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Abstract

In a variety of applications, kernel machines such as Support Vector Machines (SVMs) have
been used with great success often delivering state-of-the-art results. Using the kernel trick,
they work on several domains and even enable heterogeneous data fusion by concatenating
feature spaces or multiple kernel learning. Unfortunately, they are not suited for truly large-
scale applications since they suffer from the curse of supporting vectors, e.g., the speed of
applying SVMs decays linearly with the number of support vectors. In this paper we develop
COFFIN — a new training strategy for linear SVMs that effectively allows the use of on demand
computed kernel feature spaces and virtual examples in the primal. With linear training and
prediction effort this framework leverages SVM applications to truly large-scale problems: As
an example, we train SVMs for human splice site recognition involving 50 million examples
and sophisticated string kernels. Additionally, we learn an SVM based gender detector on 5
million examples on low-tech hardware and achieve beyond the state-of-the-art accuracies on
both tasks.

1 Introduction

Many applications in e.g. Bioinformatics, IT-Security and Text-Classification come with suge amounts
(e.g. millions or billions) of training examples, which are indeed needed to obtain state-of-the-art
results. At the same time predictions need to be made on billions of data points demanding for
linear time algorithms that additionally can be effectively parallelized. Thus computationally highly
effective methods are needed that can cope with ever growing data sizes. While classical kernel
machines

m
f(x) = sign <Z o K(x,%;) + b) (1)
i=1

often deliver state-of-the-art results, they are not suited for truly large scale applications since they
suffer from the curse of supporting vectors, i.e. the number of non-zero coefficients o; above. The
total evaluation complexity to predict ¢ elements, for mg, support vectors and kernel complexity c
is O(tmgyc). Since mg, = O(m), i.e., is linear in the training set size Steinwart [2004], kernel
machines are in big-O notation (and for many practical applications) not at all faster than k-nearest
neighbor: The number of training examples/support vectors mg, becomes dominant, especially if
kernel computations are already linear. Reduced set methods [Scholkopf and Smola, 2002] par-
tially alleviate this problem by enforcing a low number of non-zero «; in a post-processing step.
Nevertheless, the computational complexity of determining a reduced support vector set and the po-
tential performance degradation and the still prevailing prediction complexity render them infeasible
for truly large-scale learning applications. Collobert et al. [2006] show that using non-convex loss
function can largely reduce the number of support vectors, however, this is paid with more tricky
optimization of a non-convex objective function. Keerthi et al. [2006] propose a greedy algorithm
which simultaneously selects the set of support vectors and optimizes over the parameters «; in (1).
Again, this method optimizes non-convex cost and it is applicable to problems of moderate size only.
It is also operation (1) that slows down training in prominent SVM packages and potentially
has caused a shift in interest from kernel SVMs back to linear SVMs for large-scale applications.
Many of the recently proposed linear SVM solvers, are very efficient and guaranteed to converge to



a e-precise solution in O(m) (e.g., Joachims [2006]). In this paper we develop a training strategy for
linear SVMs that effectively allows the use of on-demand computed kernel like non-linearity and of
virtual examples in the primal and thus leverages SVM applications to truly large-scale problems:
As an example, we train a linear SVM on a gender classification dataset of almost 5 million images
on a plain notebook with just 4GB of memory and on a bioinformatics splice site recognition task
of 50 million examples using a 185 million dimensional string kernel feature space approximation
to the traditionally spanned feature space of size n > 10'*. The paper is structured as follows: In
Section 2 we introduce the COmputational Framework For lINear svms (COFFIN ). In Section 3
we evaluate our proposed approach COFFIN on two real-world data sets. Section 4 concludes the

paper.

2 Leveraging Linear SVMs

Given labeled training examples (x;,v;)"; € (R™ x {—1,+1})™ and a regularization constant
C' > 0, SVMs learn a linear classification rule f(x) = sign((w, x) +b) by minimizing the following
quadratic optimization problem

. Lo G
Izlvl’ll)lF(W) = §Hw|| + C;max{o, 1 —yi((w,x;) +b)}.

