ≥ 1 − ξ2i ,
〈w3,xi〉 + b3 − (〈w4,xi〉 + b4) ≥ 1 − ξ4i ,

defined for the input example xi with yi = 3 can be equivalently written as

〈w,z1
i 〉 ≥ 1 − ξ1i ,

〈w,z2
i 〉 ≥ 1 − ξ2i ,

〈w,z4
i 〉 ≥ 1 − ξ4i .

1The same transformation is named “construction of Fisher’s classifiers” in [44].

105

6 Multiclass Support Vector Machines

It is obvious that by substituting w to the objective function of the singleclass SVM
problem (6.4) the objective function (6.2) of the multiclass BSVM is recovered. Therefore
it is seen that the multiclass BSVM formulation can be formally changed to the singleclass
SVM formulation via the transformation given by (6.6) and (6.7).

At the first look, the introduced transformation seems to be intractable because of
the increased dimension of the new space Z. However, it will be shown that the dot
products of the transformed data can be computed efficiently. Thus the singleclass SVM
problem and the multiclass BSVM problem, respectively, can be solved efficiently in the
dual formulation which uses just the dot products.

Let z
y
i and zu

j be two vectors from Z created by the transformation (6.6). Notice that
the vector z

y
i has the yi-th coordinate slot z

y
i (yi) equal to [xi; 1], the y-th slot z

y
i (y) equal

to −[xi; 1], and the remaining coordinates are zero. The vector zu
j is created likewise.

Consequently, the dot product 〈zy
i ,z

u
j 〉 is equal to the sum of dot products between [xi; 1]

and [xj; 1] which occupy the same coordinate slot. The sign of these dot products is
positive if yi = yj or y = u and negative if yi = u or yj = u. If all numbers yi, yj, y, and
u differ, then the dot product is equal to zero. This means that the corresponding kernel
matrix is sparse. The construction of the dot product 〈zy

i ,z
u
j 〉 can be easily expressed

using the Kronecker delta function δ(i, j) = 1 for i = j, and δ(i, j) = 0 for i 6= j. The dot
product between z

y
i and zu

j is

〈zy
i ,z

u
j 〉 = (〈xi,xj〉 + 1)(δ(yi, yj) + δ(y, u) − δ(yi, u) − δ(yj , y)) .

It is seen that only the dot products of the vectors from the feature space are needed
to define the dot product of the transformed data. This allows to use the kernel func-
tions to represent the input vectors in the feature space H, i.e., H does not have to be
finite-dimensional as was assumed for simplicity of notation at the beginning. To apply
the proposed transformation in the feature space H it is enough to replace the dot prod-
ucts 〈xi,xj〉 by the kernel function k(xi, xj). The kernel function kM (zy

i ,z
u
j) involving

transformations (6.6) in the feature space H reads

kM (zy
i ,z

u
j) = (k(xi, xj) + 1)(δ(yi, yj) + δ(y, u) − δ(yi, u) − δ(yj , y)) . (6.8)

It implies that solving the dual form of the singleclass SVM problem with the kernel (6.8)
is equivalent to solving the dual form of the multiclass BSVM problem (6.2). An arbitrary
QP solver for the singleclass SVM applied on the training set TZ returns the multipliers
αy

i , i = I, y ∈ Y \ {yi} corresponding to the transformed vectors z
y
i , i ∈ I, y ∈ Y \ {yi}.

The multipliers determine the vectors wy ∈ H, y ∈ Y and scalars by ∈ R, y ∈ Y. The
corresponding relation can be obtained by reverting the transform (6.7). The normal
vector w ∈ Z equals

w =
∑

i∈I

∑

y∈Y\{yi}
z

y
iα

y
i .

The vector wj ∈ H occupies the j-th coordinate slot and it is determined by the weighted
sum of vectors z

y
i which have non-zero j-th coordinate slot, so that

wj =
∑

i∈I

∑

y∈Y\{yi}
xiα

y
i (δ(j, yi) − δ(j, y)) ,

bj =
∑

i∈I

∑

y∈Y\{yi}
αy

i (δ(j, yi) − δ(j, y)) .

106

6.2 Experiments

To classify the input x, the value of the discriminant function fj(x) = 〈wj ·φ(x)〉+ bj has
to be computed by

fj(x) =
∑

i∈I
k(x, xi)

∑

y∈Y\{yi}
αy

i (δ(j, yi) − δ(j, y)) + bj

=
∑

i∈I
k(x, xi)β

j
i + bj ,

which requires to access the data only through the kernel functions.

