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Abstract

Discretization of continuous input functions into piecewise constant or
piecewise linear approximations is needed in many mathematical model-
ing problems. It has been shown that choosing the length of the piecewise
segments adaptively based on data samples leads to improved accuracy of
the subsequent processing such as classification. Traditional approaches
are often tied to a particular classification model which results in local
greedy optimization of a criterion function. This paper proposes a tech-
nique for learning the discretization parameters along with the parameters
of a decision function in a convex optimization of the true objective. The
general formulation is applicable to a wide range of learning problems.
Empirical evaluation demonstrates that the proposed convex algorithms
yield models with fewer number of parameters with comparable or better
accuracy than the existing methods.

1 Introduction

Many mathematical modeling problems involve discretization of continuous in-
put functions to convert them into their discrete counterparts (Garćıa et al.,
2013; Liu et al., 2002). The discrete functions are then piece-wise constant
(0th order) or piece-wise linear (1st order) approximations of the value func-
tion. For example, probability density functions are typically represented as
multi-dimensional histograms in the discrete domain. In another example, the
domain of input features is discretized in order to apply a linear decision func-
tion as in logistic regression or Support Vector Machine classification. Clearly,
the accuracy of the decision functions directly depends on the discretization of
the feature values. One common difficulty in the discretization process is the
choice of the discretization step which then indicates the size of the piece-wise
segments, e.g. histogram bins, or parameters of the feature representation quan-
tization. The parameters of the decision function are estimated in a separate
subsequent process (Dougherty et al., 1995; Pele et al., 2013).

Most algorithms employ the simplest unsupervised discretization by choosing
a fixed number of bins with the same size (equal interval width) or the same
number of samples in each bin (equal frequency interval) (Dougherty et al.,
1995). The total number of bins is tuned for a specific application balancing two
opposite considerations. Wider bins reduce the effects of noise in regions where
the number of input samples is low. On the other hand, narrower bins result in
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more accurate function approximation in regions where there are many samples
and thus the effects of the noise are suppressed. Equal frequency intervals have
been extended by using Shannon entropy over discretized space to adjust the
bin boundaries (Dougherty et al., 1995). Apparently, using varying bin sizes
during discretization can be beneficial.

Supervised discretization algorithms use sample labels to improve the bin-
ning (Kerber, 1992; Dougherty et al., 1995), often in an optimization step when
learning a classifier (Boullé, 2006; Fayyad and Irani, 1992; Friedman and Gold-
szmidt, 1996). One widely-adopted approach is to initially start with a large
number of bins and then merging neighboring bins while optimizing a criterion
function (Boullé, 2006). In (Boullé, 2006), the discretization is based on a search
algorithm to find a Bayesian optimal interval splits using a prior distribution
an a model space. In (Fayyad and Irani, 1992), the recursive splitting is based
on an information entropy minimization heuristic. The algorithm is extended
with a Minimum Description Length stopping criteria in (Fayyad and Irani,
1993) and embedded into a dynamic programming algorithm in (Elomaa and
Rousu, 1999). These techniques introduce supervision for finding the optimal
discretization but are tied to a particular classification model (Näıve Bayes,
decision trees, or Bayesian Networks (Friedman and Goldszmidt, 1996; Yang
and Webb, 2008)). As a result, they rely on local greedy optimization of the
criterion function (Hue and Boullé, 2007).

This paper proposes an algorithm for learning piece-wise constant or piece-
wise linear embeddings from data samples along with the parameters of a deci-
sion function. Similarly to several previous techniques, the initial fine-grained
discretization with many histogram bins is adjusted by optimizing a criterion
function. In addition, our algorithm proposes several important contributions.
First, when training a decision function, the algorithm optimizes the true ob-
jective (or its surrogate) which includes the discretization parameters with the
parameters of the decision function. This is in contrast to previous methods
that rely on two separate steps, discretization and classifier learning, which
can deviate from the true objective (Pele et al., 2013). Second, the parameter
learning is transformed into a convex optimization problem that can be solved
effectively. Other techniques do not provide a global solution and resort to
greedy strategy, where the features are processed sequentially (Hue and Boullé,
2007). Third, our formulation is general with piece-wise embeddings being used
when training a linear decision function making it applicable to a wide range of
linear models. Other methods are specific to a particular classification model
(Boullé, 2006; Fayyad and Irani, 1992; Friedman and Goldszmidt, 1996; Yang
and Webb, 2008).

Our experiments demonstrate that the learned discretization is effective
when applied to various data representation problems. The first set of results
combines the estimation of the representation parameters with learning a linear
decision function in a joint convex optimization problem. The learned linear
embedding has much lower dimensionality than equidistant discretization (by a
factor of three on average) to achieve the same or better malware detection ac-
curacy level. The second set of results shows piece-wise linear approximation of
a probability density function using non-equidistant bins when estimating den-
sity from data samples. The proposed algorithm achieves lower KL-divergence
between the estimate and the ground truth than histograms with equidistant
bins. Comparison to previously published piece-wise linear embedding for non-
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linear classification (Pele et al., 2013) shows higher accuracy of the proposed
technique on a number of datasets from the UCI repository. These encouraging
results show promise of the technique which could be extended to other linear
embedding and classification problems.

