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Abstract

This report contributes to the solution of non-negative least squares problem (NLS).
The NLS problem is a substantial part of a learning procedure of associative networks.
First, stopping conditions suitable for iterative numerical algorithms solving the NLS
problem are derived. The conditions allow to control the solution found in terms of
optimized objective function. Second, a novel sequential coordinate-wise algorithm is
proposed. The algorithm is easy to implement and showed promising performance on
synthetical experiments conducted.

1 Introduction

A solution of the non-negative least squares (NLS) problem is required for learning of
the associative networks [2, 3]. The NLS problem becomes challenging if a large amount
of data are to be processed which makes standard optimization methods infeasible. The
oblique-projected Landweber method was proposed to deal with large NLS problems [3].
The oblique-projected Landweber method is a gradient based iterative algorithm which
produces a sequence of solutions converging to the optimal one. This report proposes
two contributions to the solution the NLS problem: (i) stopping conditions for iterative
algorithms which allow to control the precision of found solution in terms of optimized
objective function and (ii) a novel sequential coordinate-wise algorithm which is easy to
implement and has promising performance on synthetical data.

This work is related to the COgnitive Systems using Perception-Action Learning
(COSPAL) project. In the concerete, the associative networks are intended by the
group from the Linköping University to model low level signals of the designed system.

The report is organized as follows. The NLS problem to be solved is defined in
Section 2. The stopping conditions suitable for iterative algorithms solving the NLS
problem are derived in Section 3. A novel sequential coordinate-wise algorithm for
the optimization of the NLS problem is proposed in Section 4. A comparison to the
oblique-projected Landweber method is given in Section 5. Section 6 describes an ex-
periment comparing the proposed sequential coordinate-wise algorithm to the projected
Landweber method. Conclusions are given in Section 7.

Notation used:

Upper-case bold letters denote matrices. Vectors are implicitly columns. Vectors are
denoted by lower-case bold italic letters. For instance, A = [a1, . . . , an] is a matrix made
of n column vectors ai, i ∈ I, where I = {1, . . . , n} is a set of indices. The non-bold
letters are used to denote indices of vectors and matrices. For instance, x = [x1, . . . , xn]T

is a column vector with n entries (coordinates). The notation [Hx + f ]i stands for the
i-th entry of the vector defined by the term Hx + f . The term x ≥ 0 is a shortcut for
a set of inequalities xi ≥ 0, ∀i ∈ I. The expression 〈x, f〉 stands for the dot (scalar)
product between vectors x and f .

2 Non-negative least squares problem

Let A ∈ R
m×n be a matrix and b ∈ R

m a column vector. The non-negative least squares
(NLS) problem is defined as

x∗ = argmin
x≥0

1

2
‖Ax − b‖2 . (1)

Without loss of generality, we may assume that all columns ai, i ∈ I = {1, . . . , n} of
the matrix A = [a1, . . . , an] are non-zero. A particular instance of the NLS problem (1)
arises when all the entries of A are non-negative. This case matches the problem of
learning of associative networks. In this formulation, we are searching for an optimum
within an unbounded positive cone in R

n. It is important to restict the search to a
bounded set by finding also an upper estimate of the optimal solution x∗. In our case

1



x∗ ≤ xo = [xo
1, . . . , x

o
n]T , where

xo
i = max

(

0,
〈ai, b〉

〈ai, ai〉

)

, ∀i ∈ I .

This condition is a result of [3, Theorem 7], where the maximum with 0 has been omitted
in [3, formula (41)]; however, the original proof works after this correction. (Possibly a
finer estimate could be found.) By e ∈ R

n we denote the vector all coordinates of which
are 1. We have an upper bound of the sum of entries of x∗:

〈x∗, e〉 =

n∑

i=1

x∗
i ≤

n∑

i=1

xo
i = 〈xo, e〉 . (2)

Inequality (2) will be important for a derivation of stopping conditions of an iterative
algorithm introduced below.

