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Abstract

Probabilistic subspace mixture models, as proposed over the last
few years, are interesting methods for learning image manifolds, i.e.
nonlinear subspaces of spaces in which images are represented as vec-
tors by their grey-values. Their lack of a global mapping can be reme-
died by a recently developed method based on locally linear embed-
ding, called locally linear coordination. However, for many practical
applications, where outliers are common, this method lacks the nec-
essary robustness. Here, the idea of robust mixture modelling by t-
distributions is combined with probabilistic subspace mixture models.
The resulting robust subspace mixture model is shown experimentally
to give advantages in density estimation and classification of image
data sets. It also solves the robustness problems of locally linear co-
ordination, by introducing a weighted reformulation of the embedding
step.
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1 Introduction

The last few years have seen an increasing interest in subspace methods,
specifically when applied to image data. Many approaches approximate im-
age data, represented by grey-values as vectors in high-dimensional spaces,
using linear subspaces. These can be found using a number of well-known
subspace techniques, such as principal component analysis (PCA) or factor
analysis (FA). The subspaces themselves can be used as models for the pro-
jected image data (so-called appearance-based methods), or they can be used
as a form of feature extraction to ease further processing.

Work has also proceeded on modelling nonlinear subspaces, i.e. curves or
manifolds. Methods to do so broadly fall into three main categories:

• fitting principal curves and surfaces to the data;

• embedding the data;

• modelling the data by (constrained) mixture models.

Methods such as principal curves and surfaces [3, 10] are elegant methods,
yet due to their complexity are hard to use to find manifolds of dimensions
more than 2 or 3. Manifolds found by neural networks [17] suffer from all
neural network problems.

Embeddings, such as multi-dimensional scaling (MDS), locally linear em-
bedding (LLE) [21, 24] and ISOMAP [27], are more flexible in application.
They are usually based on some (heuristic) properties to be preserved during
the mapping, which makes their operation insightful. However, they do not
give a probabilistic model of the data and often require a large amount of
computation.

The latter group of methods, mixture models, has received much atten-
tion. Most mixture models approximate a manifold using a relatively small
number of localised subspaces, which are modelled by Gaussians with re-
stricted covariance matrices [9, 28], possibly with a constraint on the rela-
tions between the models [1, 22]. Their popularity is due to the fact that they
are usually trained by the well-understood expectation-maximisation (EM)
algorithm, for which a large body of literature exists. Methods of optimising
the number of models to use, be it by using greedy algorithms or Bayesian
learning, are readily available.

However, mixture models still have their drawbacks. First, the EM al-
gorithm can only be guaranteed to converge to a local optimum. Second, as
the models are density-based, dense data sets are necessary to train them.
Third, use of Gaussian densities means these methods are not robust to out-
liers. Especially when mixture models are used for subsequent classification
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(e.g. [6, 8, 11]) this can lead to performance degradation. Although super-
vised mixture model techniques exist (e.g. [13, 23]), these algorithms are
complex, computationally intensive and/or limited to specific data models.

Finally, a major drawback of subspace mixture models for manifold learn-
ing is that they do not result in a global mapping from a high-dimensional
space to a low-dimensional space. Although some methods have been formu-
lated for achieving a global mapping by coordinating the subspaces in the
mixture [22, 29]), these are known to have problems converging [2]. On the
other hand, embeddings such as the aforementioned locally linear embedding
(LLE, [24]) do achieve a global mapping, but at high computational cost. A
recently proposed method reduces this cost by mapping not individual sam-
ples, but samples pre-clustered by a mixture of local subspaces. The method
is called locally linear coordination (LLC, [26]). A very similar method was,
at the same time, proposed by Brand [2].

LLE and LLC will be briefly introduced in Section 2. Though fast, LLC
is highly non-robust against outliers, as a single model misfit may cause the
global mapping to be incorrect. In Section 3, an alternative robust subspace
mixture model based on t-distributions is therefore proposed. It is shown to
give good results in density estimation on a toy data set and in a classification
problem. In Section 4, the robust subspace mixture model is then applied
to in a slight reformulation of the original locally linear coordination. The
resulting algorithm, robust LLC (RLLC), is experimentally shown to give
better results than ordinary LLC based on mixtures of principal component
analysers.

The paper ends with conclusions and an outlook to further applications.

2 Manifold learning

An interesting, recently proposed method for manifold learning is locally lin-
ear embedding (LLE, [24]). This method will be discussed in Section 2.1.
It suffers from a number of problems, some of which are addressed by a re-
cent variant, which couples LLE with mixtures-of-subspaces. This algorithm,
locally linear coordination (LLC) will be discussed in section 2.2.

2.1 Locally linear embedding (LLE)

As input, LLE takes a set of n d-dimensional vectors (each of which may
represent an image, for example) assembled in a matrix X of size d× n. Its
output is a set of n m-dimensional vectors (m � d) assembled in a matrix Y
of size m×n, where the ith column vector of Y corresponds to the ith column
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vector of X. First, the n×n squared distance matrix ∆ between all samples
is constructed. For each sample xi, i = 1, . . . , n, its q nearest neighbours are
then sought; their indices are stored in an n × q matrix Ω, such that Ωij is
the index of the j-nearest neighbour of sample xi.