2 Learning piece-wise constant functions

We consider learning a univariate piece-wise constant (PWC) function

fpwc(x;w,θ) =

B∑
i=1

[[x ∈ [θi−1, θi)]]wi = wk(x,θ) (1)

where x ∈ R is the input variable, B is the number of bins, θ = (θ0, . . . , θB)T ∈
RB+1 is a vector defining the bin edges, w = (w1, . . . , wB)T ∈ RB is a vector of
weights each of them associated to a single bin and the function

k(x,θ) = 1 + min{i ∈ {0, . . . , B − 1} | x ≥ θi}

returns the bin number to which the variable x falls to. For notational con-
venience, we omit the additive scalar bias w0 in the definition (1) which does
not affect the discussion that follows. We denote set inclusive bracket as ’[’ and
exclusive bracket as ’)’. The operator [[A]] evaluates to 1 if the logical statement
A is true and it is zero otherwise.

Let g : Rm → R be a convex function whose value g(f(x1), . . . , f(xm))
measures how well the function f : R → R evaluated on m training inputs
T = {x1, . . . , xm} ∈ Rm explains the data. For example, g can be the empirical
risk or the maximum likelihood of f evaluated on T . Assuming the bin edges θ
are fixed, the weights w of the PWC function (1) can be learned by solving the
minimization problem

w∗ ∈ argmin
w∈RB

Fpwc(w,θ) (2a)

where
Fpwc(w,θ) = g

(
fpwc(x1;w,θ), . . . , fpwc(xm;w,θ)

)
(2b)

is convex in w since it is a composition of a convex function g and fpwc which
is linear in w (Boyd and Vandenberghe, 2004).

In practice the bin edges θ are often selected before learningw. The simplest
way is to use equidistantly spaced bins,

θi = i(Max−Min)/B + Min , ∀i ∈ {0, . . . , B} ,

where Min and Max denote the minimal and the maximal attainable value of the
input variable x, respectively. The bin edges are constructed for different values
of B and the optimal setting is typically tuned on validation examples. This
procedure involves minimization of Fpwc(w,θ) for all proposal discretizations θ.
In principle, one could optimize the width of individual bins as well, however,
this would generate exponentially many proposal discretizations making this
naive approach intractable.

We propose a method which can simultaneously learn the discretization θ
and the weights w of the PWC function (1). The important feature is that the
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resulting bins do not have to be equidistant. We only assume that the bin edges
are selected from a finite monotonically increasing sequence of real numbers ν0 <
ν1 < · · · < νD, in further text represented by a vector ν = (ν0, . . . , νD)T ∈ RD+1

and denoted as the initial discretization. The set of admissible discretizations
ΘB ⊂ RB+1 of the variable x ∈ R into B bins contains all vectors θ satisfying:

θi = νli , i ∈ {0, . . . , B}, (3a)

l0 = 0 ,
li < li+1 , i ∈ {1, . . . , B − 1} ,
lB = D ,

 (3b)

The equation (3a) says that the bin edges θ ∈ ΘB form a subset of the initial
discretization ν. The indices {l0, . . . , lB} define which edges are selected from
ν. The equations (3b) state that the left most bin edge is ν0, the right most
edge is νD, and the intermediate edges form an increasing sequence.

Given a convex learning algorithm (2), we propose to learn the discretization
θ∗ ∈ ΘB simultaneously with the weights w∗ ∈ RB by solving

(w∗,θ∗) ∈ argmin
w∈RB ,θ∈ΘB

Fpwc(w,θ) . (4)

Unlike (2) where θ is fixed, the problem (4) is almost always non-convex and
hard to optimize. In the sequel we derive a convex approximation of (4) which
can be solved efficiently provided the original problem (2) can be solved effi-
ciently.

Let us define a function c : RD → {0, . . . , D − 1}

c(v) =

D−1∑
i=1

[[vi 6= vi+1]]

returning the total number of different neighboring elements of the vector v ∈
RD. Let ΘB be induced by the initial discretization ν as defined by (3). It is
easy to see that for any (w,θ) ∈ (RB × ΘB) there exists a unique v ∈ VB ={
v ∈ RD

∣∣c(v) ≤ B − 1
}

such that

fpwc(x;w,θ) = fpwc(x;v,ν) , ∀x ∈ Rn , (5)

holds. In particular, v is constructed from (w,θ) by

vl = fpwc(νl;w,θ) , l ∈ {1, . . . , D} . (6)

Computing (w,θ) from (v,ν) is also straightforward but not unique in general.
It can be seen that for any v ∈ VB it is possible to construct a finite number of
pairsW(v) = {(w1,θ1), . . . , (wL,θL)} ∈ (RB×ΘB)L, such that the equality (5)
holds for any (w,θ) ∈ W(v). Provided c(v) = B−n the conversion from v and
(w,θ) is unique, i.e. |W(v)| = 1. The parametrization (w,θ) is a shortened
representation of (u,ν) which is composed of sub-sequences of the equal compo-
nents. Therefore we will denote (v,ν) as the uncompressed parametrization and
(w,θ) as the compressed parametrization. The equivalence between the com-
pressed parametrization and the uncompressed one is illustrated in Figure 1.
The equivalence implies that

min
{
Fpwc(w;θ) | (w,θ) ∈ (RB ×ΘB)