Among the most prominent linear SVM solvers minimizing F'(w) are quasi-Newton methods (im-
plemented in subBFGS; Yu et al. [2008]), (stochastic) subgradient descent algorithms (implemented
in SGD and Pegasos; Bottou and Bousquet [2008], Shwartz et al. [2007]), dual coordinate descent
(implemented in Liblinear; Fan et al. [2008]) and cutting plane based algorithms (implemented in
SVMPerf, BMRM and OCAS; Joachims [2006], Teo et al. [2007], Franc and Sonnenburg [2009]).
For the latter four, convergence guarantees exist and they have been proven to have linear training
time, i.e., achieve a ¢ precise solution in O(m).

Underneath, these algorithms are applied by supplying a set of sparse vectors x; and correspond-
ing labels y; as their input and optimize over a dense vector w (and the bias b). In this work we strive
to combine the flexibility of kernels with the computational efficiency of linear SVMs. In addition
we aim at integrating virtually computed examples that were often shown to amend performance (in,
e.g., digit recognition). This naturally requires code changes in the core of the participating SVM
solvers and it is not obvious how to achieve this goal with the above considered linear SVM solvers.
However, all of the above SVM solvers do not require direct access to elements of w or examples
x;, but merely require the following two operations:

(i) dot product between feature vector and the vector w: 7 «— (x, W) DOT

(i) multiplication with a scalar o € R and addition to the vector v € R™: v «— ax + v ADD

To see this, recall that all SVM solvers mentioned above access the examples only to com-
pute (i) outputs f(x;) = (w,x;), 7 = 1,...,m, and (ii) a sub-gradient g = Zie]g{l,.“,m} miXi,
7; € {—1,0,+1} of F(w) (BMRM, SVMP*"f, OCAS) or its stochastic estimate (SGD, Pegasos).
Note that the Hessian required by the quasi-Newton method (subBFGS) is also estimated from the



sub-gradients. In turn, DOT and ADD are sufficient operations, i.e., the only operations directly
accessing the examples.

We propose a new training framework COFFIN whose main essence is the on demand com-
putation of features and examples within the DOT and ADD operations. We show that by well
organizing these computations the proposed strategy can significantly save both memory and com-
putational demand which are the main hurdles in large-scale learning.

We describe two directions of the framework by introducing kernel like non-linearity (Section
2.1) and learning invariant classifiers using virtual examples (Section 2.2).

2.1 A Kernel Framework

To enable the use of non-vectorial data and kernels, we now consider (z;, y;)/"; € (Zx{—1,+1})"
as input and a feature extractor ® : Z — R" that maps objects z from the input space Z to a real
valued vectorial representation. While classical SVM optimizers operating in the dual can easily
make use of the kernel trick k(z,z") = (®(z), ®(z')), i.e., work without ever explicitly computing
the mapping ®(z), this is not straight-forward in the primal. Even though optimization over kernel
expansion provides this trick also in the primal, it again leads to the curse of support vectors and
hurts any large-scale learning applications. To endow kernel like non-linearity ¢ is commonly ap-
plied in a pre-processing step. However, if dim(Z) < n this quickly renders any kind of large-scale
learning infeasible, since only few vectors x will fit in memory. In addition, it should be noted that
such large objects will cause CPU cache misses whenever they are accessed slowing computations
down significantly.

Computing Features on-demand We propose to use on-demand computed features, i.e., instead
of applying the mapping ®(z) in a preprocessing step we compute the non-zero elements of x :=
®(z) on demand whenever x is accessed. Formally, we define the non-zero elements

D20(2) == {(P20(2))uy, - (P20(2))u, }
and their number as follows

[@20(2)] = Y 1(@(x)), #0)
k=1

where I(.) is the indicator function that evaluates to 1 if its argument is true and to zero otherwise.

For the operations ADD and DOT to be efficient, it is required that (a) the individual features
®_0(z),,; can be computed quickly, e.g. in O(1) (b) can be indexed by v;, i = 1,...,4, (c) their
subsequent access to (w),, is fast and (d) the number of non-zero features |®_y(z)| is low, i.e.,
optimally linear in the dimensions of the input

O(|®x0(2)]) = O(dim(Z)).

Examples for ¢ are the construction of a (low-degree) polynomial kernel feature space on very
sparse features, string kernel based features (n-gram counts), hashed feature values, decompression
algorithms. They are described in more more detail in Section 2.1.2. We now discuss data structures
that allow us to efficiently represent w.



Table 1: Computational complexity of the ADD and DOT operations computed for a single z for
the different data structures. In addition, the memory requirement of w is shown.