In the first step, each sample xi is approximated by a weighted linear
combination of its K nearest neighbours, making use of the assumption that
neighbouring samples will lie on a locally linear patch of the nonlinear man-
ifold. To find the reconstruction weight matrix W, where WiΩij

contains
the weight of neighbour j in the reconstruction of sample xi, the following
expression has to be minimised w.r.t. W [24]:

εI(W) =
n∑

i=1

‖ xi −
q∑

j=1

WiΩij
xΩij

‖2, (1)

subject to the constraint
∑q

j=1 WiΩij
= 1. It is easy to show that each

weight can be calculated individually [24]. For each sample xi, construct a
matrix Q with Qjm = 1

2
(∆iΩij

+ ∆iΩim
− ∆ΩijΩim

). Let R = (Q + rI)−1,
where r is a suitably chosen regularisation constant (see [7]). Then WiΩij

=
(
∑q

l=1 Rjl)/(
∑q

l,p=1 Rlp).
In the second and final step, the weights stored in W are kept fixed and

an embedding in Rm is found by minimising w.r.t. Y:

εII(Y) =
n∑

i=1

‖ yi −
q∑

j=1

WiΩij
yΩij

‖2 . (2)

This minimisation problem can be solved by introducing the constraint that
the embedded data should have unit covariance, i.e. 1

n
YYT = I (otherwise,

Y = 0 would minimise (2)). As a result, (2) is minimised by carrying out an
eigen-decomposition of the matrix M = (I −W)T (I −W) [24]. The eigen-
vectors corresponding to the 2nd to (m + 1)st smallest eigenvalues then form
the final embedding Y; the eigenvector corresponding to the smallest eigen-
value corresponds to the mean of the embedded data, and can be discarded
to obtain an embedding centered at the origin.

After embedding, a new sample can be mapped quickly by calculating the
weights for reconstructing it by its q nearest neighbours in the training set,
as in the first step of LLE. Its embedding is then found by taking a weighted
combination of the embeddings of these neighbours [7, 24].

LLE has been shown to be useful for analysis of high-dimensional data
sets [7, 15, 16, 21]. A typical example is visualisation of a sequence of images,
e.g. showing a person’s face slowly rotating from left to right. For such data
sets, LLE finds embeddings in which the individual axes correspond (roughly)
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Figure 1: A set of 2000 face images, mapped down to 2D using LLE. Before
applying LLE, a global PCA mapping was used to reduce the number of
dimensions to 100. Other parameters: q = 25, m = 2, automatic regularisa-
tion [7].

to the small number of degrees of freedom present in the data. Figure 1
illustrates this.

LLE as described here suffers from a number of problems:

• the choice of parameters influences the end result to a large extent:
the number of neighbours to use, q; the number of dimensions to map
down to, m; and the amount of regularisation to apply the local Gram
matrix R.

• the second step entails an eigendecomposition of an n×n matrix, which
for large n (say, n > 5000) becomes infeasible in terms of time and space
complexity.

To addres the first problem, a number of improvements were proposed in [7].
The number of neighbours q still has to be set, but regularisation parameter
r and the intrinsic dimensionality m can be estimated if a desired percentage-
of-variance retained 0 < v ≤ 1 is specified.
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The second problem is also addressed in [7], by giving a measure of “ne-
cessity” for each sample, based on a local linearity estimate. The data set
can then be pruned by removing unnecessary samples. This approach suf-
fers from the obvious problems of dependence on the local linearity estimate,
and the question of how to decide how many samples one needs to retain
to still obtain a good mapping. A more elegant solution is to use mixtures-
of-subspaces to obtain a reduction in the computation needed. This will be
discussed next.

2.2 Locally linear coordination (LLC)

Teh and Roweis [26] proposed to use LLE in conjunction with mixtures-of-
subspaces. Their algorithm works as follows.

First, the first stage of LLE is applied find the reconstruction weight ma-
trix W, using q neighbours in Rd. Regularise with rLLE, or use automatic
regularisation. Next, a mixture-of-subspaces is trained, such as a mixture of
principal component analysers (MPPCA, [28]) or a mixture of factor anal-
ysers (MFA, [9]); these models are discussed in more detail in Section 3.1.
Such a subspace mixture model have k models of m dimensions each. It is
regularised with rPCA, or the automatic regularisation found by LLE is used
(applicable when n/k ≈ q) is used.

Each vector xi to be mapped can now be expressed by its position inside
each of the subspaces, i.e. its “internal coordinates”. For the model in (8),
this is:

tij = AT
j (xi − µj) (3)

where Aj contains the basis vectors of subspace j as its columns, and µj is
the origin of subspace j.

The key of LLC is that the vectors yi looked for can be seen as weighted,
rotated and shifted versions of the ti. LLE can find the rotations and shifts,
for the entire subspace at a time. The weights are given by the responsibili-
ties:

yi =
k∑

j=1

rij(Ljtij + oj) (4)

where rij is the responsibility of model j for vector xi (18), and tij is the
vector of internal coordinates of vector xi in subspace j. Lj is the m × m
rotation matrix for subspace j, and oj is its offset.
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By rewriting, the previous expression can be split into a known part (rij,
tij) and an unknown part (Lj, oj):

yi =
k∑

j=1

([
rijt

T
ij|1
])

L′
j (5)

where the 1 is a scalar bias term, and L′
j is an (m+1)×m matrix containing

the m×m rotation matrix and the offset.