}
= min

{
Fpwc(v;ν) | v ∈ VB

}
4



Figure 1: The figure shows an example of the PWC function and its two
equivalent parametrizations which guarantee that fpwc(x;w,θ) = fpwc(x;v,ν),
∀x ∈ R. The function fpwc(x;w,θ) has 3 bins of heights w = (w1, w2, w3)T

and 4 edges θ = (θ0, θ1, θ2, θ3)T = (ν0, ν4, ν7, ν12)T selected out of the sequence
ν = (ν0, . . . , ν12)T . The function fpwc(x;v,ν) has 11 bins with 12 edges ν and
heights v = (w1, w1, w1, w1, w2, w2, w2, w3, w3, w3, w3, w3)T . Though v has 11
components there are only two places where they differ, hence c(v) = 2.

and therefore the problem (4) can be solved by finding

v∗ ∈ argmin
v∈RD

Fpwc(v,ν) s.t. c(v) ≤ B − 1 , (7)

and solving (6) for (w∗,θ∗) while v is set to v∗. Methods for efficient compu-
tation of the compressed parametrization (w∗,θ∗) from the uncompressed one
(v∗,ν) are subject of Section 4.

The problem (7) has a convex objective but its single constraint remains
non-convex. By introducing a vector d = (v1 − v2, . . . , vD−1 − vD)T we see
that the function c(v) can be written as the L0-norm of the vector d = (v1 −
v2, . . . , vD−1 − vD)T , i.e. c(v) = ‖d‖0. It has been demonstrate that the L1-
norm is often a good convex proxy of the L0-norm (see e.g. (Candes and T.Tao,
2005; Candes et al., 2006; Donoho, 2006)). Therefore we propose to approximate
the non-convex function c(v) = ‖v‖0 by the convex function c̃(v) = ‖d‖1. A
convex relaxation of the problem (7) then reads

v∗ ∈ argmin
v∈RD

Fpwc(v;ν) s.t.

D−1∑
i=1

|vi − vi+1| ≤ B − 1 ,

or equivalently we can solve an unconstrained problem

v∗ ∈ argmin
v∈RD

[
Fpwc(v;ν) + γ

D−1∑
i=1

|vi − vi+1|
]
, (8)

where the constant γ ∈ R+ is monotonically dependent on B − 1.

3 Learning piece-wise linear functions

The previous section shows how to transform learning of PWC functions to a
convex optimization problem. A similar idea can be applied to learning piece-
wise linear (PWL) functions which provide more accurate approximation of the
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Figure 2: The figure shows an example of the PWL function and its two equiv-
alent parametrizations which guarantee that fpwl(x;w,θ) = fpwl(x;u,ν),∀x ∈
R. The function fpwl(x;w,θ) is described by 3 line segments connecting 4 points
{(θ0, w0), . . . , (θ3, w3)} whose coordinates are stored in w = (w0, . . . , w3)T a
θ = (θ0, . . . , θ3)T . The bin edges θ = (θ0, θ1, θ2, θ3)T = (ν0, ν4, ν7, ν12)T form
a subset of ν = (ν0, . . . , ν12)T . The function fpwl(x;u,ν) is described by 11
line segments connecting points {(ν0, u0), . . . , (ν12, u12)} whose coordinates are
stored in u = (u0, . . . , u12)T and ν. Note, however, that only 4 components of
u cannot be expressed as an average of its neighbors, hence e(u) = 4.

input data. In this case, we want to learn a function

fpwl(x;w,θ) = wk(x,θ)−1 · (1− α(x,θ)) + wk(x,θ) · α(x,θ)
)

(9)

where x ∈ R is the input variable as for before, θ ∈ RB+1 is a vector defining
the bin edges, B is the number of bins and w ∈ RB+1 is the vector of weights 1.
The function α : R× RB+1 → [0, 1], defined as

α(x,θ) =
x− θk(x,θ)−1

θk(x,θ) − θk(x,θ)−1

is a normalized distance between x and the right edge of the k(x,θ)-th bin.
Analogically to the previous section we want to learn simultaneously the

discretization θ∗ ∈ ΘB and the weights w∗ ∈ RB+1 by solving

(w∗,θ∗) ∈ argmin
w∈RB+1,θ∈ΘB

Fpwl(w,θ) (10)

where

Fpwl(w,θ) = g
(
fpwl(x

1;w,θ), . . . , fpwl(x
m;w,θ)

)
is the learning objective depending on the responses of the PWL function (9)
evaluated on the training inputs {x1, . . . , xm} ∈ Rm. In the sequel, we derive a
convex relaxation of (10).