6.2 Experiments

6.2.1 Benchmarking on UCI repository

This section aims to experimentally compare the multiclass BSVM formulation with other
SVM based approaches to solve the multiclass problem. A detailed comparison of a broad
class of approaches was published in the paper by Hsu and Lin [25]. The results and
experimental protocol from this paper were adopted in this thesis.

The data sets used for testing involve problems selected from the UCI repository. Basic
statistics of the selected data sets are listed in Table 6.1. The Gaussian kernel (c.f. Ta-
ble 1.1) was used in all experiments. The space of free parameters, i.e., the regularization
constant C and the width of the kernel σ, was discretized to a grid with 225 nodes hav-
ing the coordinates C ∈ {2−2, 2−1, . . . , 212} and σ ∈ {2− 5

2 , 2−
4
2 , . . . , 2

9
2}. The pair (C, σ)

with the lowest classification error is reported in the results. The classification error was
estimated by the 5-fold cross-validation. The experimental protocol in the paper [25] is
referred for more details.

The methods tested by Hsu and Lin involve the decomposition-based methods repre-
sented by the directed acyclic graphs (DAGs) [40], one-against-one and one-against-all
decomposition approaches built of the binary SVM with L1-soft margin. The methods
learning the multiclass SVM classifier at once were represented by the multiclass BSVM
formulation and by the approach by Crammer and Singer [6], all with the L1-soft margin
loss function.

To complete the comparison done by Hsu and Lin, the multiclass BSVM and the one-
against-all decomposition, both with L2-soft margin loss function, were tested in this
thesis. The comparison of the one-against-all decomposition and the multiclass BSVM
with both the L1-soft and L2-soft margin in terms of the classification error and the
number of support vector is presented in Table 6.2. Table 6.3 summarizes the CPU
time required for learning and the free parameters which yield the smallest classification
error. The reported CPU times are incomparable for the L1-soft and L2-soft formulations
because the results for the L1-soft margin were adopted from Hsu and Lin who used
different implementations as well as computer platform. However, it can be seen that
learning of the multiclass BSVM is in average more time demanding than the one-against-
all decomposition approach which holds for both the L1-soft and L2-soft margin loss
functions.

All the methods are comparable in terms of the classification error. The multiclass
BSVM formulations produce the smaller number of the support vectors compared to the
one-against-all decomposition approach which holds true for both the L1-soft and L2-soft
margin formulations. Therefore the BSVM formulation is suitable when the evaluation

107

6 Multiclass Support Vector Machines

Problem #training data #class #features

Iris 150 3 4
Wine 178 3 13
Glass 214 6 13
Vowel 528 11 10
Vehicle 846 4 18
Segment 2310 7 19

Table 6.1: Statistics of selected problems of UCI repository used to benchmark the mul-
ticlass SVM classifiers.

Problem One-against-all Multiclass One-against-all Multiclass
SVM L1 BSVM L1 SVM L2 BSVM L2

err [%] #SV err [%] #SV err [%] #SV err [%] #SV

Iris 3.33 16 2.67 16 4.00 127 4.00 27
Wine 1.01 29 1.13 55 0.56 126 0.56 71
Glass 28.04 129 28.97 124 28.58 172 28.58 158
Vowel 1.515 393 1.515 279 0.51 770 0.61 419
Vehicle 12.53 343 13.00 264 12.63 490 13.12 403
Segment 2.47 446 2.42 358 2.38 525 2.55 295

Table 6.2: Benchmarking of the multiclass BSVM formulation and one-against-all decom-
position approach both with the L1-soft and L2-soft margin loss functions on
the UCI repository. The table contains the classification error in percents and
the number of support vectors.

time is more critical. The L1-soft margin formulations produce the rules with a smaller
numbers of support vectors compared to the L2-soft margin formulations similarly as in
the binary case (c.f. Section 4.10.2).

6.2.2 Benchmarking on OCR system

This section describes a real application of the SVM-based learning of multiclass classifier.
The problem is used to compare the proposed multiclass BSVM formulation to the one-
against-all decomposition approach. The problem to solve is the design of the optical
character recognition (OCR) system. This OCR system should be a part of a more
complex system for a car license plate recognition. Besides the demands on the low
classification error of the OCR, the speed of the resulting classifier is also a very important
issue. The SVM-based learning was proven to produce classifiers with a small classification
error compared to other state-oft-the-art approaches [33].