Now the entire n×m matrix Y can be expressed as Y = UP, where U
contains the first term in the previous equation and P the unknown param-
eter matrices L′

j, repacked to a j(m + 1)×m matrix:

Y =
[
R1t

T
1 1|R2t

T
2 1| . . . |Rkt

T
k 1
]
P = UP (6)

Given this, the second stage of LLE (2) can be written as minimising

tr
(
YT (I−W)T (I−W)Y

)
= tr

(
PT
[
UT (I−W)T (I−W)U

]
P
)

= tr
(
PTGP

)
(7)

under constraints 1
n
1TUP = 0 (which can again be done by dropping the

first smallest eigenvector) and 1
n
PTUTUP = PTHP = I. This leads to a

generalised eigenproblem: solving Gv = λHv.

Note that G and H are now j(m+1)×j(m+1) matrices, which in general
will be much smaller than the original n× n matrix W. However, G will no
longer be sparse as it was in LLE.

LLC has a few more parameters than the original LLE: the number of
models k to use, their dimension m, and the regularisation rPCA needed
for training the mixture model. Usually, one will pick m to be equal to the
number of dimensions we want to map down to (which can be found automat-
ically by specifying the percentage of variance to retain, see [7]) – although
in some of the experiments in [26], this is not the case. Finally, k might
be chosen such that n/k ≈ q, i.e. samples are “summarised” by subspaces
at the same scale that LLE operates. However, as mixtures-of-subspaces
are density-based, they might need more than q samples (on average) to be
estimated well.

LLC couples in a very interesting way two ideas, those of mixtures-of-
subspaces and embedding. The mixture models ease the application of LLE,
whereas LLE provides a way of post-coordinating the mixture models (that
is, aligning them to provide a global mapping).
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2.3 Experiments

2.3.1 3D toy data

LLC was first applied to a toy data set, samples distributed on a 3D sine-
wave [7]. The subspace mixture model used was a mixture of probabilistic
principal component analysers (MPPCA). Figure 2 shows the results. For
low noise levels (Figures 2(a)-(c)), the LLC mapping found is even better
than that found by LLE: there is less skew.

However, LLC is extremely sensitive to noise. When the local noise level is
increased, mappings quickly become very poor (Figures 2(d)-(f)). The same
holds when just a few outliers (10, i.e. just 2%) are added (Figures 2(g)-(i)).
Note that LLC is far more sensitive to outliers than LLE, for which results
are shown in the same figure. This non-robustness of LLC may be alleviated
by employing more robust methods of fitting mixtures of subspaces. This
will be addressed in Section 3.

2.3.2 Rotating face images

In a larger experiment, the face data set used in Figure 1 was embedded
using LLC, both randomly initialised and initialised by k-means. However,
initialisation by k-means never led to convergence, so these results are not
reported. Results for various values of k are shown in Figure 3. The subspace
mixture models were regularised using the value found by LLE; all other
settings were kept the same as before.

Note that LLC at first glance gives good embeddings, in that the data is
“spread out” over the 2D plane. However, careful inspection shows that it
not unfolded the manifold completely (in contrast to LLE). For example, if
the face is traced around the edge the manifold, it is nowhere facing upwards;
this indicates that these images must have been mapped somewhere inside
the convex hull of the overall mapped data set. It seems that even for this
(non-noisy) data set, LLC is harder to apply than LLE.

3 A robust subspace mixture model

In this section, the problem of robustness to outliers will be addressed. First,
an overview of probabilistic subspace models will be given in Section 3.1 and
the algorithm for fitting a mixture of PCA subspaces will be discussed in
Section 3.2. Inspired by recent developments in statistics [20], a mixture of
subspace t-distributions will be proposed in Section 3.4. This method can
be shown to be much more robust against outliers than methods based on
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Figure 2: 500 samples on a 3D sine wave (left column) mapped to 2D using
LLC (middle column) and LLE (right column). (a)-(c) with added Gaussian
noise, σ = 0.01. (d)-(f) with added Gaussian noise, σ = 0.025. (g)-(i) with
added Gaussian noise, σ = 0.01 and 10 uniformly distributed outliers. Other
parameters: k = 6, q = 15, m = 2, rLLE automatic, rPCA = 0.
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LLC, k = 10

(a)

LLC, k = 30

(b)

LLC, k = 50

(c)

LLC, k = 70

(d)

Figure 3: A set of 2000 face images, mapped down to 2D using LLC with
randomly initialiased MPPCA, for various values of k. Before applying LLC,
a global PCA mapping was used to reduce the number of dimensions to 100.
Other parameters: q = 25, m = 2, automatic regularisation.
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Gaussian densities. Its usefulness will be demonstrated on a toy example and
a real-world problem in Section 3.5.

