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Abstract We propose a technique for a training set ap
proximation and its usage in kernel methods. The approa
aims to represent data in a low dimensional space with po
sibly minimal representation error which is similar to the
Principal Component Analysis (PCA). In contrast to th
PCA, the basis vectors of the low dimensional space used
data representation are properly selected vectors from t
training set and not as their linear combinations. The bas
vectors can be selected by a simple algorithm which has lo
computational requirements and allows on-line processin
of huge data sets. The proposed method was used to
proximate training sets of the Support Vector Machines an
Kernel Fisher Linear Discriminant which are known metho
for learning classifiers. The experiments show that the pr
posed approximation can significantly reduce the complex
of the found classifiers (the number of the support vecto
while retaining their accuracy.

1 Introduction

The kernel methods have become a fast developing bran
of machine learning and pattern recognition in several pa
years. The kernel methods use kernel functions to perfo
the feature space straightening effectively. This techniq
allows to exploit established theory behind the linear a
gorithms to design their non-linear counterparts. The re
resentatives of these methods are for instance the Supp
Vector Machines (SVM) [12] and the Kernel Fisher Linear
Discriminant (KFLD) [5] which serve as classifier design o
Kernel Principal Component Analysis (KPCA) [11] useful
for non-linear feature extraction. The kernel learning met
ods are generally characterized by the following propertie

• The training dataX = [x1, . . . ,xn], xi ∈ X are trans-
formed by a functionφ:X → F to a new high dimen-
sional feature spaceF . We denote the set of training
data transformed to the high dimensional spaceF as
F = [φ(x1), . . . , φ(xn)].

• The solution found is linear in the feature spaceF , i.e.
the functionf(x) = wT · φ(x) + b we search for is
characterized by a vectorw ∈ F and a scalarb ∈ <.

• The kernel functionsk:X × X → < which corresponds
to the dot products of non-linearly mapped data, i.e
r

-

)
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k(xi,xj) = φ(xi)T · φ(xj), are used to avoid prob-
lems of high dimensionality of the spaceF . This implies
that the algorithm must use the dot products of trainin
data only. The matrix of all dot products in the spaceF
is denoted as the kernel matrixK(i, j) = k(xi,xj) and
it is of size[n× n].

• The solution found is expressed in terms of kernel expa
sionf(x) =

∑n
i=1 αik(x,xi)+b, whereαi, i = 1, ..., n

are real coefficients which determine the vectorw ∈ F
as a linear combination of transformed training data, i.e
w =

∑n
i=1 αiφ(xi).

When using the kernel method the following problems ca
be encountered:

• The storage of the training data in terms of the dot pro
ucts is too expensive since the size of kernel matrixK
increases quadratically with the number of training dat

• The computation of the kernel functionsk(xi,xj) is ex-
pensive.

• The solution which is expressed as a kernel expansi
f(x) =

∑n
i=1 αik(xi,x) + b is not sparse, i.e., many

coefficientsαi are nonzero. This situation can occurs fo
instance in the SVM when the number of support vecto
is huge or in the KFLD and the KPCA, since there is th
solution expressed using all training data. The non-spa
solution implies an expensive evaluation of the functio
f(x) (e.g., slow classification or feature extraction).

Several approaches to the problem of non-sparse k
nel expansion were proposed. These methods are ba
on approximating the found solution, e.g., the reduced s
method [2, 10] or the method by Osuna et. al [7].

We propose a new solution to the problems mention
above which is based on approximating the training set
the non-linear kernel spaceF .

The novel approach will be described in Section2. The
application of the proposed approach to the SVM and KLF
is described in Section4. The experiments performed are
mentioned in Section5 and Section6 concludes the paper.

2 Training set approximation

The transformed training dataF = [φ(x1), . . . , φ(xn)] live
in a subspacespan(F) ⊆ F . Let us suppose that we have a
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finite setXr = [r1, . . . , rm], ri ∈ X , m < n, and its image
in the feature spaceF , i.e, the setFr = [φ(r1), . . . , φ(rm)].
Let us also suppose that the vectorsφ(ri) are linearly in-
dependent and so that they form a basis of linear subsp
span(Fr) ⊆ F . We aim to express the transformed train
ing dataF using linear basis defined by the setFr. A
method how to properly select the setXr is described in
the sequel. TheF′ = [φ(x1)′, . . . , φ(xn)′] will denote a
set of approximations of vectorsF = [φ(x1), . . . , φ(xn)]
which will be computed as minimal square error projection
on the subspacespan(Fr). It means that the approximation
φ(x)′ ∈ F′ of a vectorφ(x) ∈ F is expressed as a linear
combination of vectors ofFr, i.e.,φ(x)′ = Fr · β (we used
matrix notation). The vectorβ contains real coefficients of
linear combination and it is computed as

β = argmin
β′

(φ(x)− Fr · β′)T · (φ(x)− Fr · β′) .