It can be seen that the NLS problem (1) is a special instance of a more general
quadratic programming (QP) task with non-negativity constrains. The quadratic ob-
jective function is

F (x) =
1

2
〈x,Hx〉 + 〈x, f〉 . (3)

The quadratic programming (QP) task with the non-negativity constraints reads

x∗ = argmin
x≥0

F (x) = argmin
x≥0

1

2
〈x,Hx〉 + 〈x, f〉 . (4)

The solution of the QP task (4) coincides with the solution of the NLS problem (1) if
the matrix H = ATA ∈ R

n×n and the vector f = −bA ∈ R
n.

The form of task (4) cannot be arbitrary; due to the formulation of the original
task (1), H and f satisfy some special properties:

1. H = ATA is symmetric and positive semidefinite.

2. Hk,k = 〈ak, ak〉 > 0 for all k.

3. The task may have multiple solutions if 0 is an eigenvalue of H; however, the
positive solutions are bounded.

Corollary 2.1 Let r ∈ R. Then {x ∈ R
n : F (x) ≤ r} is a compact convex set, i.e., it

is closed, bounded, and convex.

The rest of this report deals with this special form of task (4).

3 Stopping conditions

The QP task (4) can be solved by iterative algorithms which produce a sequence of
solutions x(1), x(2), . . ., x(t) converging to the optimal solution x∗. There is a need
to stop the algorithm when the current solution x(t) is sufficiently close to the optimal
x∗. Two possible stopping conditions will be introduced. First, the stopping conditions
based on the Karush-Kuhn-Tucker (KKT) conditions will be described in Section 3.1.
Second, the stopping conditions based on lower and upper bounds of the optimal value
F (x∗) will be derived in Section 3.2.

3.1 Karush-Kuhn-Tucker conditions

The objective function (3) is convex as the matrix H = ATA is symmetric and positive
semidefinite. The constraints x ≥ 0 define also a convex feasible set. As both the
objective function and the feasible set are convex, the QP task (4) is convex as well. In
the case of the convex optimization task, the Karush-Kuhn-Tucker (KKT) conditions
are necessary and sufficient conditions for the optimal solution [1]. The KKT conditions
for the QP task (4) have a particularly simple form introduced below.
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The Lagrange function for the task (4) reads

L(x, µ) =
1

2
〈x,Hx〉 + 〈x, f 〉 − 〈x, µ〉 , (5)

where µ ∈ R
n are Lagrange multipliers (or dual variables). The conditions of the QP

task (4) are defined as

∂L(x, µ)

∂x
= Hx + f − µ = 0 ,

x ≥ 0 ,

µ ≥ 0 ,

〈x, µ〉 = 0 .

(6)

Any vector x which satisfies the KKT conditions (6) is the optimal solution of the QP
task (4) and vice versa.

Let X ∗ ⊂ R
n denote the set of vectors which satisfy the KKT conditions (6), i.e.,

any x∗ ∈ X ∗ is the solution of the task (4) for some µ. Notice that the set X ∗ is convex
and it contains just one vector if the matrix H is positive definite. Reasonable stopping
conditions for an iterative algorithm can be derived by introducing a relaxed version of
the KKT conditions. The ε-KKT conditions are defined as a set of linear inequalities

x ≥ 0 ,

[Hx + f ]i ≥ −ε , for i ∈ I = {1, . . . , n} ,

[Hx + f ]i ≤ ε , for i ∈ I∅ = {i ∈ I: xi > 0} ,

(7)

where ε > 0 is a constant which defines a precision of the solution. Let X ε ⊂ R
n be a

set of vectors which satisfy the conditions (7). It is easy to show that X ∗ ⊆ X ε holds
generally and X ∗ = X ε holds for ε = 0.

The ε-KKT conditions are easy to evaluate and they can be used as an indicator that
the current solution is close to the optimal one. It is not immediately seen, however, how
the solution satisfying the ε-KKT conditions corresponds to the optimal x∗ in terms of
the optimized function F (x). This drawback is removed after introducing a lower bound
LB(x) of the optimal value F (x∗) which shall be derived below.