Dense Sorted Array Tree

Add | O(|2x0(2)]) | O(Iwlxz0) + |®0(2)]) O(P0(2)])

t0 O(d® 40(2)))
Dot | O(|®0(2)]) | O(Iwl0) + |[®20(2)]) O(@x0(2)])

0 O(dP o(2))
Mem O(n) O [2x0(z)]) | OCZE, [Pro(2:)])

2.1.1 Data structures for representing w

Dealing with a potentially huge number of features, most of which potentially zero, requires an
efficient representation of the SVM-w. Sonnenburg et al. [2007a] noted that there are three basic
operations required when dealing with w, a c1ear operation to set all components of w to zero, an
add operation that coincides with operation ADD in this paper and a 1ookup operation to access
all non-zero elements efficiently and is required in the DOT operation. We can thus make use of their
linadd trick to represent the SVM-w not necessarily as a dense vector, but if more appropriate in
a sparse data structure like a tree or a sorted list. In addition, we will make use of hashing to lower
the effective number of dimensions. Hashing has been first investigated in depth and successfully
used in hash kernels Shi et al. [2009].
We briefly review the data structures and their complexity:

Representing w as dense vector If n is not overly large then one should keep the whole vector w
in memory. In this case each ADD and DOT operation can be done in O(|®o(z)|) time at a cost
of a potentially huge, i.e., O(n) memory requirement. However, note that the dimensionality of w
is independent of the number of examples m.

Sorted Array More memory efficient considering sparse data, but computationally more expen-
sive are sorted arrays of index-value pairs {(vi,wy, ), ..., (v, wy,)}. Assuming ordered tuples
(V) (@(x))y ), k=1...,¢ (indexed by v}) ADD and DOT can be performed in O(¢' + £).

Tree In particular when dealing with strings a way of organizing non-zero elements are trees, like
binary trees, tries or suffix arrays Knuth [1973], Fredkin [1960], Teo and Vishwanathan [2006].
Depending on the tree used, the ADD operation needs O(d|®..o(z)|) (trie; d is the depth of the
tree) or O(|®o(z)|) (suffix array). Similar the complexity of DOT varies from O(d|®o(z)]|)
(trie) or O(|®o(z)|) (suffix array). Note that the computational complexity of both operations
is independent of the number of d-mers/elements stored in the tree but comes at the cost of an
additional storage overhead.

Hashing Table 1 summarizes computational complexity and memory requirements of the consid-
ered data structures in big-O notation. This unfortunately hides the large constants involved when
dealing with the seemingly efficient trees. For example while O(>"" | [®o(z;)|) seems like a low
memory requirement (this quantity is linear in the amount of data), it is sufficient to already impose
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practical limits, e.g., Sonnenburg et al. [2007a] require 20 bytes per node for their already tuned
DNA-tries; the highly memory-efficient suffix array algorithm of Teo and Vishwanathan [2006] still
requires 19 bytes per character. The sorted array has an additional index attached to it increasing
data size by at least factor 2.

On the other hand, DOT and ADD are very fast for dense w (no hidden large constants) but
suffer from huge memory requirements (for some string kernels n > 1014 >> m).

This is where hashing comes as a rescue: For an index set .J, a number of bits ~y, a hash function

h(J) — 1,...,2Y computes an approximation of ®(z); via
(B(2);= Y (P(2)
i€ J;h(i)=j

ignoring potential hash collisions, i.e., the new vector <T>(z) has only 27 dimensions. This trick and
the resulting (minor) information loss has been extensively discussed in Shi et al. [2009] w.r.t. both
theory showing its influence on generalization bounds and empirically for dense w. It has the big
advantage that we can use a fixed hash-table size of size n = 27 for w either in dense representation
Shi et al. [2009] or a sparse one Sonnenburg et al. [2007a].

It should be noted that the use of such data structures is not exclusive either-or, for example
for a string kernel one might want to use a dense representation for short string lengths and for the
remaining use sorted arrays, suffix arrays or hashes.

In this work we will exclusively focus on either explicit or hashed dense representations of w
since — for very large m — they have the lowest memory requirements and DOT and ADD can be
computed fastest.

2.1.2 Computing ¢ for a Variety of Kernels

In this section we give examples on how to efficiently compute ® for a variety of kernels.

