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Abstract

The discriminative structured output learning has been proved suc-
cessful in solving many real-life applications. A big deficiency of ex-
isting algorithms like the Structured Output SVMs is the requirement
of fully annotated training examples. In this report we formulate a
problem of learning the structured output classifiers from partially
annotated examples as an instance of the expected risk minimization.
We show that the minimization of the expected risk is equivalent to the
minimization of the partial loss which can be evaluated on partially
annotated examples. We proposed an instance of the partial learning
algorithm for the class of linear structured output classifiers which we
call Partial-SO-SVM. The Partial-SO-SVM algorithm leads to a hard
non-convex optimization problem. We provide an algorithm solving
the Partial-SO-SVM problem approximately using an additional prior
knowledge about the problem. We demonstrated effectiveness of the
proposed method on two real life computer vision problems, namely,
the face landmark detection and the image segmentation.

1 Introduction

The discriminative structured output learning has been proved successful
in solving many real-life applications. Among the most successful is the
Structured Output Support Vector Machines (SO-SVM) algorithm [4] which
translate learning of the linear structured output classifier into a convex
optimization tasks. A big deficiency of the SO-SVM is the requirement of
fully annotated training examples. Annotation of data for the structured
output learning is often tedious and expensive. There is a strong demand
for an extension of the existing supervised SO-SVMs for learning from the
partially annotated examples.
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Recently, there has been several attempts in this direction. The paper
of [3] proposes a convex formulation of learning from ambiguously annotated
examples for the case of flat (unstructured) classifiers. Unfortunately, it is
not clear how to extend their approach to the structured output setting. A
large margin formulation of the structured output learning from partially
annotated examples has been proposed in [6]. Their approach is based on
the minimization of a partial loss which takes into account only the labels
provided in the partial annotation. The approach has two deficiencies. First,
the minimization of the partial loss has no theoretical justification. Second,
unlike the fully supervised SO-SVM the learning problem is not convex and,
currently, only naive optimization methods finding only a local optima exist.

The main contribution of this report is in proving a clear statistical for-
mulation of the problem of learning the structured output classifiers from
partially annotated examples. We formulate learning as an instance of the
expected risk minimization. We show that the minimization of the expected
risk is equivalent to the minimization of the partial loss which can be eval-
uated on partially annotated examples. We propose an instance of the par-
tial learning for the class of linear structured output classifiers which we
call Partial-SO-SVM. The Partial-SO-SVM algorithm leads to a hard non-
convex optimization problem similar to that of [6] though their partial loss
is slightly different. As a second contribution, we provide an algorithm solv-
ing the Partial-SO-SVM problem approximately using an additional prior
knowledge about the problem. The approximate algorithm transforms the
original partial learning problem to a series of simpler problems resembling
the standard supervised SO-SVM which allows usage of existing solvers.We
demonstrate effectiveness of the proposed method on two real life computer
vision problems, namely, the face landmark detection and the image segmen-
tation.

2 Discriminative fully supervised learning

In this section we formulate a known problem of discriminative learning of
the linear structured output classifiers from fully annotated examples. We
denote this setting as the fully supervised learning. The purpose of this
section is to introduce notation used in this report in order to synchronize
with existing literature.

Let y = (yt ∈ Yt | t ∈ T ) ∈ Y be a labeling assigned to a set of objects
t ∈ T . Let x ∈ X be a vector of observations 1 and ` : Y × Y → < a given

1For simplicity we assume that the set X is finite but the extension to the continuous
case is straightforward.
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loss function.
Given a training multi-set {(x1,y1), . . . , (xm,ym)} ∈ (X ×Y)m assumed

to be drawn from i.i.d. random variables with unknown distribution p(x,y)
defined over X ×Y , the goal of learning is to find a classifier h from a given
hypothesis space H such that the expected risk is minimal, i.e.

h∗ ∈ argmin
h∈H

Rexp(h) :=
∑
x∈X

∑
y∈Y

p(x,y)`(y,h(x)) . (1)