The input of the OCR system is a gray-scale image of size 13×13. For classification the
image is represented as a column vector. Its entries are gray-scale values taken row-wise
from the image matrix, i.e., the input space has dimension n = 169. The characters to
be recognized involves numerals 0, 1, . . . , 9 and capital letters A,B, . . . , Z except for the
letters G, Q, O and W . There are M = 32 characters altogether, i.e., different classes of
input images. A huge set of labeled examples is provided. The set of examples is split into

108

6.2 Experiments

Problem One-against-all Multiclass One-against-all Multiclass
SVM L1 BSVM L1 SVM L2 BSVM L2

time [s] C, σ time [s] C, σ time [s] C, σ time [s] C, σ

Iris 0.10 29, 2
2
2 0.15 212, 2

7
2 0.07 2−2, 2−

3
2 0.11 211, 2

2
2

Wine 0.20 27, 2
5
2 0.28 20, 2

1
22 0.06 2−1, 2

2
2 0.05 20, 2

3
2

Glass 10.00 211, 2
1
2 7.94 29, 2

3
2 0.08 25, 2

1
2 5.17 25, 2

2
2

Vowel 9.28 24, 2−
2
2 14.05 23, 2

0
2 0.37 23, 2−

2
2 22.61 212, 2−

2
2

Vehicle 142.50 211, 2
3
2 88.61 210, 2

3
2 0.33 28, 2

3
2 79.25 26, 2

3
2

Segment 68.85 27, 2
0
2 66.43 25, 2

0
2 1.12 26, 2−

1
2 153.17 212, 2−

1
2

Table 6.3: Benchmarking of the multiclass BSVM formulation and one-against-all decom-
position approach both with the L1-soft and L2-soft margin loss functions. The
table contains the CPU time required for learning and the free parameters with
the lowest classification error.

three parts. The first part forms the training data used for learning of the SVM classifier.
The second part is used for selection of the free parameter of the SVM model. Finally, the
third part (left out from the training stage) serves for validation of the resulting classifier.
The basic statistics of the data are listed in Table 6.4.

The performance of the OCR system is assessed by its evaluation speed and the classi-
fication error. The car license plate in question consists of 7 characters. The distribution
of characters at different positions of the car license plate is assumed to be independent.
The designed OCR system aims to minimize the classification error ε which is the proba-
bility that a single character is misclassified regardless its position in the car license plate.
The total error εtotal is defined as the probability that there is at least one misclassified
character between all 7 characters. Assuming independence it holds that

εtotal = (1 − ε)7 . (6.9)

The total error εtotal characterizes the classification performance of the OCR system.

The number of features (image 13 × 13) 169
The number of classes 32
The number of training data for SVM learning 49030
The number of testing data for model selection 156478
The number of independent validation data 156479

Table 6.4: Basic statistics of the OCR data set.

Three methods for learning the multiclass SVM classifiers were used: (i) the one-against-
all decomposition built of the binary SVM classifiers with L1-soft margin, (ii) the one-
against-all decomposition built of the binary SVM classifiers with L2-soft margin, and
(iii) the multiclass BSVM formulation with L2-soft margin.

The free parameters (not determined by the SVM learning) are the kernel function and
the proper regularization constant. These parameters were selected from a finite set of
parameters. The linear kernel and the polynomial kernel of 2nd order (c.f. Table 1.1)

109

6 Multiclass Support Vector Machines

were used. In the case of the linear kernel, the classifier is composed of linear discrimi-
nant functions. In the case of the 2nd order polynomial, the discriminant functions are
quadratic. The regularization constant C was selected from the set {10, 1, 0.1, 0, 01,
0.001, 0.0001}. A particular pair of kernel function and regularization constant C deter-
mines one SVM model, i.e., the multiclass SVM classifier learned from the training data
with given parameters. The best model was selected based on the minimal classification
error computed on the testing data. The best models were assessed by the validation error
computed on the validation data. The validation error is the classification error computed
on the validation data.

The results obtained are summarized in Table 6.5. The upper part contains results
for the linear kernel and the lower part for the 2nd order polynomial kernel, respectively.
The table contains the training classification error, the testing classification error and the
number of support vectors. The model with the smallest testing error is boldfaced. The
last row contains the validation error computed for the best model (with the minimal
testing error).

The multiclass BSVM classifiers have the lowest training errors in all the cases. This is
obvious because the multiclass BSVM formulation has the minimization of the training
error (more exactly, the upper bound on the training error) included explicitly in the
objective function. On the other hand, the decomposition approaches minimize only the
classification errors of the individual binary subproblems. This difference probably caused
that in the case of linear kernel, the classifier learned by the multiclass BSVM had also a
lower validation error compared to the one-against-all decomposition approach. In other
words, the decomposition approach did not fit the linear model to the training data with
sufficient precision.

In the case of the 2nd order polynomial kernel, the validation errors are approximately
the same (±0.02%) regardless which multiclass SVM method was used. In average, the
validation error for the polynomial kernel is three times lower compared to the linear
kernel.