3.2 Bounds of the optimal solution

In this section, we exclude the (possible) trivial solution x∗ = 0. If the optimum is
obtained at 0, we easily find it by a test of the inputs, or after the first step (starting
from 0 as the initial estimate, we obtain it as the next approximation and a fixed point).

Let the vector ∇F (x∗) be the gradient of the function F (x) evaluated at the vector
x∗. It follows from the convexity of the function F (x) that

F (x∗) + 〈(x − x∗),∇F (x∗)〉 ≤ F (x) ,
1

2
〈x∗,Hx∗〉 + 〈x∗, f〉 + 〈(x − x∗), (Hx∗ + f)〉 ≤

1

2
〈x,Hx〉 + 〈x, f〉 ,

which can be further rearranged to

〈x∗,Hx + f 〉 −
1

2
〈x,Hx〉 ≤

1

2
〈x∗,Hx∗〉 + 〈x∗, f〉 . (8)

Since the entries of the optimal vector x∗ are non-negative, the following inequality
holds

〈x∗,Hx + f〉 ≥ 〈x∗, e〉min
i∈I

[Hx + f ]i . (9)

Inequalities (8) and (9) give a lower bound

〈x∗, e〉min
i∈I

[Hx + f ]i −
1

2
〈x,Hx〉

︸ ︷︷ ︸

LB(x)

≤
1

2
〈x∗,Hx∗〉 + 〈x∗, f 〉
︸ ︷︷ ︸

F (x∗)

. (10)
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Equality is obtained for the optimal solution vector x∗, i.e., LB(x∗) = F (x∗) holds true
which follows from the equalities

min
i∈I

[Hx∗ + f ]i = 0 and 〈x∗,Hx∗〉 + 〈x∗, f〉 = 0 ,

derived directly from the KKT conditions (6). (The former equality is based on the fact
that there is at least one i ∈ I such that [Hx∗ + f ]i = 0. Otherwise, x∗ = 0; this case
can be easily recognized and it was excluded by our assumption.)

The lower bound (10) is valid for an arbitrary optimization task (4). The bound
depends on a generally unknown term 〈x∗, e〉. However, an upper bound of 〈x∗, e〉
can be derived for a special instance of the task (4) which was mentioned in Section 2.
Provided the term 〈x∗, e〉 is known (or its upper bound is known) then the lower bound
LB(x) can be evaluated and used as a stopping condition of an iterative algorithm. A
reasonable stopping condition reads

F (x) − F (x∗) ≤ δ , (11)

where δ > 0 is a constant which limits the distance between vectors x and x∗ in terms
of the optimized criterion. The stopping condition (11) is satisfied if the inequality

F (x) − LB(x) ≤ δ , (12)

holds which could be evaluated provided the lower bound (10) is known.

4 Sequential coordinate-wise algorithm

This section describes a novel (according to the authors’ knowledge) sequential coordinate-
wise algorithm for optimization of the task (4). The algorithm produces a sequence of
solutions x(0), x(1), . . . , x(t) which converges to the optimal x∗. The idea is to optimize
in each iteration with respect to a single coordinate while the remaining coordinates are
fixed. The optimization with respect to a single coordinate has an analytical solution,
thus it can be computed efficiently.

Let xk ∈ R be the k-th coordinate of the vector x = [x1, . . . , xn]T ∈ R
n. The

objective function F (x) can be equivalently rewritten as follows

F (x) =
1

2

∑

i∈I

∑

j∈I

xixjHi,j +
∑

i∈I

xifi

=
1

2
x2

kHk,k + xkfk + xk

∑

i∈I\{k}

xiHi,k +
∑

i∈I\{k}

xifi +
1

2

∑

i∈I\{k}

∑

j∈I\{k}

xixjHi,j

=
1

2
x2

kα + xkβ + γ ,

where

α = Hk,k ,

β = fk +
∑

i∈I\{k}

xiHi,k = [Hx + f ]k − Hk,kxk ,

γ =
∑

i∈I\{k}

xifi +
1

2

∑

i∈I\{k}

∑

j∈I\{k}

xixjHi,j .