3.1 Probabilistic subspace models

The two main models for mixtures of subspaces are mixtures of probabilistic
principal component analysers (PPCA, [28]) and mixtures of factor analysers
(FA, [9]). Both are based on a subspace model in which an observed variable
x ∈ Rd is generated by a some low-dimensional variable s ∈ Rm, where
typically m � d:

x = As + µ + ε (8)

The low-dimensional variable is thus shifted w.r.t. to the center µ of the
subspace, mapped into the high-dimensional space by a projection operator
A, and i.i.d. Gaussian noise ε is added. The distributions of the variables
are:

p(s) = N(s;0, I) (9)

p(ε) = N(ε;0,Ψ) (10)

p(x|s) = N(x;As + µ,Ψ) (11)

As both p(s) and p(x|s) are Gaussian, the marginal distribution of x will be
so as well:

p(x) =

∫
p(x|s)p(s)ds (12)

whose mean and covariance matrix can easily be found from (8):

E(x) = µ and E(xxT ) = AE(ssT )AT + Ψ = AAT + Ψ (13)

i.e., x is distributed as:

p(x) = N(x; µ,AAT + Ψ) (14)

The difference between principal component analysis and factor analysis
lies in the assumed noise model. FA assumes Ψ to be a diagonal matrix,
whereas PPCA assumes Ψ to be a multiple of the identity matrix, σ2I. FA
thus models the individual noise level in each of the dimensions (i.e. pixels,
for image data), PPCA assumes all dimensions have an equal noise level.
In this paper, only PPCA will be discussed; however, all observations are
equally applicable to FA.
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3.2 Mixtures of PPCAs (MPPCA)

Tipping and Bishop [28] derived an EM algorithm for maximum likelihood
learning of a mixture of k PPCA’s. It will be summarised here in enough
detail to allow the reader to understand the effects of using a different density
model later on; for a more detailed derivation, see the original paper. The
probability of observing a sample x under a mixture model with k models is:
is given by:

p(x) =
k∑

j=1

πjp(x|j) (15)

where the πj are mixing parameters, for which
∑k

j=1πj = 1, and p(x|j) is the
probability of x under model j given by (14). The log-likelihood of observing
a data set X = {x1, . . . ,xn} is:

L(X) = log
n∏

i=1

p(xi) =
n∑

i=1

log
k∑

j=1

πjp(xi|j) (16)

To maximise (16) w.r.t. the parameters {πj, µj,Aj, σ
2
j}, j = 1, . . . , k, a hid-

den indicator variable zij is introduced, which is 1 when sample xi is gener-
ated by model j, and 0 otherwise; the mixing parameters πj are then equal
to p(zij = 1). The complete-data distribution can now be written as:

p(x, s, z) =
n∏

i=1

p(xi|si, zi)p(si|zi)p(zi) =
n∏

i=1

k∏
j=1

[πjp(xi|si, j)p(si|j)]zij (17)

where n is the number of samples in the dataset, p(xi|si, j) and p(si|j) are
given by (11) and (9), respectively, and p(·|j) is short for p(·|zij = 1).

The EM algorithm uses the fact that the maximum of the log of (17) can
easily be found analytically, to maximise (16) w.r.t. the parameters [19]. The
M step of the EM algorithm for mixtures of PPCAs [28] actually consists of
two steps: in the first, only the mixing parameters πj and the means µj are
updated; in the second, new values for the Aj and σ2

j are found. Combined,
this gives:

• E step: for all i and j, calculate the posterior responsibility of each
model for each sample, i.e. the expectation of zij:

rij = E(zij) =
πjp(xi|j)

p(xi)
=

πjp(xi|j)∑k
l=1 πlp(xi|l)

(18)
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• M step: for all j, update the estimates of the parameters (a prime
indicating new parameters):

π′
j =

1

n

n∑
i=1

rij and µj
′ =

∑n
i=1rijxi∑n
i=1rij

(19)

The per-model weighted sample covariance matrix S′
j,

Sj
′ =

∑n
i=1rij(xi − µj

′)(xi − µj
′)T∑n

i=1rij

(20)

can then be used to find A′
j and σ2

j
′
, using normal eigendecomposition:

A′
j = Ej(Λj − σ2

j
′
I)

1
2 and σ2

j
′
=

1

d−m

d∑
l=m+1

λl (21)

where Λj contains the m leading eigenvalues of Sj
′ on its diagonal, Ej

the corresponding eigenvectors, and the λj
l are the trailing eigenvalues.

Tipping and Bishop actually describe a faster version of the EM algorithm
as well, updating Aj and σ2

j iteratively. However, this still uses just Sj
′.

3.3 Lack of robustness

The mixture model described above is clearly a mixture of Gaussians, in
which the covariance matrices are restricted to a specific form, controlled by
the parameter m. Although the Gaussian distribution is mathematically el-
egant and allows one to derive the EM algorithm above, it is not necessarily
optimal for manifold learning. The problem is that it may assign high prob-
ability to large empty volumes in space, in the presence of a few outliers.
This is illustrated in Figure 5(a)-(c) for a simple 2D problem, where 200
samples are distributed along 2 1D curves, with some added Gaussian noise.
When just a few uniformly distributed outliers are present, one or more of the
Gaussians are used to model these. The resulting model no longer describes
the manifolds well.

What is needed for cases such as these is a more robust mixture model.
There has recently been interest in the vision and statistics communities in
modelling single subspaces more robustly (e.g. [4, 18]), as manifold learning
is applied to increasingly more problems1. However, many of the proposed

1Note that not all robust approaches are only concerned with ignoring outliers; some
also aim at being robust against outlying pixel values [5, 25]. However, we believe factor
analysis (FA) can be used quite effectively to model noise in individual pixels, also in the
framework proposed in this paper.