Polynomial Kernel of low degree The homogeneous' polynomial kernel of degree d is defined
as K(z,2') = ((z,2'))?, 2,2’ € RP. The feature space of the polynomial kernel can be defined as

O: RP - R" )
d 2
<I)(z):<( > zul|ueNP,yu|:d),
u

o p . o P A d I
where u = (u1,...,u,) € NP is a multi-index, [u| = >, u;, (u) = R T and

zll = T[P_, 2. The dimensionality of the feature space is n(p,d) = Y uene L(Ju] = d). In
turn, computing ADD and DOT operations require in general case O(n(p,d)) operations and thus
are feasible only if degree d is low and the input vectors z are low-dimensional or very sparse. Let
J—o(z) be a set of indices of zero components of z and let Uxp(z) = {u € NP | |u| = d,u; =
0,7 € J—o(z)} be set of multi-indexes of non-zero monomials. Then, computing ADD and DOT
require traversing only through the non-zero monomials z/", u € Uo(z). Hence the computation
complexity of sparse ADD and DOT decreases to O(n(p — |J=o(z)|,d)). Note that one may save

memory by using a hashed approximation of the multi-index h(u).

!"The derivation for the inhomogeneous case is analogous.



Bag of Words, Spectrum and n-gram Kernel The spectrum kernel (e.g. Sonnenburg et al.
[2007a]) implements the n-gram or bag-of-words kernel as originally defined for text classifica-
tion in the context of biological sequence analysis. ®4(z) computes counts of all possible d-gram
that are contained in the string z, i.e., given an alphabet 3 and all possible d-grams u € ¢

D4(z) = (#ui(z), . .., #ups (2)).

A flavor of this kernel considers all k-grams of length 1...d, i.e.

(@) = (VA1 (2), .../ Gua(2).

where 3, € R™ are some non-negative weights.

For small alphabets and d-gram lengths individual d-grams can be stored in fixed-size variables,
e.g., DNA d-gram of length d < 8 can be efficiently represented as a 16-bit integer values. The
ability to store d-gram in fixed-bit variables or even CPU registers greatly improves performance,
as only a single CPU instruction is necessary to compare or index a d-gram. The computational
complexity of computing & is linear in the length of the sequences, i.e., O(|z|.o). Note that this
representation allows efficient computation of the Weighted Spectrum kernel in O(d|z|q) without
requiring additional storage. Finally, note that for long strings z or low d it can indeed be more
efficient to store pre-processed tuples of (#u € z, u)yye, instead.

Depending on the alphabet size, the spectrum kernel is best represented explicitly, i.e., using a
dense w, index u for small alphabets or a dense w Sonnenburg et al. [2007a], but hashed index A (u)
Shi et al. [2009].

Weighted Degree Kernel The weighted degree kernel [Sonnenburg et al., 2007a] (WDK) can be
conceived as a weighted spectrum kernel for each sequence position. This kernel has been exces-
sively used to detect genomic signals Sonnenburg et al. [2008] and its feature space can be expressed
as

CI)EiUd(Z) = ((I)gspec(zl,.--,d)v ) (Ibgspec(z\z\fd+l,...,|z|))'

As a result the feature space of the WDK is O(I|%|?) dimensional Sonnenburg et al. [2007a]
and thus for the usually considered d = 20 even for relatively short DNA sequences too big for a
dense representation. Naturally Sonnenburg et al. [2007a] used a sparse trie representation for ®.
However, we instead propose to use multiple dense hash tables, one for each degree and position.
For this to be efficient we require incremental hashes, i.e. hashes that can be seeded with the previous
seed,

h(z1,. kt1,0) = h(z1, g1, M@, g, (- (R(21,0)))),

where o is some initial seed.
Similar to the spectrum kernel we can explicitly represent k-grams for small k to further speed
up computations.

Other Examples Other examples for ® include fast decompression algorithms like LZO? that can
efficiently decompress a sequence at one third of the speed of a usual memcpy, but also other expert

nttp://www.oberhumer.com/opensource/lzo/



chosen general basis functions like sine waves, exponentials etc. While one could use the empirical
kernel map or sparse kernel approximations to approximate general kernels the kernel evaluations
with a subset of the training examples creates a huge speed penalty rendering on-the-fly computation
of ® hard.