Let us define a function e : RD+1 → {0, . . . , D + 1},

e(u) =

D−1∑
i=1

[[ui 6=
1

2
(ui−1 + ui+1)]]

1Note that the PWC function has B weights associated with the bins while the PWL
function has B + 1 weights associated with the bin edges.
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which retuns the number of weights that cannot be expressed as an average of
neighboring weights. Let ΘB be induced by the initial discretization ν as defined
by (3). It can be seen that for any (w,θ) ∈ (RB+1 × ΘB) we can construct a
unique u ∈ UB = {u ∈ RD+1 | e(u) ≤ B − 1} such that

fpwl(x;w,θ) = fpwl(x;u,ν) , ∀x ∈ Rn (11)

holds, in particular, u is constructed from (w,θ) by

ul = fpwl(νl;w,θ) , l ∈ {0, . . . , D} . (12)

In addition, for any u ∈ UB it is possible to construct a finite number of pairs
W ′(u) = {(w1,θ1), · · · , (wL,θL)} ∈ (RB+1×ΘB)L such that the equality (11)
hold for any (w,θ) ∈ W ′(u). For e(u) = B − 1 the conversion from u to
(w,θ) is unique, i.e. |W(u) = 1|. The equivalence between the compressed
parametrization (w,θ) and the uncompressed parametrization (u,ν) is illus-
trated in Figure 2. The equivalence implies that

min
{
Fpwl(w,θ) | (w,θ) ∈ (RB+1 ×ΘB)

}
= min

{
Fpwl(u,ν) | u ∈ UB

}
.

Consequently, the problem (10) can be solved by

u∗ ∈ argmin
u∈RD+1

Fpwl(u,ν) s.t. e(u) ≤ B − 1 , (13)

and computing (w∗,θ∗) from u∗ by solving the equation (12) for (w,θ) with u =
u∗. Efficient methods computing the compressed parametrization (w∗,θ∗) from
the uncompressed one (u∗,ν) are discussed in Section 4. As before, replacing
the L0-norm in the non-convex constraint e(u) = B − 1 by the L1-norm, we
obtain a convex relaxation of (10) which reads

u∗ ∈ argmin
u∈RD+1

Fpwl(u,ν) s.t

D−1∑
i=1

∣∣ui − 1

2
ui−1 −

1

2
ui+1

∣∣ ≤ B − 1 ,

or equivalently we can solve an unconstrained problem

u∗ ∈ argmin
u∈RD+1

[
Fpwl(u,ν) + γ

D−1∑
i=1

∣∣ui − 1

2
ui−1 −

1

2
ui+1

∣∣] . (14)

where the constant γ ∈ R+ is monotonically dependent on B − 1.

4 Rounding of piece-wise functions

The uncompressed parametrization (v,ν) of the PWC function (e.g. found by
the proposed algorithm (8)) can be converted to the compressed one (w,θ)
by splitting v into sub-vectors of equal weights, i.e. v = (vT1 ,v

T
2 , . . . ,v

T
B)

where each vi can be written as vi = wi[1, . . . , 1]T . Obtaining the compressed
parametrization (w,θ) is then straightforward (see Figure 1). An analogical
procedure can be applied for the PWL parametrizations in which case we are
searching for sub-vectors whose intermediate components can be expressed as
an average of its neighbors. In practice, however, the components of the un-
compressed solution can be noisy thanks to the used convex relaxation and
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usage of approximate solvers to find the uncompressed parameters. For this
reason, it is useful to round the uncompressed solution before its conversion
to the compressed one. The rounding procedures for the PWC and the PWL
parametrization are described in the next sections.

4.1 Rounding of PWC parametrization

A very crude rounding is obtained by splitting v into the sub-vectors v =
(vT1 ,v

T
2 , . . . ,v

T
B) such that all components of each vi have the same sign. The

rounded uncompressed solution is then

v̄ = (mean(v1)[1, . . . , 1]T , . . . ,mean(vB)[1, . . . , 1]T )T (15)

where the operator mean(v′) returns the mean value of the components of the
vector v′. Note that this procedure does not require any parameter.

Another method is to find the parameters v̄ of the PWC function with B
bins which have the shortest Euclidean distance to given v by solving

v̄ ∈ argmin
v′∈RD

‖v − v′‖2 s.t. c(v′) = B − 1 . (16)

The problem (16) is the Euclidean projection of v onto the set VB =
{
v ∈

RD
∣∣c(v) ≤ B − 1

}
. The optimal solution of (16) can be found by the Dynamic

programming. To see this, we write the distance ‖v − v′‖2 as

‖v − v′‖2 =

D∑
i=1

(vi − v′i)2 =

B∑
j=1

θi∑
i=θj−1+1

(vi − v′i)2 =

B∑
j=1

Rj(v
′
θj−1

, v′θj , θj−1, θj) .

The solution of minv′θj−1
=···=v′θj

Rj(v
′
θj−1

, v′θj , θj−1, θj) is trivial. The minimiza-

tion w.r.t. θ ∈ ΘB can be solved by the dynamic programming since the sub-
problems form a chain and each sub-problem shares only a single variable with
its neighboring sub-problems. The overall computational time is O(D ·B2).

Because the number of bins is often unknown a priori, we can search for the
minimal number of bins which explain the given solution v with a prescribed
precision ε, i.e. we can solve

v̄ = argmin
B∈N ,v′∈RD

B s.t. ‖v − v′‖2 ≤ ε and c(v′) = B − 1 . (17)

The solution of (17) can be converted to solving the problem (16) with increasing
B until the constraint ‖v − v′‖2 ≤ ε is satisfied.