The direct minimization of Rexp(h) is impossible due to the unknown dis-
tribution p(x,y). A discriminative approach to learning is based on replacing
the unknown distribution p(x,y) by its empirical distribution pemp(x,y) =
1
m

∑m
i=1[[x = xi ∧ y = yi]] which leads to the emprical risk minimization

h∗ ∈ argmin
h∈H

Remp(h) :=
1

m

m∑
i=1

`(yi,h(xi)) . (2)

The discriminative learning is implemented in the structured output SVM
[4]. In this case, the hypothesis space H is a set of linear classifiers

h(x;w) = argmax
y∈Y

〈w,Ψ(x,y)〉 (3)

with parameter vector w from a ball W = {w ∈ <n | ‖w‖ ≤ r} of fixed
radius r. The input-output feature map Ψ : X × Y → <n is assumed to
be fixed and only the parameter vector w ∈ W is learned from examples.
The minimization of the empirical risk w.r.t. the class of linear classifiers is
known to be a hard problem for most loss functions used in the structured
output classification. Hence, the original loss ` : Y ×Y → < is replaced by a
convex surrogate loss function which can efficiently optimized. For example,
the margin-rescaling loss

ˆ̀(y,h(x;w)) = max
y′∈Y

[
`(y,y′) + 〈w,Ψ(x,y′)

]
− 〈w,Ψ(x,y)〉 (4)

is among most frequently used in structured output learning due existence
of algorithms for its efficient evaluation in a wide range of models. The
structured output SVM learning then leads to a convex optimization problem

w∗ = argmin
w∈W

Rsvm(w) :=
1

m

m∑
i=1

ˆ̀(yi,h(xi,w)) ,

which can be solved efficiently.
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3 Discriminative learning from partially an-

notated examples

3.1 Generative model of partially annotated examples

Let x ∈ X , y = (yt ∈ Yt | t ∈ T ) ∈ Y and `(y,y′) be defined as in
the fully supervised case described in Section 2. In addition to this, let
z = (zt ∈ {0, 1} | t ∈ T ) ∈ Z be a vector of binary variables, which
we call the annotation mask, indicating which labels in the training set are
annotated. In particular, zt = 1 means that yt is annotated while zt = 0
means that the label yt is not annotated. We assume that (x,y, z) are
generated according to the joint distribution

p(x,y, z) = p(x)p(y | x)p(z | x) . (5)

Let a = (at ∈ Yt ∪ {?} | t ∈ T ) ∈ A be an annotation created from the
labeling y ∈ Y and the annotation mask z ∈ Z by the function α : Y ×Z →
A defined as

a = α(y, z) where at =

{
yt if zt = 1 ,
? if zt = 0 .

That is, the annotation a = α(y, z) is created from y and z by copying
labels of the objects assigned for annotation {t ∈ T | zt = 1} while the
remaining objects {t ∈ T | zt = 0} get the special label “?”. Because the
annotation a is a deterministic function of random variables y and z it is
also a random variable with distribution

p(a | y, z) = [[a = α(y, z)]] . (6)

Using (5) and (6) it follows that

p(x,a) = p(x)
∑
y∈Y

∑
z∈Z

p(y | x)p(z | x)[[a = α(y, z)]] .

which describes a random process generating a set of partially annotated
examples {(x1,a1), . . . , (xm,am)}.

In the formulation of the learning problem we will need the distribution
p(y |x,a). From (5) and (6) we can derive

p(y |x,a) =
p(y |x)c(y,a)∑

y′∈Y p(y
′ |x)c(y′,a)

where
c(y,a) =

∏
t∈T

[[yt = at ∨ at =?]] .
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3.2 Interpretation of the proposed generative model

We can interpret the generative model p(x)p(y | x) in the usual way [Vapnik-
Nature2005]. The distribution p(x) describes how the nature generates ob-
servations x. The set of labels Y is defined artificially by a designer according
to the application at hand. The distribution p(y | x) describes how an an-
notator assigns labels to an observation x.