In general, the evaluation time of the SVM classifier is linearly proportional to the
number of kernel functions to be evaluated. The evaluation of the linear kernel and the
2nd order polynomial kernel is approximately the same. In case of the 2nd polynomial
kernel, the evaluation time is proportional to the number of support vectors. In the case
of the linear kernel, the evaluation time is constant regardless of the number of support
vectors. The evaluation time is proportional to computation of M = 32 linear kernels
required to evaluate M discriminant functions.

The minimal number of 1581 support vectors has the polynomial classifier learned using
the multiclass BSVM with L2-soft margin. The classifier learned by the decomposition
approach have the number of support vectors more than 3 times higher. The linear
classifiers require evaluation of only M = 32 linear kernels regardless of the number of
support vectors. It implies that the linear classifiers are approximately 50 ≈ 1581/32
times faster compared to the polynomial ones.

Table 6.6 presents overall results according to which the classifier best for a given
application was selected. The table contains an estimate of the total error εtotal computed
using (6.9) and with the validation error substituted for the true classification error ε. The
evaluation time for a single character computed relatively to the time of the BSVM L2

classifier with the 2nd order polynomial kernel is included. For example, 100% of the
evaluation time corresponds approximately to 2 milliseconds on common PC with AMD

110

6.3 Summary to multiclass SVM

2800 MHz processor. The linear classifier learned by the multiclass BSVM with L2-soft
margin was found the best for its low evaluation time and the lowest classification error
among the linear classifiers.

6.3 Summary to multiclass SVM

This chapter analyzes a modification of the multiclass SVM learning task which can be
transformed to the singleclass SVM problem being easier for optimization.

The contributions of this part of the thesis involve:

• The modified task of learning the multiclass SVM classifier called a multiclass BSVM
formulation was proposed by the author of the thesis in [12, 13]. The modification
to the original multiclass SVM task lies in adding the sum of squared biases of
the classification rules to the regularization term. The multiclass BSVM problem
was independently proposed by Hsu and Lin [25]. Hsu and Lin, however, did not
exploit the possibility of transforming the multiclass problem to the singleclass SVM
problem.

• The transformation of the multiclass BSVM problem to the problem of learning the
singleclass SVM classifier is proposed. The whole transformation is performed solely
by using a special kernel function. As a result, any solver for the singleclass SVM
problem can be readily used to solve the multiclass problem. The transformation is
based on the well known Kesler’s construction [8, 44] for linear classifiers.

• The multiclass BSVM formulation with L2-soft margin was experimentally com-
pared to other SVM-based methods. The experimental protocol adopted from Hsu
and Lin was used, thus the results computed are comparable to a large variety of
methods. The classification accuracy of the multiclass BSVM formulation is com-
parable to the other methods. The time required for learning is considerably longer
compared to the others. The multiclass BSVM formulation produces classification
rules with less number of support vectors, i.e., the evaluation time is shorter. The
multiclass BSVM formulation allows to find classifiers with a smaller training error
for a given class of functions compared to the decomposition approaches.

• The multiclass linear classifier learned by the proposed method was found the best
for the OCR module being a part of a commercial car license plate recognition
system. The method was also applied on learning of the OCR for a module of a
robotic sewerage inspection system which was published in [23] (it is not described
in the thesis).

111

6 Multiclass Support Vector Machines

Linear kernel (linear discriminant function)

C one-against-all one-against-all multiclass
SVM L1 SVM L2 BSVM L2

error #SV error #SV error #SV
trn tst trn tst trn tst

10 0.38 0.82 4986 0.28 0.80 9078 0 0.60 956
1 0.49 0.77 6351 0.37 0.75 11318 0 0.47 1578

0.1 0.60 0.77 10569 0.49 0.75 17425 0 0.43 3777
0.01 1.04 0.89 21950 0.71 0.81 32735 0 0.51 10603

0.001 2.51 5.19 41797 0 0.95 29442

Valid. err [%] 0.66 0.59 0.36

2nd order polynomial kernel (quadratic discriminant function)

C one-against-all one-against-all multiclass
SVM L1 SVM L2 BSVM L2

error #SV error #SV error #SV
trn tst trn tst trn tst

1 1.11 0.66 2256 0 0.34 2328 0 0.53 937
0.1 0.57 0.41 2440 0.00 0.28 2912 0 0.49 1038

0.01 0.14 0.26 3620 0.05 0.27 5273 0 0.38 1581
0.001 0.30 0.42 7853 0.19 0.37 12145 0 0.39 3572

0.0001 0.72 0.75 19037 0.50 0.60 28613 0.13 0.56 9677

Valid. err [%] 0.22 0.20 0.24

Table 6.5: Comparison of different multiclass SVM classifiers on the OCR data set. The
training error, testing error and the number of support vectors are listed for
corresponding values of the regularization constant C. The last row contains
the validation error for the best (boldfaced) model.