4.2 Rounding PWL function

The parameter vector ū describing the PWL function with B bins which has
the shortest Euclidean distance to given u can be found by solving

ū ∈ argmin
u′∈RD+1

‖u− u′‖2 s.t. e(u′) = B − 1 . (18)

If the number of bins is unknown, we can search for the minimal number of bins
which explain the given solution u with a prescribe precision ε by solving

ū = argmin
B∈N ,u′∈RD+1

B s.t. ‖u− u′‖2 ≤ ε and e(v′) = B − 1 . (19)

8



The problems (18) and (19) can be solved exactly by procedures analogical
to the ones for the PWC function which were described in previous section and
hence omitted for the sake of space.

5 Examples of the proposed framework

The previous sections desribe a generic framework that allows to modify a wide
class of convex algorithms so that they can learn the PWC and the PWL func-
tions. In this section, we give three instances of the proposed framework. We
also show how the same idea can be applied to learning multi-variate PWC
and PWL functions. In particular, we consider learning of linear classifiers of
sequential data represented by PWC histograms (Section 5.1), estimation of
PWL probability density models (Section 5.2) and learning non-linear classifier
via PWL data embedding (Section 5.3).

5.1 Classification of histograms

In many applications the object to be classified is described by a set of sequences
sampled from some unknown distributions. A simple yet efficient representation
of the sequential data is the normalized PWC histogram which is used as an
input of a linear classifier. This classification model has been successfully is used
e.g. in computer vision (Dalal and Triggs, 2005) or in the computer security
(Bartos and Sofka, 2015) as will be described in Section 6.1.

Assume we are given a training set T = {(X1, y1), . . . , (Xm, ym)} ∈ (Rn×d×
{−1,+1})m where the input matrix Xi describes n sequences each having d
elements. The linear classifier h(X;w,θ) = sign(fpwc(X;w,θ)) assigns X into
a class based on the sign of the discriminant function

fpwc(X;w,θ) =

n∑
i=1

bi∑
j=1

1

d

d∑
k=1

[[Xi,k ∈ [θi,j−1, θi,j)]]wi,j (20)

where θi = (θi,0, . . . , θi,bi)
T ∈ Rbi+1 is a vector defining bin edges of the i-th

histogram and θ = (θT1 , . . . ,θ
T
n )T ∈ Rn+B is their concatenation, B =

∑n
i=1 bi

denotes the total number of bins, wi = (wi,1, . . . , wi,bi)
T ∈ Rbi are bin heights

of the i-th histogram and w = (wT
1 , . . . ,w

T
n ) ∈ RB is their concatenation.

In order to learn the bin edges θ and the weights w simultaneously from ex-
amples T we apply the general framework described in Section 2. In particular,
we show how to adapt the Support Vector Machine (SVM) algorithm. First, we
define the initial discretization νi = (νi,0, . . . , νi,D)T ∈ RD+1 for each of n his-
tograms. For example, we place D+ 1 edges equidistantly between the minimal
Mini and the maximal Maxi value that can appear in the i-th sequence, so that
νi,j = j(Maxi−Mini) + Mini. Second, we combine the SVM objective function

F svm
pwc (w,θ;λ) =

λ

2
‖w‖2 +

1

m

m∑
i=1

max
{

0, 1− yifpwc(xi,w,θ)
}

with the L1-norm approximation of the function

cn(v) =

n∑
i=1

D−1∑
j=1

[[vi,j 6= vi,j+1]]

9



the value of which equals to the total number of different neighboring compo-
nents of v. Analogically to the general formulation (8) we obtain the following
convex program

v∗ ∈ argmin
v∈RnD

[
F svm

pwc (v,ν;λ) + γ

n∑
i=1

D−1∑
j=1

|vi,j − vi,j+1|
]
. (21)

The constant λ ∈ R+ controls the empirical error. The constant γ ∈ R+ influ-
ences the number of equal neighboring in v∗ and thus the number of emerging
bins. The uncompressed parametrization (v∗,ν) is converted to the compressed
one (w∗,θ∗) via the rounding methods from Section 4 which are applied to each
pair (v∗i ,νi), i ∈ {1, . . . , n}, separately.

5.2 Estimation of PWL histograms

Given a training sample T = {x1, . . . , xm} ∈ Rm drawn from i.i.d. random
variables with unknown distribution p(x), the goal is to find p̂(x) well approxi-
mating p(x) based on the samples T . Assume we want to model the unknown
p.d.f. by the PWL function

p̂pwl(x;w,θ) =
(
1− α(x,θ)

)
wk(x,θ)−1 + α(x,θ)wk(x,θ) (22)

where θ ∈ RB+1 are the bin edges and w ∈ RB+1
+ is a vector of non-negative

weights selected such that
∫
p̂pwl(x;w,θ)dx = 1. To learn the unknown pa-

rameters (w,θ) from the sample T , we are going to instantiate the framework
proposed in Section 3 to the Maximum Likelihood method. Let the initial dis-
cretization ν ∈ RD+1 be equidistantly spaced between the minimal and the
maximal value, i.e. νj = j(Max−Min) + Min, ∀j ∈ {0, . . . , D}, where D is set
to be sufficiently high. We substitute the negative log-likelihood