We have augmented the standard model by introducing the annotation
mask z = (zt ∈ {0, 1} | t ∈ T ) ∈ Z distributed according to p(z | x). We will
call p(z | x) the annotation scheme. The distribution p(x,y, z) given by (5)
generates a triplet (x,y, z) which induces a training example pair (x,a)
composed of the observation x and its partial annotation a = α(y, z). The
annotation a = α(y, z) is created by copying labels of the annotated objects
{t ∈ T | zt = 1} from y while the remaining objects {t ∈ T | zt = 0}
get the special label “?”. Intuitively, the value of a conditional marginal
probability p(zt = 1 | x) (or p(zt = 0 | x)) can be interpreted as easiness
(or hardness) of annotating the object t ∈ T . The conditional independence
p(y, z |x) = p(y |x)p(z |x) assumed in the model (5) follows from the fact
that both the labels y and the annotation mask z are determined by the
annotator using the information from the observation x.

Later in this report we will propose a learning algorithm applicable in the
case when the annotation scheme p(z | x) is i) known and ii) proper in the
following sense:

Definition 1 The annotation scheme defined by distribution p(z | x) is
called proper if all conditional marginal probabilities are non-zero, i.e. p(zt =
1 |x) > 0,∀t ∈ T , x ∈ X

The proper annotation scheme implies that every object has a chance to be
annotated regardless the input x.

Is it a realistic assumption to require the annotation scheme to be known
and proper? Let us consider a class of applications of the structured output
learning where these assumptions are in place. In particular, the computer
vision applications using the deformable part models learned from annotated
images belong to this class. The learned defomable part models are com-
monly used for detection, segmentation and tracking of complex objects in
images. A prototypical application considered in this report is a face land-
mark detector learned from examples. The landmarks are well discriminative
features defined on the human face like the corners of eyes, the nose and the
corners of mouth. The structured output classifier is used to estimate po-
sitions of the landmarks in a given image. The so far used fully supervised
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structured output learning requires a large training set of face images along
with manual annotation of all landmark positions in each image.

In the fully supervised case, the annotator is asked to mark positions of
all landmarks which corresponds to the annotation scheme p(zt | x) = 1,
∀t ∈ T . However, we can instruct the annotator to mark only a subset of
landmarks using, for example, the following annotation scheme:

• In every image the annotator marks position of the nose tip y1 ∈ Y1.

• In each even image the annotator marks only the positions of landmarks
on the left part of the face (yt ∈ Yt | t ∈ Tleft).

• In each odd image the annotator marks only the positions of landmarks
on the right part of the face (yt ∈ Yt | t ∈ Tright).

Provided the annotator follows these instructions and the images are pre-
sented in a random order (which we can easily assure by randomly reshuffling
the images before annotation) implies that

p(z1 | x) = 1 and p(zt | x) =
1

2
, t ∈ Tleft ∪ Tright .

By using this procedure the annotator marks approximately a half of the
landmarks and we known the exact annotation scheme.

3.3 Formulation of the learning problem

In this section we formulate the problem of learning the structured output
classifier from partially annotated examples.

Let us assume that we are given a loss function ` : Y × Y → < and a
training multi-set of examples {(x1,a1), . . . , (xm,am)} ∈ (X × A)m drawn
from i.i.d. random variables with an unknown distribution p(x,a) which
belongs to the class of distribution defined in Section 3.1. The goal of learning
is to find a classifier h : X → Y from a given hypothesis space H such that
the expected risk is minimal, i.e.

h∗ ∈ argmin
h∈H

Rexp(h) :=
∑
x∈X

∑
y∈Y

∑
a∈A

p(x,a) p(y |x,a) `(y,h(x)) . (7)

The expected risk Rexp(h) in the partial learning problem (7) coincides with
the expected risk in the formulation of the fully supervised learning (1). The
only difference is that in the partial learning setting we have to marginalize
over all possible annotations.
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Our goal is to use the discriminative approach to solve the learning prob-
lem (7), i.e. we want to avoid modeling the distribution functions appearing
in the problem (7). To this end, we define a partial loss which can be eval-
uated provided the annotation scheme p(z | x) is known. We show that
minimization of the partial loss is equivalent to the task (7).