2.2 Incorporating Invariance by Virtual Examples

In many applications, we know that there are transformations of the input measurements z € 2
which leave the class membership y invariant. A commonly used way to incorporate prior knowl-
edge into SVM classifiers is to augment the set of training examples with virtual examples (VE) that
are created by applying a set of transformations (against which we want invariance) to the training
examples DeCoste and Scholkopf [2002].

To put it formally, our prior knowledge is described by a set 7 which contains a finite number
of transformations T': Z — Z. We require that

f(@(Tz)) =y , VIieT,i=1,...,m,

where {(z;,y;)}!" are given training examples. Training of f can be expressed as training of a
standard SVM classifier from |7 |m virtual training examples

{(zy) |z2=Tz,y=y;, T€T,i=1,...,m,}.

The VE method has two important advantages. First, it does not impose any constraints on the trans-
formations 7. Second, existing SVM solvers can be used to train the invariant classifier. However,
the cardinality of 7 may increase exponentially when the transformation 7" is composed of s simpler
ones, ' =Ty ® ---®Tsand thus T = 77 x --- x T,. Thus, VE are computationally demanding
because they (a) significantly increases the number of training examples and (b) pose huge memory
requirements to store all m|7 | virtual examples.

This is were COFFIN comes as a rescue: Instead of pre-computing the VE in advance, we gener-
ating them on demand. Since only the original examples need to be stored in memory, this approach
drastically reduces memory requirements. In case when transformations 7" can be computed quickly,
the on demand generation of the virtual examples also speeds up the training. E.g., transformations
of 2D images (needed in OCR and image recognition) can be computed on GPUs — a dedicated
hardware for these transformations.

In Section 3.2, we demonstrate effectiveness of the proposed approach COFFIN on the problem
of gender estimation from face images showing that COFFIN has by an order of magnitude less
memory requirements compared to the standard approach. A practical outcome is that we can train
the gender classifier from 4, 808, 250 example images on a notebook with only 4GB of memory
instead of high-end computing node with > 50GB of memory.

2.3 Implementation and Parallelization

We integrated COFFIN in the state-of-the-art cutting plane solver OCAS, the dual coordinate descent
based LibLinear and SGD. We implemented a general framework that allows stacking of a variety
of features that support ADD and DOT operations, namely dense and sparse real-valued features,



weighted spectrum and WD kernel features for specified k-mer length, once using an explicit repre-
sentation and once using hashing. We implemented the virtual example method to OCAS solver as
its API provides easy way to customize ADD and DOT operations. A pointer to our implementation
will be disclosed upon acceptance of the paper.

Since the DOT operation is the most time consuming when performing predictions and when
using batch-solvers we trivially parallelized this part of the code (based on shared memory par-
allelization, i.e., posix threads). However, an important detail here needs considerable attention:
memory locality. CPUs nowadays are i/o bound, i.e. computation speed is drastically limited by
memory speed and parallelized code cannot help this. To alleviate that bottleneck, off the shelf
CPUs have rather large data and instruction caches. For example an AMD Opteron CPUs of-
ten have 64k level 1 data cache and 1MB level 2 data cache.> Within the DOT operation, it is
highly beneficial to split w = (wp, , ..., wp, ) into smaller blocks, parallelizing within each block
r= Z?Zl S (xi, B;» W, )e; where the inner sum is distributed among cores.

3 Experiments

3.1 Human Acceptor Splice Site Recognition

To demonstrate the effectiveness of our proposed method COFFIN , we apply it to the problem of
human acceptor splice site detection. This problem can be formulated as a two-class classification
problem discriminating true splice sites from fake ones. Due to the importance of this problem in
computational gene finding, many different methods to detect splice sites have been proposed. They
all predict splice sites based on the local context, i.e., a short window around the actual splice site.
Currently, support vector machines are the most accurate splice site detectors Degroeve et al. [2005],
Sonnenburg et al. [2007b], Franc and Sonnenburg [2009]. In particular, Sonnenburg et al. [2007b]
showed that prediction accuracy steadily increases with training sample size. However, even though
they already used the 1inadd algorithm Sonnenburg et al. [2007a] to speed up string kernel-based
SVMs on a quad-core system, they could not use all available 50 million training points (but “only” 8
million). Sonnenburg et al. [2007b] achieved 54.42% area under the precision recall curve (auPRC,
Davis and Goadrich [2006]) in a genome-wide study on human acceptor splice sites.