F nnl
pwl(w,θ) = −

m∑
i=1

log p̂pwl(x
i;w,θ)

to the general formulation (14) which yields the following convex problem

u∗ = argmin
u∈RD

[
F nnl

pwl(u,ν) + γ

D−1∑
j=1

∣∣uj − 1

2
uj−1 −

1

2
uj+1

∣∣] (23a)

subject to

u0 + uD + 2

D−1∑
i=1

ui =
2D

Max−Min
, ui ≥ 0 , i ∈ {0, . . . , D} , (23b)

where γ ∈ R+ is a constant controlling the number of bins. The introduced

constraints (23b) ensure that
∫Max

Min
p̂pwl(x;u,ν)dx = 1 holds for any feasible

u. The found u∗ defines a PWL probability density model p̂pwl(x
i;u∗,ν). If

necessary the compressed parameters (w∗,θ∗), describing the non-equidistant
bins, can be recovered from u∗ by the rounding methods described in Section 4.
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5.3 PWL embedding for non-linear classification

The PWL embedding (Pele et al., 2013) is a simple yet efficient way to learn
highly non-linear decision function by a linear algorithm like for example the
Support Vector Machines. Let T = {(x1, y1), . . . , (xm, ym)} ∈ (Rn×{−1,+1})m
be a training set of input features and output binary labels. A linear classifier
h(x;w,θ) = sign(fpwl(x;w,θ)) assigns the input x = (x1, . . . , xn)T into classes
based on the sign of the discriminant function

fpwl(x;w,θ) =

n∑
i=1

(
wi,k(xi,θi)−1 · (1− α(xi,θi)) + wi,k(xi,θi) · α(xi,θi)

)
(24)

which is a sum of n PWL functions each defined for a single input feature.
The vector θi ∈ Rbi+1 contains the bin edges of the i-th feature and θ =
(θT1 , . . . ,θ

T
n )T ∈ Rn+B is their concatenation where B =

∑n
i=1 bi denotes the

total number of bins. The vector wi ∈ Rbi+1 contains the weights associated to
the edges θi and w = (wT

1 , . . . ,w
T
n ) ∈ RB+n is their concatenation.

We can learn the weights w as well as the discretization θ using the SVM
algorithm adapted by the framework from Section 3. First, for each input vector
we define the initial discretization νi = (νi,0, . . . , νi,D)T ∈ RD+1, e.g. as before
by setting νi,j = j(Maxi −Mini) + Mini where Mini and Maxi is the minimal
and the maximal value of the i-the feature and D is the maximal number of bins
per feature. Let ν = (νT1 , . . . ,ν

T
n )T ∈ Rn(D+1) be the concatenation of initial

discretizations for all feature. The SVM objective function

F svm
pwl (w,θ;λ) =

λ

2
‖w‖2 +

1

m

m∑
i=1

max
{

0, 1− yifpwl(x
i,w,θ)

}
is then combined with the L1-norm approximation of the function

en(u) =

n∑
i=1

D−1∑
j=1

[[ui,j 6=
1

2
(ui,j−1 + ui,j+1)]]

the value of which equals to the total number of weights that can be expressed
as the average of its neighbors. Analogically to the general formulation (14) we
obtain the following convex program

u∗ = argmin
u∈Rn(D+1)

[
F svm

pwl (u,ν;λ) + γ

n∑
i=1

D−1∑
j=1

∣∣ui,j − 1

2
ui,j−1 −

1

2
ui,j+1

∣∣] . (25)

The constant λ ∈ R+ controls the empirical error like in the standard SVM. The
constant γ ∈ R+ controls the number of emerging bins, and thus the complexity
(or smoothness) of the decision function. The uncompressed parameters u∗ cane
b converted to the compressed ones (w∗,θ∗) by the projection methods from
Section 4 which are applied to each pair (u∗i ,νi), i ∈ {1, . . . , n}, separately.

6 Experiments

This section provides empirical evaluation of the algorithms proposed in Sec-
tion 5. Section 6.1 describes learning of malware detector representing the net-
work communication by PWC histograms. Section 6.2 evaluates the proposed

11



PWL density estimator on synthetic data. Section 6.3 evaluates the proposed
algorithm for learning PWL data embedding on classification benchmarks se-
lected from the UCI repository.

6.1 Malware detection by classification of histograms

The proposed approach was applied in the network security domain to classify
unseen malware samples from HTTP traffic. The data was obtained from several
months (January - July 2015) of real network traffic of companies of various sizes
in form of proxy log records. The logs contain anonymized HTTP/HTTPS web
requests, where one request represents one connection defined as a group of
packets from a single user and source port with a single server IP address, port,
and protocol. We grouped all connections into bags, where one bag contains
all connections of the same user going the same domain. Finally, we computed
a histogram representation of each bag and used the histograms as input to
a linear two-class classifier (20) as described in Bartos and Sofka (2015). We
compare two methods learning the classifier parameters:

1. The linear SVM using histograms with equidistantly spaced bins. The
number of bins per feature varied from {8, 12, . . . , 256}.