Kernel one-against-all one-against-all multiclass
function SVM L1 SVM L2 BSVM L2

ε̂total Eval ε̂total Eval ε̂total Eval
[%] time [%] [%] time [%] [%] time [%]

Linear 4.53 2.0 4.06 2.0 2.49 2.0

2nd polynomial 1.57 229.0 1.39 333.5 1.67 100.0

Table 6.6: Comparison of different multiclass SVM classifiers of the OCR data set. The
estimate of the total error (probability of misclassification of at least one out
of 7 characters) and the evaluation time is displayed. The evaluation time is
measured relatively to the time of the BSVM L2 classifier with the 2nd order
polynomial kernel.

112

7 Thesis contributions

This chapter summarizes contributions of the thesis. The contributions are accompanied
with references to corresponding published works.

7.1 Quadratic Programming Solvers

The thesis contributes to the problem of Quadratic Programming (QP) optimization (c.f.
Chapter 4). The QP solvers analyzed are based on known methods which solve the
Minimal Norm Problem (MNP) and the Nearest Point Problem (NPP). These methods
were successfully applied to solve large scale problems arising in the learning of the bi-
nary SVM classifier with the L2-soft margin. In this thesis, the solvers were extended such
that they can solve more general QP tasks named the Generalized Minimal Norm Problem
(GMNP) and the Generalized Nearest Point Problem (GNPP). As a result the generalized
QP solvers can be applied for a broader class of problems, e.g., multiclass SVM classifier
learning, Reduced Set Density Estimation, computing Minimal Enclosing Ball and Sup-
port Vector Data Description. All the generalized QP solvers were described in a common
framework which allows for their comparison and better understanding. The convergence
to the ε-optimal solution in a finite number of iterations was proven for all proposed QP
solvers. A novel algorithm, named Improved Mitchell-Demyanov-Malozemov algorithm
(IMDM), was derived based on combination of ideas of two known algorithms. The QP
solvers were experimentally evaluated on large synthetic and real problems and they were
compared to each other. The solvers were proved to solve large problems (even with mil-
lions of variables) in reasonable times. The proposed IMDM algorithm outperformed the
other algorithms in all experiments.

The work described in Chapter 4 was published partially in [11, 15, 18].

7.2 Greedy Kernel Principal Component Analysis

Chapter 5 describes a novel method called Greedy Kernel Principal Component Analysis
(Greedy KPCA) algorithm. The Greedy KPCA aims to find a lower-dimensional represen-
tation of the data embedded into the Reproducing Kernel Hilbert Space (RKHS) similarly
to the ordinary Kernel Principal Component Analysis (KPCA) [47, 46]. In contrast to
the KPCA, basis vectors are selected directly from the training set and not expressed as
a linear combination of all training vectors. As a result, the found representation of data
is suboptimal in terms of the reconstruction error but the representation is less complex
compared to the ordinary KPCA. The idea of the proposed Greedy KPCA is closely re-
lated to the sparse greedy matrix approximation [46, 48]. The main difference is that the
the sparse greedy matrix approximation uses a randomized selection of the basis vectors
instead of the deterministic Greedy KPCA. The Greedy KPCA can be used for reduction
of computational and memory requirements of an arbitrary kernel method. It can be
also applied for reduction of complexity of functions learned by the kernel methods. It

113

7 Thesis contributions

was experimentally verified that the method can reduce computational complexity of the
Kernel Least Squares Regression and it can speed up evaluation of the SVM classifier.

A preliminary version of the Greedy KPCA was published in [14, 16]. The extended
Greedy KPCA algorithm has not been published yet.

7.3 Multiclass Support Vector Machines

The thesis contributes to the problem of efficient learning of the multiclass SVM classi-
fier (c.f. Chapter 6). The contribution concerns the Bounded Support Vector Machines
(BSVM) formulation [25]. The BSVM formulation arises after adding a sum of squared
biases of the classification rules to the regularization term of the original multiclass SVM
task. It is shown in the thesis how to transform the multiclass BSVM problem to the prob-
lem of learning a singleclass SVM classifier. The whole transformation is performed solely
by using a special kernel function. As a result, any solver for the singleclass SVM problem
can be readily used to solve the multiclass problem. The multiclass BSVM formulation
was experimentally compared to other SVM-based methods. The BSVM formulation is
comparable with the other SVM-based approaches in terms of the classification accuracy
but it requires considerably longer learning times. The multiclass BSVM formulation
produces classification rules with less support vectors, i.e., the evaluation time is shorter.
Thus the BSVM formulation is eligible for applications in which the evaluation time is
especially important. The proposed method was found the best for the Optical Character
Recognition (OCR) module being a part of a commercial car license plate recognition
system. The method was also applied on learning of the OCR for a module of a robotic
sewerage inspection system.