In the following we will assume that the loss function `(y,y′) is additively
decomposable over the objects, i.e.

`(y,y′) =
∑
t∈T

`t(yt, y
′
t) ,

where `t : Yt × Yt → < are partial loss functions for individual objects T .

Definition 2 Let ` : Y ×Y → < be an additively decomposable loss function
and p(z | x) a proper annotation scheme. Then, the partial loss `p : X ×A×
Y → < associated with `(y,y′) and p(z | x) is defined as

`p(x,a,y) =
∑
t∈T

[[at 6=?]]
`t(at, yt)

p(zt = 1 | x)

Now we can define a partial risk minimization problem

w∗ ∈ argmin
h∈H

Rexp(w) :=
∑
x∈X

∑
a∈A

p(x,a)`p(x,a,h(x)) , (8)

which is equivalent to the learning problem (7) because the objective func-
tions of both problems have the same value for any h (hence we denote both
objective function by Rexp(w)) due to the following theorem.

Theorem 1 The equality

∑
y∈Y

∑
a∈A

p(a |x)p(y | x,a)`(y,h(x)) =
∑
A∈P(Y)

p(a | x)`p(x,a,h(x))

holds true for any x ∈ X and h ∈ H.
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proof: We can write∑
a∈A

p(a | x)`p(x,a,h(x))

=
∑
a∈A

∑
y∈Y

∑
z∈Z

p(y | x)p(z | x)[[A = a(y, z)]]
∑
t∈T

[[at 6=?]]
`t(at, ht(x))

p(zt = 1 | x)

=
∑
y∈Y

∑
z∈Z

p(y | x)p(z | x)
∑
a∈A

[[A = a(y, z)]]
∑
t∈T

[[at 6=?]]
`t(at, ht(x))

p(zt = 1 | x)

=
∑
y∈Y

∑
z∈Z

p(y | x)p(z | x)
∑
t∈T

zt
`t(yt, ht(x))

p(zt = 1 | x)

=
∑
y∈Y

p(y | x)
∑
t∈T

∑
zt∈{0,1}

zt p(zt | x)
`t(yt, ht(x))

p(zt = 1 | x)

=
∑
y∈Y

p(y | x)
∑
t∈T

`t(yt, ht(x))

=
∑
y∈Y

∑
a∈A

p(a | x)p(y | x,a)`(y,h(x))

Following the discriminative approach to learning we replace p(x,a) in
the partial risk minimization problem (8) by its empirical counterpart pemp(x,a) =
1
m

∑m
i=1[[x = xi ∧ y = yi]] which yields

h∗ ∈ argmin
h∈H

Rp
emp(h) =

1

m

m∑
i=1

`p(xi,ai,h(xi)) . (9)

4 Learning of linear classifiers from partially

annotated examples

In this section we will discuss an instance of the discriminative partial learn-
ing (9) for the class of linear classifiers (3), i.e. the learning problem (9)
becomes

w∗ ∈ argmin
w∈<n

Rp
emp(w) =

1

m

m∑
i=1

`p(xi,ai,h(xi,w)) . (10)

The optimization problem (10) is hard for most useful instances of the loss
function `p. By adopting the idea of margin-rescaling loss (4) we can approx-
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imate the partial loss `p(x,a,h(x)) as follows

`p(x,a,h(x)) = max
y∈Y

`p(x,a,y)[[max
y′∈Y
〈w,Ψ(x,y′)〉 − 〈w,Ψ(x,y)〉 ≤ 0]]

≤ max
y∈Y

max

{
0, `p(x,a,y)−max

y′∈Y
〈w,Ψ(x,y′)〉+ 〈w,Ψ(x,y)〉

}
= max

y∈Y

[
`p(x,a,y) + 〈w,Ψ(x,y)〉

]
︸ ︷︷ ︸

ˆ̀p
vex(x,a,w)