On the other hand, Degroeve et al. [2005] trained a linear SVM based on a number of pre-
selected and explicitly computed string kernel feature spaces that are subsets from the spectrum and
WD kernel feature spaces: Left and right of the splice site spectrum kernels of order 3 up to order 6
were used. Over the whole window, a WD kernel of order 3 with weights equal to 1 was used. Even
though this approach scales well, they used < 100, 000 data points (potentially, since they relied on
the unmodified SVM!"* binary).

Recently, Franc and Sonnenburg [2009] demonstrated in a proof of concept study for OCAS that
training on all the available examples improves performance. However, they could not use the full
potential of higher order string kernels and achieve inferior performance compared to Sonnenburg
et al. [2007b] for the same sample size (cf., Ocas d = 8 vs. Linadd d = 20 in Table 2).

http://en.wikipedia.org/wiki/Opteron



Number of Bits vs. auPRC on 100k examples Number of Bits vs. Training Time on 100k examples
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Number of Bits Number of Bits

Figure 1: Performance in terms of auPRCand training times on the human acceptor splice site
experiment using 100,000 examples and varying bit sizes for the hash of the central WD kernel.
For this experiment OCAS was used. It can be seen that already starting with about 8-10 bits the
auPRCreaches a plateau. In addition, training times start to drastically increase as soon as hashes
of more than 12 bit are used. This drop in performance indicates that the whole hash-table does no
longer fit in the CPU data cache for larger hash tables. For 12bits w is 11,725,480 dimensional.

Experimental Setup Following Franc and Sonnenburg [2009], we train COFFIN on all available
50 million strings of length 141 using the features corresponding to two weighted spectrum kernels
(one left and one right of the splice site, i.e., positions 1-59 and 62-141) and a WD kernel. We fixed
C = 1 and used the weighted spectrum kernel order d = 8, for the WD kernel order d = 8 or d = 20
respectively, which were found optimal in Franc and Sonnenburg [2009]. We use a dense explicit
174,760 dimensional representation for the spectrum kernels and dense or hashed representations
for the WD kernel for hash sizes v = 12 and v = 16 (cf., Fig. 1 for a discussion about optimal
hash sizes). The resulting spanned string kernel feature space has 12,495, 340 (WD d = 8 explicit),
11,725,480 (WD d = 12 hash v = 16) and 184, 986, 280 (WD d = 20 hash v = 16) dimensions
respectively.

As the raw string-based dataset is already of size 7.1- 10° bytes and even a sparse representation
of each string increases the dataset by a factor of more than 3,000 ((141 + 59 + 80) - 12 bytes per
feature vector, assuming a 4 byte integer and an 8 byte float), it is only by the means of COFFIN
that we can solve such huge optimization problems.

To provide a fair comparison we measure training times and auPRC on a held out test set of
4,627,840 examples for various training set sizes using low order WD kernels and explicit repre-
sentation or higher order ones with hashing. We consider SVM!&" employing 1inadd and OCAS
and liblinear employing COFFIN in this comparison.*

Using COFFIN within liblinear, training on 50 million examples using a single CPU-Core of a
16 core AMD Opteron Linux-based machine, leads to record area under the precision recall curve
(auPRC) of 58.57% in less than 3 days. For comparison, the previous best dual method already
using the 1inadd speedups Sonnenburg et al. [2007a] achieved an auPRC of 54.42% training on
just 8 - 105 examples in about 11 days. Franc and Sonnenburg [2009] achieved an auPRC of 57.77%

“Preliminary results showed that SGD failed miserably — potentially requiring step-size tuning for the different d.



Table 2: Training times and auPRCfor human splice site detection for various data set sizes and
w representations and d’s of the weighted degree kernel. (first row) The previous state-of-the-art
was an SVM!" employing 1inadd and a weighted degree shift kernel; numbers are estimated
from Figure 2 in Sonnenburg et al. [2007b]. The result marked* was extrapolated (linearly scaled).
COFFIN employing OCAS (OC) and liblinear (LL) is compared to 1 inadd and by far outperforms
linadd in accuracy and speed when using hashing. Using a dense representation is even slower
than hashing and has inferior performance.