2. The proposed algorithm learning non-equidistant bins from examples. The
uncompressed weights u∗ are obtained by solving (21) with the initial
discretisation ν set to split each feature equidistantly to D = 256 bins.
The constant γ controlling the number of bins varied from 10−1 to 10−6.
The compressed weights (w∗,θ∗) were obtained by the rounding proce-
dure (15). Finally, the linear SVM was re-trained on the learned bins
θ∗.

The optimal value of the SVM constant γ used by both compared methods was
selected from {10−1, . . . , 10−5} based on the validation error.

The data consists of 7,028 positive (malware) and 44,338 negative (legiti-
mate) samples. The positive samples are of 32 classes representing 32 different
malware types. The samples were split into training, validation and testing
set in ratio 3/1/1. It is ensured that the same malware class never appears
simultaneously in the training, validation and test part. We report the average
performance and its standard deviation computed over the five test splits.

We analyzed the effect of the number of bins on the precision and recall of
the linear SVM classifier. Figure 3 shows precision recall curves (PRCs) for the
representation with different number of equidistant bins. Figure 4 shows PRCs
of the representation with different number of non-equidistant bins positions of
which are learned by the proposed method. It is seen that the representation
with non-equidistant bins achieves higher precision using substantially smaller
number of bins. In Figure 6 we show the recall at the precision 95% (a common
operating point of the detector used in real-life deployment) as the function of
the number of bins in order to emphasize the difference between the equidis-
tant and learned non-equidistant representation. The figures are numerically
summarized in Table 1.

Figure 5 illustrates the weights w of the linear SVM classifier trained with
three different representations. First we used a histograms with 256 equidistant
bins (black line), resulting in a large complexity of weights. Second, we learned
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Figure 3: Precision recall curves for
histogram representation with differ-
ent number of equidistant bins. The
performance increases with the num-
ber of bins, however higher number of
bins show comparable results.
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Figure 4: Precision recall curves for
histogram representation with non-
equidistant bins learned by the pro-
posed method. The performance is in-
creased when compared to Figure 3,
and with smaller number of bins.

the weights and bins simultaneously according to the proposed algorithm (red
line), which significantly decreased the number of bins without sacrificing the
efficacy. Finally, we applied the second step to define new bins by rounding the
uncompressed solution and then re-trained a new linear SVM classifier on the
top of it (blue line). It means that the discretization for the second and third
method is the same, but the third method retrained the classifier and boosted
the weights to further maximize the separability of the positive and negative
samples.

6.2 Non-parametric distribution estimation

We evaluated the algorithm finding PWL approximation of an unknown distri-
bution described in Section 5.2. The samples were drawn from a mixture of two
Gaussians: p(x) = 0.4 · N (x;−2, 1) + 0.6 · N (x; 2, 0.5) with mean and standard
deviation (−2, 1) and (2, 0.5), respectively. We compared three methods:

1. The proposed algorithm estimating non-equdistant PWL histogram. The
uncompressed weights u∗ are obtained by solving (23). The initial D =
100 bins ν were placed equidistantly between the minimal and the max-
imal value in the training set. The optimal value of the constant γ was
selected from {10, . . . , 10000} based on the log-likelihood evaluated on
the validation set. The compressed parameters (w∗,θ∗) of the PWL his-
togram (22) are computed from u∗ by the rounding procudere (19) with
the precision parameter ε = 0.001.

2. The PWL histogram with bin edges θ placed equidistantly between the
minimal and the maximal value in the training set. The weights w are
found by maximizing the likelihood function which is equivalent to solv-
ing (23) with γ = 0. The optimal number of bins was selected from
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Figure 6: Recall is influenced by the
complexity of the baseline histogram
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{5, 10, . . . , 100} based on the log-likelihood evaluated on the validation
set.

3. The standard PWC histogram with equidistant bins whose number was
selected from {5, 10, . . . , 100} based on the log-likelihood evaluated on the
validation set. The bin heights were found by the ML method.

We used the distribution p(x) to generate training and validation set the size
of which varied from 100 to 10000. For each method we recorded the optimal
number of bins and the KL-divergence between the estimated and the ground
distribution p(x). The results are averages and standard deviations computed
over ten generated data sets.

Figure 7(a) shows the KL-divergence and Figure 7(b) the number of bins as
a function of the training set size. As expected the equidistant PWC histogram
provides the least precise (high KL divergence) and the most complex (high
number of bins) model. We also see that PWL model with equidistantly spaced
bins provides the same accurate model as the model with non-equidistant bins
learned from example, however, the compactness (the number of bins) of the
non-equidistant model is consistently smaller.

Figure 8 shows examples of PWC historams and PWL histograms with
learned non-equdistant bins. It is seen that the non-equdistant PWL histogram
can closely approximate the ground truth model even from small training sets.