−max
y′∈Y
〈w,Ψ(x,y′)〉︸ ︷︷ ︸
ˆ̀p
cave(x,w)

= ˆ̀p(x,a,w)

where the transition from the second to the third line requires that the loss
is non-negative, i.e. `p(x,a,y) ≥ 0, ∀x,a,y. The obtained surrogate loss
ˆ̀p(x,a,w), which we call margin-rescaling partial loss, is an upper bound of
the original partial loss `p(x,a,w). By sub-substituting ˆ̀p(x,a,w) to (10)
and constraining the parameters space to the ball W like in the structured
SVMs, we get the following optimization problem which we denote as the
Partial-SO-SVM problem:

w∗ ∈ argmin
w∈W

F (w) :=
1

m

[
m∑
i=1

ˆ̀p
vex(xi,ai,w) +

m∑
i=1

ˆ̀p
cave(x

i,w)

]
. (11)

The Partial-SO-SVM problem (11) is a sum of convex and concave function.
No feasible algorithm finding a global optimum of (11) has been proposed so
far. The most popular approach for finding a local optima of functions in the
form of (11) is the Convex Concave Procedure (CCCP) [1]. The CCCP iter-
atively solves a convex relaxation of (11) obtained by replacing the concave
part of R̂p

emp(w) by its first order Tailor expansion computed at the current
solution. The algorithm alternates two steps. In the first step, the linear
approximation of the concave part is computed which amounts to classifying
the training examples using the linear classifier with current parameter vec-
tor. In the second step, the relaxed objective is optimized which amounts to
solving a task resembling the supervised learning problem and thus existing
solvers can be recycled. The main advantage of the CCCP is its simplicity.
The main disadvantage is that the result is sensitive to the initialization and
that no certificate of optimality is provided. Additional complication stems
from the iterative nature of the CCCP as each iteration requires solving the
supervised learning problem its complexity is not negligible for real-life data.
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4.1 Solving the Partial-SO-SVM problem using addi-
tional prior knowledge

Here we propose a heuristic method solves a surrogate problem approximat-
ing the Partial-SO-SVM problem (10). Our method requires additional prior
knowledge. In particular, let us assume we have a parametric distribution
p̂(y | x,a;θ), θ ∈ Θ, approximating the true posterior probability of the
labeling p(y | x,a). It is important to note that estimation of p(y | x,a)
can be much easier than estimation of p(y | x).

We propose to approximate the concave function ˆ̀p
cave(x,w) by a linear

(and thus convex) term

ˆ̀p
lin(w,x,a;θ) = −

∑
y∈Y

p̂(y | x,a;θ)〈w,Ψ(x,y)〉 , (12)

i.e. we have replaced the maximization w.r.t. the label y by the expectation
w.r.t. posterior of p̂(y | x,a;θ). Substituting (12) to (11) and adding
minimization w.r.t. θ we get a surrogate Partial-SO-SVM problem

w∗ ∈ argmin
θ∈Θ,w∈W

F̂ (w,θ) :=
1

m

[
m∑
i=1

ˆ̀p
vex(xi,ai,w) +

m∑
i=1

ˆ̀p
lin(w,x,a;θ)

]
.

(13)
The following arguments support the surrogate Partial-SO-SVM problem (13):

• In the case of fully annotated training examples (i.e. when ait 6=?,
∀i ∈ 1, . . . ,m, t ∈ T ) the problem (13) becomes the standard supervised
SO-SVM with margin-rescaling loss function.

• Regardless of the form of the parametric distribution p̂(y | x,a;θ) the
function F̂ (w,θ) is an upper bound of the true empirical risk Rp

emp(w)
we want to minimize.

• In the case the parametric distribution p̂(y | x,a;θ) has the most
generic form, i.e. it becomes a non-parametrix distribution different
for each example, the surrogate learning problem (13) reduces to the
Partial-SO-SVM problem (11).