The optimization of F (x) with respect to a selected xk has an analytical solution

x∗
k = argmin

xk≥0
F ([x1, . . . , xk, . . . , xn]T )

= argmin
xk≥0

1

2
x2

kα + xkβ + γ

= max

(

0,−
β

α

)

= max

(

0, xk −
[Hx + f ]k

Hk,k

)

.
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The iterative algorithm derived in the sequel updates a single variable xk in each
iteration, i.e.,

x
(t+1)
i = x

(t)
i , ∀i ∈ I \ {k} and x

(t+1)
k 6= x

(t)
k . (13)

The formula for the update requires the gradient µ(t) = Hx(t) + f . We recommend to
update the vector µ(t) in each iteration instead of computing it from a scratch. Thanks
to (13) the update can be written as

µ(t+1) = µ(t) +
(

x
(t+1)
k − x

(t)
k

)

hk , (14)

where hk is the kth column of the matrix H = [h1, . . . , hn]. (In fact, the original
formula for β has the same order of complexity, because we need only one coordinate of
the gradient. However, the latter formula allows to compute the whole gradient which is
needed for stopping conditions.) The proposed iterative algorithm to solve the task (4)
is the following:

Algorithm 1: Sequential Coordinate-wise Algorithm

1. Initialization. Set x(0) = 0 and µ(0) = f .

2. Repeat until the stopping condition is satisfied:

For k = 1 to n

x
(t+1)
k = max

(

0, x
(t)
k −

µ
(t)
k

Hk,k

)

and x
(t+1)
i = x

(t)
i , ∀i ∈ I \ {k} ,

µ(t+1) = µ(t) +
(

x
(t+1)
k − x

(t)
k

)

hk .

(The latter formula is skipped if x
(t+1)
k = x

(t)
k which is the case quite often.)

Algorithm 1 requires O(n) computations for each update from x(t) to x(t+1). The
gradient vector µ(t) is known in each iteration which can be employed for evaluation of
the stopping conditions. The stopping conditions are evaluated after all n coordinates
were updated. Section 3 describes two different stopping conditions which can be used
to halt the algorithm. It is obvious that in Algorithm 1 the objective function F (x(t))
decreases or remains unchanged, however, we have not found a proof of its convergence
yet. We have at least the following observation:

Proposition 4.1 All fixed points of Algorithm 1 are optimal solutions of task (4).

proof: Suppose that x(t) is a fixed point of Algorithm 1, i.e., x(t+1) = x(t). This means
that for each k ∈ I one of the following conditions holds:

1. µ
(t)
k = 0,

2. µ
(t)
k > 0 and x

(t)
k = 0.

Thus the KKT conditions are satisfied for x(t), µ(t).

The assumptions of Proposition 4.1 can be weakened:

Corollary 4.2 If in Algorithm 1 we obtain F (x(t+1)) = F (x(t)) then x(t) is the optimal
solution of task (4).

proof: Whenever the conditions from the proof of Proposition 4.1 are violated, the
criterion strictly decreases. Thus it remains unchanged only if we are at a fixed point
of the algorithm.
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5 Comparison to oblique-projected Landweber method

The oblique-projected Landweber method modifed to solve the NLS problem is described
in [3]. The method is based on a gradient descent minimization with solution projected
to the feasible set. The algorithm for optimization of the task (4) based on the oblique-
projected Landweber method is the following:

Algorithm 2: Oblique-projected Landweber Algorithm

1. Initialization. Set x(0) = 0 and d = He.

2. Repeat until the stopping condition is satisfied:

µ(t) = Hx(t) + f ,

x
(t+1)
i = max

(

0, x
(t)
i −

µ
(t)
i

di

)

, ∀i ∈ I .

An updated vector x(t+1) is computed from the previous solution x(t) by moving in
the direction opposite to the gradient µ(t) = Hx(t) + f . The coordinates of µ(t) are
scaled by the vector d. Comparison between the sequential coordinate-wise Algorithm 1
(SCA) and the oblique-projected Landweber Algorithm 2 (LA) shows two differences:

(i) The SCA recomputes the gradient after each update of a single variable unlike the
LA which recomputes the gradient after all n variables are updated.