6.3 PWL embedding for non-linear classification

In this section we evaluate the algorithm for learning the PWL data embed-
ding proposed in Section 5.3. We learned a two-class classifier h(x;w,θ) =
sign(fpwl(x;w;θ)) with the discriminant function fpwl(x;w;θ) defined by (24)
for a set of classification problems selected from the UCI repository (Lichman,
2013) which are summarized in Table 2. We evaluated three methods:

14



Equidistant bins Learned soft bins Learned rounded bins
bins per B recall at 95 γ recall at 95 bins per B recall at 95
feature [%] [%] feature [%]

256 58,880 53.5 (25.4) 5 · 107 58.2 (24.4) 58 13,316 58.9 (23.6)
128 29,440 51.0 (27.9) 1 · 106 56.4 (23.9) 40 9,196 58.3 (22.9)
64 14,720 51.2 (26.5) 5 · 106 56.4 (22.6) 20 4,634 55.0 (20.6)
32 7,360 50.3 (26.3) 1 · 105 56.2 (24.3) 13 2,991 54.5 (22.2)
16 3,680 46,7 (26.9) 5 · 105 54.6 (25.4) 3 741 51.1 (25.7)
8 1,840 45.6 (28.5) 1 · 104 51.2 (22.5) 2 510 50.0 (27.5)

Table 1: Performance comparison of a linear SVM classifier trained from a
histogram representation with equidistant bins with the two proposed methods:
learned soft bins (when the bins and SVM weights are learned simultaneously)
and learned rounded bins (retraining new SVM weights once the bins are learned
from the samples). All approaches have comparable recall, but the proposed
algorithms significantly reduced the number of bins.

1. The proposed algorithm learning simultaneously θ and w. The uncom-
pressed parameters u∗ are found by solving (25) with the initial discretiza-
tion ν equidistantly splitting each feature to D = 100 bins. The com-
pressed parameters (w∗,θ∗) are computed from (u∗,ν) by the rounding
procedure (19) with the precision parameter ε = 0.1. Finally, a linear
SVM is re-trained on the learned bins θ∗. The constant γ controlling the
number of bins is varied from 0.1 to 0.0001.

2. The parameters w are trained by the linear SVM on top of equdistantly
constructed bins θ. The number of bins per feature varied from 5 to 20.

3. Method of (Pele et al., 2013) which was shown to outperform the non-
linear SVM with many state-of-the-art kernels and data embeddings. The
non-equidistant bins are found for each feature independently by con-
structing edges as the mid-points between the cluster centers obtained
from the k-means algorithm. The number of bins is varied from 3 to 20.

The optimal value of the SVM-constant λ used by all three methods is selected
from {0.1, . . . , 0.00001} based on the validation error.

We used the same evaluation protocol as in (Pele et al., 2013). Each data
set was ten times randomly split into training, validation and test part in the
ratio 60/20/20. The reported results are averages and the standard deviations
computed on the test part over the ten splits.

Figure 9 shows the test classification accuracy of the compared methods as a
function of the number of bins. The baseline PWL embedding with equidistant
bins provides slightly but consistently worse accuracy compared to the other
two methods learning the non-equidistant bins. The proposed method and the
approach of (Pele et al., 2013) yield statistically similar results both in terms
of the classification accuracy and the complexity of the embedding (number of
bins). However, the proposed method relies solely on solving convex optimiza-
tion problems unlike the method of (Pele et al., 2013) which involves highly
non-convex clustering problem.
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Figure 7: Figures compare the proposed method learning non-equdistant PWL
histograms (black), the equdistant PWL histogram (green) and the equdistant
PWC histogram (blue). Figure (a) depicts the KL-divergence between the
ground truth and the estimated model as a function of the training set size.
Figure (b) shows the optimal number of bins as the function of training set size.

name number of number of
examples features

eyestate 14,980 15
magic 19,020 11
miniboo 130,065 50
musk 6,598 167
skin 245,057 4
wilt 4,889 6

Table 2: A summary of two-class classification problems selected from the UCI
repository (Lichman, 2013) and used to evaluate the linear embedding algo-
rithms.

7 Conclusions

We proposed a generic framework which allows to modify a wide class of convex
learning algorithms such that they can learn parameters of the piece-wise con-
stant (PWC) and the piece-wise linear (PWL) functions from examples. The
learning objective of the original algorithm is augmented by a convex term which
enforces compact bins to emerge from an initial fine discretization. In contrast
to existing methods, the proposed approach learns the discretization and the
parameters of the decision function simultaneously. In addition, learning is con-
verted to a convex problem which is solvable efficiently by global methods. We
instantiated the proposed framework for three problems, namely, learning PWC
histogram representation of sequential data, estimation of the PWL probability
density function and learning PWL data embedding. The proposed algorithms
were evaluated on synthetic and standard public benchmarks and applied to
malware detection in network traffic data. It was demonstrated that the pro-
posed convex algorithms yield models with fewer number of parameters with
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Figure 8: Figures show the ground truth p.d.f. (red), the learned PWL his-
togram (black) and the PWC histogram with equidistant bins (blue) estimated
from training sets of different sizes. The number of bins of a particular his-
togram is shown in brackets. The black vertical lines denote the learned bin
edges.

comparable or better accuracy than the existing methods.
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Figure 9: Figures show the classification accuracy (mean and std computed over
ten splits) of the linear classifier using PWL data embedding evaluated on six
two-class classification problems selected from UCI repository. The accuracy
is shown as a function of the average number of bins used to discretize each
feature. The results are shown for three compared methods. The baseline using
equidistantly placed bins (blue), the method of (Pele et al., 2013) finding non-
equidistant bins by the k-means algorithm (green) and the proposed methods
learning the non-equidistant bins by a convex programming (black).
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