The surrogate Partial-SO-SVM problem (13) requires minimization of
the objective F̂ (w,θ) w.r.t. the model parameters w and the distribution
parameters θ. A straightforward method to optimize (13) is to use a block
coordinate descent, i.e. we can alternate minimization w.r.tw while θ is fixed
and vice-versa. The minimization w.r.t. w reduces to a convex problem
resembling the supervised SO-SVM hence existing solvers can be used. A
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suitable strategy for minimization of F̂ (w,θ) w.r.t θ depends on the form
of p̂(y | x,a;θ). As mentioned above, one extreme case occurs if p̂(y |
x,a;θ) is non-parametric which reduces the block-coordinate descend to the
CCCP algorithm for the Partial-SO-SVM. Another extreme case occurs if
p̂(y | x,a;θ) is set to the uniform distribution. In this case, the solution
is obtained in a single iteration. This case resembles the partial loss for the
flat classification proposed in [CourTaskar]. In the experiments presented
in this report the parameter set Θ is finite with small cardinality hence an
exhaustive search is possible. This means that the partial learning will reduce
to a series of problems resembling the supervised SO-SVM.

Solving the surrogate learning problem (13) requires evaluation of the lin-
ear term ˆ̀p

lin(w,x,a;θ) given by (12). This term can be evaluated efficiently
for a generic structured output linear classifier based on the Pairwise Markov
Network (PMN) as we show next.

Let T be a set of nodes and let E ⊆
(T

2

)
be a set of edges defining a graph

(T , E). The PMN classifier is an instance of the linear classifier (3) with the
input-output feature map Ψ: X × Y → <n defined as

Ψ(x, y) =
∑
t∈T

Ψt(x, yt) +
∑
tt′∈E

Ψtt′(x, yt, yt′) . (14)

Evaluation of the linear term ˆ̀p
lin(w,x,a;θ) for the linear classifier with the

input-output map (14) amounts to computation of

ˆ̀p
lin(w,x,a;θ) = −

∑
y∈Y

p̂(y | x,a;θ)〈w,Ψ(x,y)〉 = 〈w,Ψ(x,a;θ)〉 ,

where

Ψ(x,a;θ) =
∑
t∈T

∑
yt∈Yt

p̂t(yt | x,a;θ)Ψt(x, yt)

+
∑
tt′∈E

∑
yt∈Yt

∑
yt′∈Yt′

p̂tt′(yt, yt′ | x,a;θ)Ψtt′(x, yt, yt′) ,

and p̂t(yt | x,a;θ), p̂tt′(yt, yt′ | x,a;θ) are object and edge marginal prob-
abilities derived from p̂(y | x,a;θ). Given the marginal probabilities, the
computation of the vector Ψ(x,a;θ) requires O(n|T ||Y| + n|E||Y|2) opera-
tions. Note that it holds regardless the structure of the graph (T , E).
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5 Experiments

5.1 Detector of Face Landmarks

In this section we consider problem of learning face landmark detector from
examples. We follow the approach of [5] where the landmark detection is
posed as an instance of the structured output linear classifier (3). The clas-
sifier input x ∈ X is an image 40 × 40 pixels large which contains a face.
The classifier outputs y = (yt ∈ Yt | t ∈ T = {0, 1, . . . , 7}) ∈ Y where
Yt ⊂ 40× 40 is a set of admissible 2D coordinates for t-th landmark. There
are eight landmarks including the corners of the eyes, the corners of the
mouth, tip of the nose and the center of the face. The scoring function
〈w,Ψ(x,y)〉 of the classifier (3) is composed of the appearance model and
the deformation cost. The appearance model evaluates a match between the
input image x and the landmark templates put at positions y. The defor-
mation cost evaluates likeliness of the particular landmark configuration y
and this cost decomposes to a set of pair wise terms defined over edges of
an acyclic graph. The map Ψ(x,y) is as a column-wise concatenation of
local feature descriptors of individual landmarks and parameters of the de-
formation cost. We use a variant of Local Binary Patterns as the feature
descriptor. Evaluation of the classifier (3) leads to solving an instance of
the dynamic programing. The loss function measures the mean deviation
between the ground truth landmark positions y and their estimate y′, i.e.
`(y,y′) = κ(y) 1

|T ‖
∑

t∈T ‖yt − y′t‖, where κ(y) is a normalization constant
ensuring that the loss is scale invariant.