12



techniques are cumbersome, iterative, take a large amount of computation
or are not applicable in a mixture model.

We propose that for manifold learning, finding an exact local PCA solu-
tion is not necessary, as long as the main axes of the densities are aligned
with the manifold. Then, more robust densities can be used in the mixture,
resulting in models that will mainly assign high probability to samples on
the manifold. From the statistics literature, there is a wide range of possible
robust approaches (see e.g. [12]). A simple solution in mixture modelling con-
sists of adding a uniform density into the mixture to capture the outliers. The
problem with this approach is that the range over which this uniform distri-
bution is defined will have to be set, which is not trivial in high-dimensional
spaces. Another interesting approach is to use two Gaussian components per
model in the mixture:

p(x) = (1− c)N(x; µ,C) + cN(x; µ, αC) (22)

Here, the second Gaussian is used to model outliers. Obviously, this leads to
the question how to set or learn α. Below, a generalised and more elegant
implementation of this idea, using the t-distribution, will be discussed.

3.4 Mixtures of t-distributed subspaces (MTS)

A recent development in the statistics community is that of a mixture of
t-distributions [20]. The motivation is as follows: a generalisation of the
two-component normal mixture model (22) is the normal scale model, where

p(x) =

∫
N(x; µ, u−1C)dH(u) (23)

This is identical to (22) when H is a pdf with H(1) = 1− c, H(1
c
) = c and 0

elsewhere. If, however, H is replaced by a χ2 pdf with ν degrees of freedom,
with a gamma prior on u of p(u) = γ(u; ν/2, 2/ν), the resulting distribution
is a t-distribution [14, 19, 20]. Here,

γ(u; α, θ) = uα−1 exp(−uθ−1)Γ(α)−1θ−α (24)

The t-distribution is a heavier-tailed alternative to the Gaussian, with
an additional parameter ν, the degrees of freedom. The pdf of a random
variable x with a multivariate t-distribution is given by:

t(x; µ,C, ν) = (πν)−
d
2 Γ

(
ν + d

2

)
Γ
(ν

2

)−1

(
(x− µ)TC−1(x− µ) + 1

)− ν+d
2 (25)
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Figure 4: (a) The convolution of two Gaussians N(x; µ, σ2) is itself a Gaus-
sian; (b) in general, the convolution of two t-pdfs t(x; µ, σ2, ν) is not a t-pdf,
however (c) for small σ2 it approximates it well.

where Γ is the Gamma function, µ is the mean and C the covariance matrix.
For ν →∞, the t-distribution becomes a Gaussian distribution.

The key element in deriving the EM algorithm for mixtures of PPCA was
that the convolution of two Gaussians is itself a Gaussian; this was used to
derive (14). For t-distributions, the convolution of

p(x|s) = t(x;As + µ, σ2I) and p(s) = t(s;0, I) (26)

is not necessarily a t-distribution. However, it is to good approximation for
large ν (as the t-distribution becomes like a Gaussian) or for small σ2 in
(26). The latter is a consequence of the fact that for small σ2, convolution
with a Gaussian will approximate convolution with a delta function, as is
illustrated in Figure 4 for the univariate case.

In manifold learning, one will typically observe small values of σ2 (pro-
vided the manifold dimensionality is chosen correctly). Approximately, then:

p(xi|j) ≈ t(xi; µj,AjAj
T + σ2

j I, νj) (27)

This allows us to use the EM algorithm derived for mixtures of constrained
Gaussians above, and apply it to a mixture of constrained t-distributions.
Again, a full derivation is not given; please see [20] for more information.

In using the EM algorithm to maximise (16) when a mixture of t-
distributions is used, a new hidden variable uij is introduced. If xi belongs
to model j (i.e. zij = 1), then:

p(xi|si, uij, j) = N(xi;Asi + µj, u
−1
ij Ψj) (28)

Intuitively, uij is the weight assigned by model j to sample xi: outliers will be
given low weight, and hence be described by a Gaussian with high covariance
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matrix elements. As above, given model j, the uij are assumed independently
distributed according to a gamma distribution,

p(uij|j) = γ(uij; νj/2, 2/νj) (29)

The complete-data distribution becomes:

p(x, s, z,u) =
n∏

i=1

p(xi|si,ui, zi)p(si|ui, zi)p(ui|zi)p(zi)

=
n∏

i=1

k∏
j=1

[πjp(xi|si, j, uij, j)p(si|uij, j)p(uij|j)]zij (30)

with p(xi|si, uij, j) given by (28), p(si|uij, j) = N(0, u−1
ij I) and p(uij|j) given

by (29).
The EM algorithm maximising (16) w.r.t. the parameters consist of:

• E step: for all i and j, calculate rij according to (18), and

uij =
νj + d

νj + (xi − µj)T (AjAj
T + σ2

j I)
−1(xi − µj)

(31)

• M step: for all j, re-estimate the π′
js as in (19) and

µj
′ =

∑n
i=1rijuijxi∑n
i=1rijuij

and Sj
′ =

∑n
i=1rijuij(xi − µj

′)(xi − µj
′)T∑n

i=1rij

(32)

Sj
′ can then be used to find Aj

′ and σ2
j
′
using normal eigendecomposi-

tion as in (21), or it can be used in Tipping and Bishop’s faster version
of the algorithm.