(ii) The SCA updates individual variables sequentially and each update is optimal with
respect to the corresponding variable. The LA updates all variables simultaneously
without optimizing the size of the step along the gradient.

Both algorithms require O(n) operations for an update of a single variable. In cotrast to
this, any modification of Newton’s method requires a matrix inversion with complexity
O(n3). This can hardly be balanced by a reduction of the number of steps.

6 Experiments

This section describes an experiment carried out on a synthetical data. The problem
selected is to train an associative network with channel based representation of input and
output signals. For more information about the associative networks we refer to [2, 3].
The training data are sampled from a sine function with added Gaussian noise, i.e.,
f(x) = sin (πx) + N(0, 0.2), where N(0, 0.2) stands for Gaussian distribution with zero
mean and standard deviation equal to 0.2. The number of 4000 training samples is
generated. The input layer contained 1000 channels and the output layer 10 channels
with a cosine kernel. This setting results into 10 training problems of the form (4) with
the number of n = 1000 variables.

The proposed sequential coordinate-wise Algorithm 1 (SCA) is compared to the
oblique-projected Landweber Algorithm 2 (LA). Matlab implementation was used for
all the experiments. The data matrix contains only positive entries which allows to
evaluate the lower bound on F (x∗) and to use the stopping condition (12). The stopping
condition was

F (x(t)) − F (x∗) ≤ F (x(t)) − F (x∗) ≤ 10−6 . (15)

The aim was to measure the convergence speed of the tested algorithms. The speed is
measured in terms of (i) the number of updates required for convergence and (ii) an
estimate of the required CPU time on common PC with 1.80GHz processor 1.

1It is worth mentioning that the CPU time estimate is biased to the benefit of the LA algorithm because

of the following implementation reasons. The critical part of the LA algorithm can be implemented by a

single matrix multiplication unlike the SCA algorithm which requires using a loop in Matlab language. This

influences the measure of the computational time because the matrix multiplication in Matlab is much more

effective than loops.
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The sample data and their approximation by the trained associative network can be
seen in Figure 1(a). Figure 1(b) shows the sparseness of 10 tasks used for testing. The
sparseness is measured by the number of non-zero variables of the solution vector for
the corresponding QP task.

The comparison of the convergence speed can be seen in Figure 2. The number of
updates per single variable can be seen in Figure 2(a). Figure 2(b) shows an estimate
of the the require CPU time. These values are measured for all 10 problems separately.
The SCA turned out to be in average three time faster compared to the LA.

The convergence of both the algorithms on the 5th problem is displayed in Figure 3.
The figure shows the upper and the lower bound on the optimal value of the objective
function with respect to the number of updates. The upper bound corresponds to the
value of the objective function for current solution.

7 Conclusions and future work

This report describes two contributions to the problem of solving the non-negative least
squares (NLS) problem. First, stopping conditions suitable for iterative algorithms
solving the NLS problem were proposed. The stopping conditions allow to control the
precision of the solution found in terms of the optimized objective function. Second,
a sequential coordinate-wise algorithm to solve the NLS problem was proposed. The
algorithm is easy to implement and showed promising performance. The proposed algo-
rithm outperformed the oblique-projected Landweber method which has been used to
solve the NLS problem. The methods were benchmarked on a synthetical data.

The future research should address the issue of proving convergence of the proposed
sequential coordinate-wise algorithm. A more thorough experimental evaluation of the
proposed algorithm and comparison to other methods is also needed.
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Figure 1: Figure (a) shows the sample data and their approximation by the associative
network. Figure (b) shows the number of non-zero variables of the solution vectors of 10
quadratic programming problems.
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Figure 2: Figure (a) shows the number of updates per single variable required for conver-
gence. Figure (b) shows an estimate of the required CPU time. The measures are displayed
for 10 different quadratic programming tasks separately.
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Figure 3: The figure shows the convergence of the sequential coordinate-wise algorithm and
the oblique-projected Landweber method on the 5th training problem. The plot of the upper
bound and the lower bound of the optimal value is displayed with respect to the number of
updates.
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