We use the same data and the testing protocol as in [5]. The difference
is that while [5] learns parameters of the landmark detector from fully an-
notated examples (i.e. position of each landmark is marked in the training
image) here we learn the detector from only partially annotated examples.
We use the annotation scheme p(z | x) described in the example presented
in Section 3.2, i.e. the annotator is requested to mark in each image the nose
position and only half of the pair landmarks. Hence this annotation scheme
requires approximately half of the effort as compared to the full annotation.

The distribution p̂(y | x,a;θ) is modeled as follows. Let us assume that
(x,a) is a training image along with the positions of the landmarks on the
right hand side of the face. We assume that

p̂(y | x,a;θ) =
∏
t∈T

p̂(yt | x,a;θ)

and that the p̂(yt | x,a;θ) = [[at = yt]], t ∈ Tright, i.e. distribution of
positions for each landmark is modeled independently and the annotated
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θ Training Error Test error

Fully annotated examples – 4.097 5.659
Partially annotated examples 0.0005 6.628 7.636

0.005 7.350
0.05 7.238
0.5 8.055

Table 1: Errors for the face landmark detector learned from the fully an-
noated examples and the partially annotated examples. In the case of the
partial learning the training errors are reported for different distribution pa-
rameter θ.

landmarks have the Dirac distribution centered at the annotated position.
In the modeling of the distribution of the unannotated landmarks we use the
fact that the pair organs on the face are vertically symmetric, i.e. each left
landmark has its right counterpart up to the nose which is, however, always
annotated. We set the distribution of the unannotated landmarks to be

p̂(yt | x,a; θ) ≈ exp

(
− ‖I(x, yt)− I(x, yt′)‖2

θ

)
,

where t ∈ Tleft is an unannotated landmark and t′ ∈ Tright is its corre-
sponding annotated counterpart. For example, t and t′ can be the left and
the right mouth corners. The vector I(x, yt) is a column wise representa-
tion of intensity values in a sub-window of the image x centered around
yt. The vector I(x, yt) is constructed likewise, however, the sub-window
is vertically mirrored. The distributions have a single scalar parameter θ.
We find the optimal value of θ by minimizing over a finite set of values
Θ = {0.0005, 0.005, . . . , 0.5}. Hence the partial learning is transformed to
|Θ| supervised SO-SVM learning problems and selecting the one with the
lowest objective function.

The overall results are presented in Table 1. It is seen that the partial
learning yields slightly worse results than learning from fully annotated ex-
amples, however, it the minor lost in accuracy is compensated with saving
half of the annotators time.

5.2 Image segmentation

In this section we consider experiment with the semantic image segmenta-
tion. Given an input color image, the goal is to assign each image pixel to
one semantic class. The automatic assignment pixels to classes is treated as
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the structured output classification problem. The classifier here is a pair-
wise Markov Network with super-modular potential functions (SM-PMN).
The supervised SO-SVM learning is in the case of SM-PMN polynomially
tractable. We use exactly the same setting of the SM-PMN classifier, the
database and the testing protocol as in the paper [2]. The main difference is
that [2] learn the parameters of the SM-PMN from fully annotated examples
while we consider only partially annotated ones.

The full annotation in this case means that the annotator has to manually
assign a label to each pixel in the image. In particular, we considered a
subset of the MSCR database containing images of cows in a nature scene.
We had three semantic classes: grass, sky, cow. A rough manual annotation
of interior parts of the three segments is easy and it can be done in a few
seconds. On the other hand, a precise annotation of the boundaries between
the segments (e.g. delineated exactly the cow on the grass) is a tedious work
which can take tens of minutes.