The only parameters not re-estimated yet in the M step are the νj’s. Follow-
ing [20], they can be updated by equating the derivative of all terms involving
νj in the log-likelihood to zero. A solution can then be found using a nonlin-
ear solver. However, in all experiments in this paper νj was fixed at 2, ∀j, as
we are specifically interested in robust manifold learning (for more discussion
on this, see Sections 3.5.1 and 5).

It is easy to see that the changes this EM algorithm introduces w.r.t. that
outlined in Section 3.2 are minimal. An additional weight uij is calculated
for each sample xi and model j, which is used to re-estimate the means and
sample covariance matrices robustly. Besides the actual model, a useful extra
output of this algorithm are exactly these weights, which for outliers will be
low.
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3.5 Experiments

3.5.1 Density estimation

Figure 5 demonstrates the robustness of the proposed mixture of t-subspaces
on a toy data set. The data was sampled from 2 semicircles, with some added
Gaussian noise. To these 200 samples q uniformly distributed noise samples
were added. Mixtures of PPCAs (MPPCA) with k = 6, m = 1 and mixtures
of t-distributed subspaces (MTS) with identical settings were trained on this
set. For the MTS, νj was fixed at 2, ∀j.

For q = 0, i.e. when no noise is added, both methods give more or less
similar results. The likelihood of the MPPCA model is slightly higher than
that of the MTS model. Note that MTS tends to assign low probability
to samples at the “edges” of the manifolds; this is due to the fact that the
within-subspace probability model is t-distributed as well. Samples lying
along the main axes of a subspace, but far away from its mean, will therefore
be assigned low weight uij.

When outliers are added, MPPCA loses the manifold structure quite
quickly. Already when q = 10, i.e. a fraction of outliers of 5%, 1 of the
6 PPCA models is used to model these. For 50% outliers, the manifold
structure is lost completely. MTS is more robust: although the quality of
the density estimate along the manifold deteriorates, it manages to down-
weight the outliers. Furthermore, the likelihood of the MTS becomes higher
than that of the MPPCA.

The results obtained in Figures 5(d)-(f) were obtained when νj was fixed
to 2, for all models. If νj is set higher, robustness is gradually lost; Figure 5(g)
illustrates this for higher settings (here νj was fixed at 5). When νj is learned,
after initialisation at 5, the result (Figure 5(h)) is nearly as poor as that of
MPPCA.

3.5.2 Handwritten digit recognition

The MPPCA and MTS models were also compared on a classification prob-
lem, handwritten digit recognition. The database used was a pre-processed
version of the NIST database. The original NIST database digits [30] were
resized to 16 × 16 pixel images (preserving the aspect ratio), put upright,
normalised for pencil-width and rescaled in grey value to [−1, 1] [6]. A data
set of 1000 training samples per class was thus created, as well as a test set
containing 1000 samples per class.

Global principal component analysis on the training set left 51 dimen-
sions. In this 51D space, mixture models were trained on each individual
digit, for various settings of the number of subspaces, k, and the number
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(a) q = 0, L = −882 (b) q = 10, L = −998 (c) q = 100, L = −1683

(d) q = 0, L = −910 (e) q = 10, L = −1000 (f) q = 100, L = −1642

(g) q = 100, L = −1634 (h) q = 100, L = −1664

Figure 5: Density estimates on a simple 2D toy dataset of 200 samples dis-
tributed along 2 1D curves, with some added Gaussian noise and q added
uniformly distributed noise samples: (a)-(c) MPPCA, (d)-(f) MTS (both
k = 6, m = 1). (g) MTS with νj fixed at 5, ∀j. (h) Same, but with νj

initialised at 5, ∀j, and optimised by the EM algorithm. For the latter, after
training the νj’s ranged between 18.8 and 20.6. All runs of the EM algorithm
were randomly initialised.
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m = 4 8 12 16 20

k = 2 4.23 (0.10) 3.42 (0.07) 2.94 (0.04) 2.79 (0.08) 2.64 (0.05)
4 3.36 (0.15) 2.54 (0.09) 2.27 (0.10) 2.31 (0.11) 2.34 (0.11)
8 3.14 (0.14) 2.50 (0.08) 2.57 (0.13) 2.81 (0.24) 4.00 (2.99)

12 4.09 (3.03) 3.66 (2.99) 4.08 (2.95) 3.50 (0.12) 3.87 (0.20)
16 5.93 (6.31) 3.94 (2.97) 4.48 (3.05) 5.16 (2.99) 5.07 (0.52)

(a)

m = 4 8 12 16 20

k = 2 4.48 (0.09) 3.03 (0.09) 2.56 (0.06) 2.55 (0.02) 2.70 (0.05)
4 3.21 (0.08) 2.39 (0.08) 2.14 (0.05) 2.02 (0.10) 2.18 (0.06)
8 2.67 (0.13) 2.13 (0.08) 2.02 (0.13) 1.89 (0.12) 2.15 (0.12)

12 2.36 (0.12) 2.02 (0.08) 2.20 (0.59) 2.08 (0.18) 2.25 (0.20)
16 2.54 (0.62) 2.09 (0.11) 2.31 (0.40) 2.41 (0.29) 2.58 (0.27)

(b)

Table 1: Performance of (a) MPPCA and (b) MTS models with different set-
tings for the number of subspaces k and number of dimensions per subspace,
m. Numbers are % error on a test set, average and standard deviation over
10 different initialisations of the algorithm.

of dimensions per subspace, m. All experiments were repeated for 10 dif-
ferent initialisations, by the k-means algorithm. The covariance matrices
Cj = AjAj

T + σ2
j I found in each iteration of the EM algorithm were reg-

ularised by adding 10−3I, to prevent the likelihood from becoming infinite.
For the MTS models, the νj’s were fixed at 2; no attempt has been made
to optimise this setting. Table 1 presents the classification results obtained
using MPPCA and MTS models, obtained by Bayesian classification using
the densities found for each digit.