Method / Sample Size 107 109 108 107 5-107

SVM' "1 inadd WDS ~25s ~11% | ~500s ~28% | ~2-10° ~44% | ~10° =54% -
SVMY9hty1inadd d = 8 57s  10.37% 970s  28.62% 34110s  43.78% -

SVMU9ht 413 nadd d = 20 56s 11.15% | 1033s 31.80% 34586s  46.27% - -
COFFIN OC d = 8 (dense) 167s  10.00% 948s  28.57% 9952s 43.84% | 131202s 53.26% | 656010s* 57.77%
COFFIN OC d = 20, v = 12 65s 10.81% 4355 31.80% 5349s  46.12% | 76311s 54.31% | 908654s 57.89%
COFFINOC d =20,y =16 || 363s 10.66% | 1430s 31.90% 10288s  46.43% - -
COFFIN LL d = 20,y = 12 61s 10.59% 360s  31.59% 3783s  45.97% | 25902s 54.17% | 132581s 57.75%
COFFINLLd =20,y =16 || 111s 10.52% 604s  31.69% 4590s 46.26% | 44232s 54.56% | 247907s 58.57%

using OCAS — we obtain the same precision in one fifth of the time (cf., Table 2). We could not
train OCAS on the v = 16 hashed data set since a single cutting plane already requires about 1.4G B
of memory. However, since OCAS is a batch method, we could train it using 16 CPU cores on 50
million examples employing parallelized DOT operation resulting in 19hours spend in computing
outputs instead of 252 (speedup factor 13) demonstrating the effectiveness of our memory access
pattern. Since liblinear is an online style solver, it cannot easily be parallelized but could benefit
from the recent work of M. Zinkevich [2009] on delayed gradient updates. Liblinear with d = 20,
« = 16 involves a feature space of size 184,986,281. Training times for liblinear using L2 loss were
slightly lower at the cost of slightly decreased performance (results not shown).

3.2 Gender Estimation From Face Images

The task of this binary classification problem is to discriminate digital images into two classes —
males and females. A robust classifier should be invariant against common image transformations:
translation, rotation, scale and illumination changes. Currently, there exist feature representations
invariant only against one of the transformations. For example Local Binary Patterns (LBP) Ojala
et al. [2002] are the current state-of-the-art image descriptors thare are invariant against any mono-
tonic change in intensity values. In order to gain robustness against translation, rotation and scale,
we apply the method of virtual examples (c.f. Sec. 2.2) in training. As mentioned, the bottle neck of
the method is that the set of virtual examples quickly grows very large, imposing artificial memory
limits.We show that using COFFIN computing virtual examples on demand significantly alleviates
the memory problem at the price of only minor increase in training time. In particular, we train the
gender classifier from 4,808,250 virtual examples on a notebook with Intel 2.66 GHz CPU and only
4GB of memory. Storing all the precomputed examples in memory would require more than S0GB.

We collected a dataset of 18,504 images with human faces downloaded from the Internet. We
split the images into 12,822 training and 5,682 test examples. The faces were manually segmented
and labeled with the gender. The segmentation is given by a position and size of a window containing
a face. When applying the classifier in “real world”, position and size of the window are taken from
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Figure 2: Performance of the gender classifier trained from virtual examples. Figure (a) shows
auROC w.r.t. training set size. In figure (b), we plot memory requirements of (i) the proposed on
demand training strategy (red) and (ii) the standard strategy based on pre-computing all examples
(blue). The black curve shows extra memory needed by OCAS solver to store the cutting planes
(black) which is common for both strategies. Figure (c) shows CPU time needed by DOT operation
(blue), ADD operation (black) and the total time (red). The solid lines correspond to the on demand
computation strategy while the curves for standard approach are dashed.

a pre-trained face detector and are thus often are imprecise. To cope with this situation, we cropped
the testing faces using the annotated segmentation applying translational and rotational distortions:
The position distortion was in range of +2 pixels in both axis and the distortion in scale was +5%
of the base window size. The parameters of the distortions were estimated from outputs of a real
AdaBoost face detector.