We took the pixel precise annotations of the images and use them to gen-
erate partial annotations with gradually decreasing precision. In particular,
each boundary pixel in the precision annotation was used as a center of a
circle whose inner pixels were assigned a special label ? (i.e. unlabeled pixel).
The radius of the circle was gradually increased from r = 0 (the original pre-
cise annotation with no unlabeled pixels) to r = 30 (the boundary band has
width 30 pixels). The figure 2(a) shows an example of a training image and
its different partial annotation created by gradually increasing the radius r.

In order to apply the partial learning algorithm proposed in this work we
need to specify the annotation scheme p(zt | x) and the distribution p̂(y |
x,a;θ) required for solving the surrogate Partial-SO-SVM. The annotation
scheme is set to be p(zt | x) = p(zt′ | x), ∀t, t′, i.e. the difficulty of labeling
a pixels does not depend on its location in the image. This assumption is
clearly not satisfied as the boundary pixels are less likely to be labeled. To
approximate p̂(y | x,a;θ) we assume that the distribution decompose to a
product

p̂(y | x,a;θ) =
∏
t∈T

N(xt;µyt , σyt)

where the parameters (µyt , σyt), yt ∈ {grass, sky, cow} of the Gaussians are
estimated from the annotated pixels a of the training image. It is seen that
both in modeling the annotation scheme p(z | x) and the distribution p̂(y |
x,a;θ) quite crude approximations were used yet the results are surprisingly
good. The results are summarized in Table 2 and Figure 1 which shows the
training and testing errors for the SM-PMN classifier trained from the fully
(r = 0) and partially annotated examples with different amount of unlabeled
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Figure 1: results

pixels. It is seen that the error grows with increasing amount of unlabeled
pixels as expected, however, the slope of the error curves is small. It is seen
on test examples shown in Figures 2(b) and 2(c) that the qualitatively of the
segmentations obtained from the fully supervised learning and the partial
learning is comparable.

6 Conclusions

We have provided a statistical formulation of the problem of learning the
structured output classifiers from partially annotated examples. We formu-
lated learning as an instance of the expected risk minimization. We showed
that the minimization of the expected risk is equivalent to the minimization
of the partial loss which can be evaluated on partially annotated examples.
We proposed an instance of the partial learning for the class of linear struc-
tured output classifiers which we call Partial-SO-SVM. The Partial-SO-SVM
algorithm leads to a hard non-convex optimization problem. We provide an
algorithm solving the Partial-SO-SVM problem approximately using an ad-
ditional prior knowledge about the problem. We demonstrated effectiveness
of the proposed method on two real life computer vision problems, namely,
the face landmark detection and the image segmentation.
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input image r = 0 r = 5 r = 10

r = 15 r = 20 r = 25 r = 30
(a) Training image no. 1 and its annotation

input image r = 0 r = 5 r = 10

r = 15 r = 20 r = 25 r = 30
(b) Test image no. 1 and predicted segmentation

input image r = 0 r = 5 r = 10

r = 15 r = 20 r = 25 r = 30
(c) Test image no. 2 and predicted segmentation

Figure 2: The figure (a) shows an example of a training image and its anno-
tations of varying precision. The precision of the annotations is reciprocal to
the width of the unlabeled band (denoted by black) between segments whose
width varies from r = 0 (pixel precise) to r = 30. The figures (b) and (c)
show examples of the test images and their segmentation estimated by the
MN classifiers trained from examples with annotation of a varying precision.
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There are two directions we want for follow in the future. First, the pro-
posed formulation of the partial learning has several limiting assumptions,
namely, the output label set must be Cartesian product of label sets of in-
dividual objects and the loss function must be additively decomposable over
the objects. The goal is to provide more generic formulation which would not
rely on the two assumptions. Second, an optimization algorithm solving the
Partial-SO-SVM problem with a certificate of optimality remains an open
problem that needs to be addressed in the future.
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