The table demonstrates that the proposed MTS models perform slightly
better, for individual settings of k and m, than MPPCA models. The min-
imum error reached is also lower, at 1.89% vs. 2.27%. Another interesting
observation is that, where MPPCA has a clear optimal model for k = 4 and
m = 12− 16, MTS performance decreases more gracefully with different pa-
rameter settings. Even for very large models (e.g. k = 16, m = 20) the error
is only 2.58%, as compared to 5.07% for MPPCA. This clearly indicates that
MTS is less likely to assign high probability to regions that do not contain
data.

The MTS models not only give better performance, but also a slightly
higher likelihood on both the training set and the test set, although with
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Figure 6: Average log-likelihood of (a) the training set and (b) the test
set over 10 experiments, per digit, for MPPCA and MTS models (k = 4,
m = 12). Error bars indicate standard deviation. (c)-(f) Histograms of∑k

j=1 uij for MTS models (k = 4, m = 12) trained on digits “5”, “7”, “8”
and “9”. Images above the histogram indicate typical images having weights
directly below.
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fixed νj’s they have the same number of free parameters as MPPCA models.
This is illustrated in Figure 6(a)-(b). The difference is largest for digits with
little natural variation in appearance, i.e. digits “0”, “1”, “4”, “7” and “9”.
For digits with a larger amount of variation the likelihood difference is not
as pronounced. This indicates that MPPCA tends to over-estimate variance
due to the presence of outliers; in other words, by assigning low weight to
outliers, MTS obtains a tighter fit around the manifold, while not overfitting.

Finally, Figures 6(c)-(f) show some histograms of
∑k

j=1 uij, the cumu-
lative weight assigned to samples by an MTS mixture with k = 4,m = 12.
Outliers have been correctly given low weight, and “prototypical” digits have
been given high weight. Simple thresholding of the cumulative weight makes
for an easy outlier removal procedure.

4 Robust manifold learning

4.1 Robust locally linear coordination (RLLC)

The robust subspace mixture model developed above can be applied in LLC.
However, it will not directly lead to good results. Figures 7(a)-(c) show what
happens when the MPPCA used before is replaced by an MTS (compare to
Figure 2). Although the result it slightly better, the left edge is still “curled
up”. To see why this should be the case, note that there are two effects which
may lead to poor embeddings when outliers are present:

• the mixture-of-subspaces may be fitted poorly, which for MTS is much
less of a problem than for MPPCA;

• all samples, outlier or not, are still treated equally in the LLE step of
the LLC algorithm.

The last point is caused by the fact that, although LLC takes the responsi-
bilites into account, these are still normalised to sum to 1. So, even though
a sample might be ill-represented by any model, it will still play as large a
role in the reconstruction as any other sample.

One way to ignore samples in the reconstruction is to remove (or down-
weight) their connection to the other samples. In other words, if a sample
is reliable (an inlier), it should be reconstructed by its neighbours; if it is
unreliable (an outlier), it should be reconstructed only by itself. This means
outliers can be mapped anywhere, as they will have no influence on the map-
ping of other samples.

Given a reliability measure fi for each sample xi, 0 ≤ fi ≤ 1 (where
a value of 1 indicates a reliable sample), the second step of LLE (2) thus
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changes to minimising:

εII(Y) =
n∑

i=1

‖ yi −

[
(1− fi)yi + fi

q∑
j=1

WiΩij
yΩij

]
‖2

=
n∑

i=1

‖ fiyi − fi

q∑
j=1

WiΩij
yΩij

‖2

=
n∑

i=1

f 2
i ‖ yi −

q∑
j=1

WiΩij
yΩij

‖2 (33)

or, in matrix terms,

εII(Y) = tr
(
YTFT (I−W)T (I−W)FY

)
(34)

where F contains the fi’s on its diagonal and zeroes elsewhere. In the same
way, for LLC expression (7) changes to minimising:

tr
(
PTFTGFP

)
(35)

with the same constraints as before: 1
n
1TUP = 0, 1

n
PTUTUP = PTHP = I.

An outcome of the MTS model is, for each sample, the set of weights
assigned to it by each of the models, uij. The total weight

∑k
j=1 uij can

therefore be seen as an unnormalised, global measure of reliability, where
high values indicate reliable samples. This value can easily be normalised by
using a transformation, e.g.,

fi = 1− exp

(
−

k∑
j=1

uij

)
(36)

to fit the description of the reliability measure needed. Ofcourse, once any
mixture model (e.g. an MPPCA) is fitted, the estimated probability p(xi)
could also be used as a reliability measure. However, the model fit itself still
needs to be robust, and with MTS the weight measure comes for free.