The proposed method for optimizing the multiclass BSVM was published in [12, 13].
An application of the method on learning of the Optical Character Recognition (OCR)
for a module of a robotic sewerage inspection system which was published in [23]. The
benchmarking of the multiclass BSVM and comparison to other multiclass SVM-based
approaches has not been published yet. The application of the multiclass BSVM to design
of an OCR system for a car license plate recognition has not been published yet.

7.4 Statistical Pattern Recognition Toolbox

All the novel methods proposed in this thesis were incorporated to the Statistical Pattern
Recognition Toolbox (STPR toolbox) [17] written in Matlab. The author of this thesis
designed and implemented a substantial part of the STPR toolbox. The STPR toolbox
can be freely downloaded from http://cmp.felk.cvut.cz/~xfrancv/stprtool/. The
toolbox contains an ensemble of pattern recognition techniques, e.g., linear discriminant
function analysis, feature extraction, density estimation and clustering, Support Vector
Machines, kernel methods, etc. There were more than 11,000 downloads between years
2000 and 2005.

114

8 Future research

The future research will address a further extensions of the Quadratic Programming (QP)
solvers introduced in Chapter 4. The general framework of the proposed sequential al-
gorithm can be also applied for QP tasks which have feasible sets more difficult than
the GMNP and the GNPP analyzed in the thesis. Let as assume a linear programming
(LP) task with a feasible set equal to a given QP task. If the mentioned LP task has
an analytical solution then a solver for the corresponding QP task can be simply derived
based on the general framework. Some interesting examples of QP tasks which have this
property are given below.

Let the feasible set of the QP task be the following

A = {α ∈ R
m: 〈α,e1〉 = 1, 〈α,e2〉 = 1, . . . , 〈α,ek〉 = 1,α ≥ 0} , (8.1)

where the vectors ei ∈ R
m, i = 1, . . . , k, are defined like in Section 4.1. The GMNP and

the GNPP is obtained if k = 1 and k = 2, respectively. It is easy to extend the proposed
algorithms to solve the QP tasks with the feasible set (8.1) and k greater than 2.

The GMNP and the GNPP do not cover the optimization problems connected to the
learning of SVM classifiers with L1-soft margin. Another extension of the proposed QP
solvers will follow this direction. The first step has already been made by Tao et al. [50]
who, based on the work [15] published by the author of this thesis, extended the Kozinec
algorithm for learning of ν-SVM formulation [49]. However, the extension of the Kozinec
algorithm for learning of the SVM with L1-soft margin is also possible, which has not
been published yet. A nice property of this extension is that a linear classifier can be
learned from a non-separable data without explicit use of the dual variables. This can be
potentially useful in applications where the number of examples is so huge that cannot be
explicitly stored in the memory (e.g., problems of learning of the Markov random models).

Other algorithm which can be extended for learning of SVM classifiers with L1-soft
margin is the proposed Improved Mitchell-Demyanov-Malozemov (IMDM) algorithm. In
fact, it is very related to the popular Sequential Minimal Optimizer (SMO) by Platt [41]
and its improved version proposed by Keerthi et al. [30]. The improved SMO algorithm
uses a very similar rule for construction of the line segment which approximates the
feasible set as the original Mitchell-Demyanov-Malozemov (MDM) algorithm. It seems
likely that the improved search for the line segment proposed in the IMDM algorithm will
also work well for this QP task.

115

Bibliography

[1] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of 5th Annual Workshop on Computer Learning Theory,
pages 144–152. ACM Press, New York, NY, 1992.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, UK, 2004.

[3] C.J. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2):121–167, 1998.

[4] C.C. Chang and C.J. Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[5] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273, 1995.

[6] K. Crammer and Y. Singer. On the learnability and design of output codes for
multiclass problems. Machine Learning, 47(2):201–233, 2002.

[7] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, 2000.

[8] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley & Sons,
2nd. edition, 2001.

[9] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector
machines. Advances in Computational Mathematics, 13(1):1–50, 2000.

[10] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York,
USA, 2nd edition, 1990.

[11] V. Franc and V. Hlaváč. A Simple Learning Algorithm for Maximal Margin Classifier.
In Kernel and Subspace Methods for Computer Vision, workshop adjoint to the
International Conference on Neural Networks, pages 1–11. TU Wien, August 2001.