We generate the virtual examples by applying the mentioned transforms to the annotated images.
The classifier input is a quadruple x = (I, p, s, ), where I € N9°*0 i oray-scale image, p € N>
is position of the 60 x 40 pixels base window, s € R is scale and ¢ € R is the rotation of the base
window. We define the transformation

T(Ap,As,Ap)(Lp,s,p) = (ILp+ Ap,s+ As, o+ Ay) ,

parametrized by the triplet (Ap, As, Ap) which defines the change in translation, scale and rotation,
respectively. Then we construct the set 7 = {T(Ap,As,Ayp) | Ap € T,,As € T;,Ap € 1.}
where

7, = {Ap|Ap=(wv),u,v € {-2,-1,0,1,2}}

7 = {As|se{-0.0500.05}}

TLP = {ASO ’ A(p S {_67 _3707376}}

i.e., for each training image we generate |7 | = 52 - 5 - 3 = 357 virtual examples.

The feature representation (I, p, s, ) € R™ is computed from responses of the LPB filter on
pyramidal representation of the base window that is cropped from image I according to (p, s, ).
The pyramid is composed of images 60 x 40, 30 x 20, 15 x 10, 7 x 5 pixels, obtained from the base
window which was then three times downscaled by factor 2. It results in n = 723, 712-dimensional
sparse feature vector composed of all zeros and 2, 827 coordinates equal to one. The feature vector
is most efficiently represented by storing 2, 827 indexes (4 bytes each) of non-zero coordinates, i.e.,
we need 2, 827-4 = 11, 308 bytes per example. Hence pre-computing all 357-12, 822 = 4,808, 250
virtual examples requires ~ 51 GB.
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We alleviate the memory problem by computing the virtual examples on demand. For each
training image, we pre-compute only their rotated and scaled versions because these are the most
expensive operations and they still fit to memory; to store 12, 822 - 5 (rotation) -3 (scale) = 192, 330
images we need 1.3 GB. The image translations and the pyramid of LBP features are computed on
demand. Note that translating the image requires only reading from corresponding memory space
and thus it is fast. Similarly, downscaling image by 2, needed for pyramid computation, involves
only summing pairs of neighboring image rows and columns. The resulting sums do not need to be
normalized as the LBP representation is invariant to monotonic change of intensities.

For different training set sizes, m € 375 - {1000, 2000, . ..,10000, 12822}, we trained SVMs
using OCAS and measured accuracy, memory requirements and computation time. The results pre-
sented further are obtained for C' = 0.001 which was found by tuning on the original training
examples. Figure 2 (a) shows the accuracy, measured in terms of the area under ROC (auROC,
Fawcett [2003]), w.r.t. number of examples. It is seen that generating more virtual examples sig-
nificantly helps the performance. The classifier trained only on the original 12, 822 examples with
undistorted annotation has auROC = 89.57% compared to auROC = 95.44% obtained with all
virtual examples. Figure 2 (b) shows the memory requirements w.r.t. training set size for (i) all
examples precomputed and (ii) examples computed on demand. Computing examples on demand
requires ~ 40 times less memory. Figure 2(c) shows total time of OCAS, the time for computing
outputs (dominated by DOT operation) and the time for computing cutting planes (ADD operation).
Because all precomputed examples do not fit into 4GB RAM, the time ADD and DOT operations
is estimated from 7,44 and r4,;. However, memory efficiency comes at the cost of slightly slower
training, i.e., ADD (DOT ) is on average rq,qq = 1.28 (rgot = 1.85) times slower. Considering
the increase in performance by being able to train on almost 5 million examples the slight decrease
in training time (on average 1.75 times slower) seems negligible. In addition, a principled caching
strategy might bring speed up to par.

4 Conclusion

We have presented COFFIN — a very efficient computational framework for on-demand creation of
features and virtual examples. COFFIN combines the computational efficiency of linear SVMs with
the flexibility of kernel based learning. In the experimental section we have demonstrated (a) that
our approach allows efficient computations even on low-budget hardware and (b) leads to state-of-
the-art results solely due to the fact that enables the use of all available training data. For example
we could train a linear SVM on about 5 million example images for the task of gender recognition
on a standard notebook with just 4GB of memory and a linear SVM for human acceptor splice site
recognition on 50 million examples in a more than 184 million dimensional feature space in less than
3 days achieving new record performance. Still, we see further potential in improving our approach,
by considering the computational costs to create virtual vectors T'(x) or features ®(z) respectively
in the core optimization process of the linear SVM solver. For example computed elements could
be cached and solvers could put focus on optimizing for the few cached elements before tuning the
rest.
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