Summing up, a robust LLC can be obtained by:

• fitting an MTS instead of an MPPCA model;

• using the resulting weights as reliabilities (36) in minimising (35).

This version of LLC will be called robust LLC, or RLLC.
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4.2 Experiments

4.2.1 3D toy data

RLLC was applied to the 3D sine-wave data set used before. The result
is shown in Figures 7(d)-(f). Obviously, the embedding is better than that
using unweighted LLE (Figures 7(a)-(c)) and, again, better than ordinary
LLE. Outliers are mapped randomly in the embedded space, but do not
distort the mapping of the real manifold.

RLLC can handle higher noise levels than ordinary LLC, but still breaks
down earlier than ordinary LLE does. This is illustrated in Figure 8. For
a moderate noise level (25 points, i.e. 5%) LLC still finds a good mapping.
However, for 50 points (10%) the mapping can be good, but can also come
out bad (the folded mapping of Figure 8(h)) for different realisations of the
noise. For this noise level, ordinary LLE manages to find a mapping which,
though highly skewed, is still recognisable as a 2D manifold.

Different parameter settings may, ofcourse, lead to better results. For this
example however, changing k is not really an option: if it is set too small (i.e.
k ≤ 4) the manifold structure will be lost; if it is set too large (i.e. k ≥ 8),
one or more models will start fitting noise. It was decided not to change
other parameters, such as the regularisation parameters rLLE and rPCA, as
this does not reflect what one would do in practical problems.

4.2.2 Rotating face images

Finally, RLLC was applied to the face data set. It gave better results (Fig-
ures 9-10) than ordinary LLC, in that the manifold seems to have been
unfolded. Only for small values of k, e.g. k = 10, there still seems to be some
folding at the edges (indicated by the more dense areas in the mapping).

Unlike for LLC, for RLLC k-means initialisation was feasible. For larger
k it does not seem to have much influence; only for k = 10 is the result
slightly different.

5 Conclusions

This paper discussed global manifold learning by locally linear coordination
(LLC). This method is an interesting combination of fitting a mixture of local
subspace models and an embedding procedure. LLC solves two problems at
once: the computational problems of locally linear embedding, and the lack
of a global mapping of a mixture of subspaces. However, it was shown to be
highly sensitive to the presence of outliers.
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Figure 7: 500 samples on a 3D sine wave with added Gaussian noise, σ = 0.01
and 10 uniform outliers (left column) mapped to 2D using (R)LLC based on
MTS (middle column) and LLE (right column). (a)-(c) LLC. (d)-(f) RLLC.
Other parameters: k = 6, q = 15, m = 2, rLLE automatic, rMTS = 0, ν = 2.

A method for robust manifold learning by EM was then presented, based
on earlier work on mixtures of probabilistic PCA subspaces and mixtures
of t-distributions. It is less suitable for density estimation in the absence
of outliers, as it tends to ignore the “edges” of the data set. However, in
the presence of outliers, it is much more robust than mixtures of PCA sub-
spaces. As a consequence, it is useful for description and classification of
high-dimensional data, such as images. The model was compared to mix-
tures of probabilistic PCAs on a handwritten digit recognition problem, and
was shown to give good results.

Finally, this robust subspace mixture model was applied in a reformula-
tion of LLC, in which individual samples are weighted by their reliability.
The resulting robust LLC (RLLC) was demonstrated to give better results
than ordinary LLC, even on data sets in which no obvious outliers were
present.
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Figure 8: 500 samples on a 3D sine wave with added Gaussian noise, σ = 0.01
(left column) mapped to 2D using RLLC (middle column) and LLE (right
column). (a)-(c) With 25 uniform outliers. (d)-(f) With 50 uniform (g)-(i)
Same, with different initialisation. Other parameters: k = 6, q = 15, m = 2,
rLLE automatic, rMTS = 0, ν = 2.
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RLLC, k = 10

(a)

RLLC, k = 30

(b)

RLLC, k = 50

(c)

RLLC, k = 70

(d)

Figure 9: A set of 2000 face images, mapped down to 2D using RLLC with
randomly initialised MTS, for various values of k. Before applying LLC, a
global PCA mapping was used to reduce the number of dimensions to 100.
Other parameters: q = 25, m = 2, rLLE automatic, rMTS = rLLE, ν = 2.
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Figure 10: A set of 2000 face images, mapped down to 2D using RLLC with
k-means initialised MTS, for various values of k. Before applying LLC, a
global PCA mapping was used to reduce the number of dimensions to 100.
Other parameters: q = 25, m = 2, rLLE automatic, rMTS = rLLE, ν = 2.
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In future work, we intend to investigate how to set ν in an optimal way.
Experiments showed that optimising it by maximum likelihood makes the
method as a whole less robust. However, the choice of ν = 2 in the experi-
ments, while leading to good results, is rather arbitrary. Another interesting
question is whether it will be feasible to use different in-subspace and out-of-
subspace models, i.e. a Gaussian distribution for the latent variable s coupled
with a t-distribution for the noise ε. This might improve performance of MTS
as a robust density estimator. A final interesting aspect is the small sample
size behaviour of the various methods, which for many real-world applications
is very important.
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