[12] V. Franc and V. Hlaváč. Kernel representation of the Kesler construction for multi-
class SVM classification. In H. Wildenauer and W. Kropatsch, editors, Proceedings
of the CVWW’02, page 7, Wien, Austria, February 2002. PRIP.

[13] V. Franc and V. Hlaváč. Multi-class Support Vector Machine. In R. Kasturi, D. Lau-
rendeau, and Suen C., editors, 16th International Conference on Pattern Recognition,
volume 2, pages 236–239, Los Alamitos, CA 90720-1314, August 2002. IEEE Com-
puter Society.

[14] V. Franc and V. Hlaváč. Greedy algorithm for a training set reduction in the kernel
methods. In Nikolai Petkov and Michel A. Westenberg, editors, Computer Analysis
of Images and Patterns, pages 426–433, Berlin, Germany, August 2003. Springer.

116

Bibliography

[15] V. Franc and V. Hlaváč. An iterative algorithm learning the maximal margin classi-
fier. Pattern Recognition, 36(9):1985–1996, September 2003.

[16] V. Franc and V. Hlaváč. Training set approximation for kernel methods. In Ondřej
Drbohlav, editor, Computer Vision —CVWW’03 : Proceedings of the 8th Computer
Vision Winter Workshop, pages 121–126, Prague, Czech Republic, February 2003.
Czech Pattern Recognition Society.

[17] V. Franc and V. Hlaváč. Statistical pattern recognition toolbox for Matlab. Research
Report CTU–CMP–2004–08, Center for Machine Perception, K13133 FEE Czech
Technical University, Prague, Czech Republic, June 2004.

[18] V. Franc and V. Hlaváč. Simple solvers for large quadratic programming tasks. In
Walter Kropatsch and Robert Sablatnig, editors, Pattern Recognition, Proceedings of
the 27th DAGM Symposium, Lecture Notes in Computer Sciences. Springer Verlag,
2005. IN PRINT.

[19] T.T. Friess, N. Cristianini, and C. Campbell. The kernel adatron algorithm: A fast
and simple learning procedure for support vector machines. In Proceedings of 15th
International Conference on Machine Learning. Morgan Kaufman Publishers, 1998.

[20] E.G. Gilbert. Minimizing the quadratic form on a convex set. SIAM journal on
Control and Optimization, 4:61–79, 1966.

[21] M. Girolami and C. He. Probability density estimation from optimally condensed
data sample. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(10), 2003.

[22] L. Gonzáles, C. Angulo, F. Velasco, and A. Catalá. Unified dual for bi-class SVM
approaches. Pattern Recognition, 2005. IN PRESS.

[23] K. Hanton, V. Smutný, V. Franc, and V. Hlaváč. Alignment of sewerage inspec-
tion videos for their easier indexing. In J.L. Crawley, J.H. Piater, M. Vincze, and
L. Paletta, editors, ICVS2003 : Proceedings of the Third International Conference on
Vision Systems, volume 2626 of Lecture Notes in Computer Science, pages 141–150,
Berlin, Germany, April 2003. Springer-Verlag.

[24] T.J. Hastie and R.J. Tibshirani. Classification by pairwise coupling. In M.I. Jordan,
M.J. Kearns, and S.A. Solla, editors, Advances in Neural Information Processing
Systems, volume 10. The MIT Press, 1998.

[25] C.W. Hsu and C.J. Lin. A comparison of methods for multiclass support vector
machines. IEEE Transactions on Neural Networks, 13(2):415–425, March 2002.

[26] T. Joachims. Making large-scale support vector machine learning practical. In
B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods: Sup-
port Vector Machines. MIT Press, Cambridge, MA, 1998.

[27] T. Joachims. Text categorization with support vector machines: Learning with many
relevant features. In Proceedings of ECML-98, 10th European Conference on Machine
Learning, pages 137–142. Springer Verlag, Heidelberg, DE, 1998.

117

Bibliography

[28] S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for
SVM classifier design. Machine Learning, 46(1–3):351–360, 2002.

[29] S.S. Keerthi, S.K. Shevade, C. Bhattacharya, and K.R.K. Murthy. A Fast Itera-
tive Nearest Point Algorithm for Support Vector Machine Classifier Design. IEEE
Transactions on Neural Networks, 11(1):124–136, January 2000.

[30] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K Murthy. Improvements to
Platt’s SMO algorithm for SVM classifier design. Neural Computation, 13(3):637 –
649, 2001.

[31] A. Kowalczyk. Maximal margin perceptron. In P.J. Bartlett, B. Schölkopf, D. Schu-
urmans, and A.J. Smola, editors, Advances in Large-Margin Classifiers. The MIT
Press, 2000.

[32] B.N. Kozinec. Rekurentnyj algoritm razdelenia vypuklych obolochek dvuch mnozh-
estv, in Russian (Recurrent algorithm separating convex hulls of two sets). In V.N.
Vapnik, editor, Algoritmy obuchenia raspoznavania (Learning algorithms in pattern
recognition), pages 43–50. Sovetskoje radio, Moskva, 1973.

[33] Y. LeCun, L. Botou, L. Jackel, H. Drucker, C. Cortes, J. Denker, I. Guyon, U. Müller,
E. Sackinger, P. Simard, and V. Vapnik. Learning algorithms for classification: A
comparison on handwritten digit recognition. Neural Networks, pages 261–276, 1995.

[34] C.J. Lin. A formal analysis of stopping criteria of decomposition methods for support
vector machines. IEEE Transactions on Neural Networks, 13(5):1045– 1052, 2002.

[35] O.L. Mangasarian and D.R. Musicant. Successive overrelaxation for support vector
machines. IEEE Transactions on Neural Networks, 10(5), 1999.

[36] B.F. Mitchell, V.F. Demyanov, and V.N. Malozemov. Finding the point of a poly-
hedron closest to the origin. SIAM journal on Control and Optimization, 12:19–26,
1974.

[37] K.R. Müller, S. Mika, G. Ratsch, K. Tsuda, and B. Schölkopf. An introduction to
kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2):181–
201, March 2001.

[38] E. Osuna, R. Freund, and F. Girosi. An improved training algorithms for support
vector machines. In J. Principe, L. Gile, N. Morgan, and E. Wilson, editors, Neural
Networks for Signal Processing VII – Proceedings of the 1997 IEEE Workshop, pages
276–285. IEEE, 1997.

[39] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: an application
to face detection. In Proceedings of CVPR’97, Puerto Rico, Washington, DC, USA,
1997. IEEE Computer Society.

[40] J. Platt. Large margin DAGs for multiclass classification. In S.A. Solla, T.K. Leen,
and K.R. Muüller, editors, Advances in Neural Information Processing Systems, vol-
ume 12, pages 547–553. The MIT Press, 2000.

118

Bibliography

[41] J.C. Platt. Fast training of support vectors machines using sequential minimal op-
timization. In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in
Kernel Methods, pages 185–208. The MIT Press, 1998.

[42] T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent
to multilayer network. Science, pages 978–982, 1990.

[43] B.D. Ripley. Neural networks and related methods for classification (with discussion).
Journal of Royal Statistical Society Series B, 56:409–456, 1994.

[44] M.I. Schlesinger and V. Hlaváč. Ten lectures on statistical and structural pattern
recognition. Kluwer Academic Publishers, 2002.

[45] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R.C Williamson. Estimating
the support of a high-dimensional distribution. Technical Report TR 87, Microsoft
Reasearch, Redmond, WA, 1999.

[46] B. Schölkopf and A. Smola. Learning with Kernels. The MIT Press, MA, 2002.

[47] B. Schölkopf, A. Smola, and K.R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Technical report, Max-Planck-Institute fur biologische Kyber-
netik, 1996.

[48] A. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learn-
ing. In Proceedings 17th International Conference on Machine Learning, pages 911–
918. Morgan Kaufmann, San Francisco, CA, 2000.

[49] A. Smola, B. Schölkopf, R. Williamnson, and P. Bartlett. New Support Vector
Aalgorithms. Neural Computation, 12(5):1207–1245, May 2000.

[50] Q. Tao, G.W. Wo, and J. Wang. A generalized s-k algorithm for learning ν-svm
classifier. Pattern Recognition Letters, 25(10):1165–1171, July 2004. [P01].

[51] D.M.J. Tax and R.P.W Duin. Data domain description by support vectors. In
M. Verleysen, editor, Proceedings ESANN, pages 251–256, Brussels, 1999.

[52] V.Y. Tikhonov and A.N. Arsenin. Solutions of ill-posed problems. Winston-Wiley,
New York, 1977.

[53] V. Vapnik. The nature of statistical learning theory. Springer Verlag, 1995.

[54] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc., 1998.

[55] V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition (in Russian). Nauka,
Moscow, 1974.

[56] G. Wahba. Support Vector Machines, Reproducing Kernel Hilbert Spaces, and ran-
domized GACV. In B. Schölkopf, C.J.C. Burges, and A. Smola, editors, Advances in
Kernel Methods. The MIT Press, 1998.

[57] J. Weston and C. Watkins. Multi-class support vector machines. Technical Re-
port CSD-TR-98-04, Department of Computer Science, Royal Holloway, University
of London, Egham, TW20 0EX, UK, 1998.

119