The well known analytical solution of this problem is

β = (Fr
T · Fr)−1 · Fr

T · φ(x). (1)

The solution forβ in the terms of dot product has form

β = Kr
−1 · kr(x) , (2)

where x ∈ X is a vector to be approximated,Kr =
Fr

T · Fr is a kernel matrix[m × m] of vectors from the
set Xr and kr(x) is a vector[m × 1] containing values
of kernel functions ofx and r ∈ Xr, i.e., kr(x) =
[k(x, r1), . . . , k(x, rm)]. We denoteβi the vector which
contains coefficients computed for a vectorxi ∈ X. Thus
the approximated value of kernel function of training vecto
xi, xj ∈ X is computed as

k′(xi,xj) = (φ(xi)′)T · φ(xj)′

= (Fr · βi)T · (Fr · βj)
= βi

T ·Kr · βj .

Since the kernel matrixKr [m×m] is positive definite (Fr

contains linearly independent vectors) it can be decompos
by the Choleski factorization asKr = RT ·R, where ma-
trix R is an upper triangular matrix. We can simplify the
computation of the approximated kernel function as

k′(xi,xj) = βi
T ·RT ·R · βj = γi

T · γj , (3)

i.e., a dot product of vectorsγi andγj . Now, we can repre-
sent the training setX mapped to the non-linear spaceF by
a matrixΓ = [γ1, . . . ,γn] of size[m×n] instead of the ker-
nel matrixK [n× n], wherem is the number of vectorsFr

used to approximate subspacespan(F) andn is the num-
ber of training vectors. When we putFr = F thenm = n
and we always obtain the perfect approximation without e
ror, i.e.,k(xi,xj) = k′(xi,xj). The perfect approxima-
tion is obtained ifspan(Fr) = span(F), which can occur
even if m < n, for instance when the number of training
data is high and the data are linearly dependent in the sp
F . However, even ifspan(Fr) 6= span(F) (actually we
always selectFr such thatspan(Fr) ⊆ span(F) as will be
e

d

e

explained in the sequel) we can obtain a good approximati
as experiments show (see below). Let us mention thatγ is
just expression of the vectorφ(x)′ = Fr ·β in the orthonor-
mal basis (columns of matrixR are basis vectors) of the
subspacespan(Fr). The next section describes an approac
how to select vectors of the setXr used for approximation.

3 Algorithm

Let se(x) denote an approximation error of non-linearly
mapped the training vectorφ(x) which is defined as

se(x) = (φ(x)− φ(x)′)T · (φ(x)− φ(x)′)
= (φ(x)− Fr · β)T · (φ(x)− Fr · β)
= k(x,x)− 2kr(x)T · β + βT ·Kr · β

We propose to use a simple greedy algorithm which iter
tively adds the vectors with the highestse(x) to the setXr

and iterates until the prescribed limit on the approximatio
error is achieved, i.e.,se(x) < ε, ∀x ∈ X, or until al-
lowed sizem (our limitations on memory) of the setXr is
achieved. Such algorithm can look as follows:

Algorithm 1: Training set approximation

1. Initialize theXr = [r], wherer is a randomly selected
vectorx ∈ X.

2. Iterate while the size ofXr is less thanm:

• Computese(x) = k(x,x)−2kr(x)T ·β+βT ·Kr ·β
for all training vectors which are not yet included
in Xr, i.e., x ∈ X \ Xr. It requires to compute
β = Kr

−1 · kr(x) whereKr is a kernel matrix of
the current setXr.

• If maxx∈X\Xr
se(x) < ε then exit the algorithm else

insert thex = argmaxx∈X\Xr
se(x) to the setXr

and continue iterations.

The result of the Algorithm 1 is a subsetXr ⊆ X which
contains the basis vectors as well as the matrixKr

−1 useful
to compute the new representation of data using (2).

When using Sherman-Woodbury formula [3] for matrix
inverseKr

−1 then the computationally complexity of the
algorithm isO(nm3). The Algorithm 1 does not only min-
imize the approximation errorse(x) but it also minimizes
the mean square error

mse =
n∑

i=1

(φ(xi)−φ(xi)′)T ·(φ(xi)−φ(xi)′) =
n∑

i=1

se(xi)

since it minimizes the upper bound

mse ≤ (n−m) min
x∈Xr

se(x) .

However, the approximation set found is not ensured to
the optimal one. To find the optimal approximation set on
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possibilities which is compu-

tationally infeasible.
Let us mention the connection to the classical Princip

Component Analysis (PCA) or Kernel Principal Componen
Analysis (KPCA) [11], which exactly minimizes the mean
square errormse. However, the basis vectors are linear com
binations of all the training data which means that the KPC
requires all training data to represent solution. The bas
vectors found by the proposed method are selected vect
from the training set which is more convenient for kerne
methods. Moreover, the proposed Algorithm 1 allows on
line processing of data. On the other hand, the Algorithm
finds only approximate solution.

Let us note that the found basis vectors can be orthog
nalized on-line using well known Gram-Schmidt procedur
or using the Choleski factorization which we used as d
scribed above (3).

4 Applications of training set approximation

In the following subsections we show how to use the pr
posed method for learning the Support Vector Machin
(SVM) and Kernel Fisher Linear Discriminant (KFLD).

4.1 Approximation of SVM

The Sequential Minimal Optimizer [8] is a representative
of the algorithms solving the SVM quadratic optimization
problem. The advantage of this algorithm is that it does n
require to store the whole kernel matrixK [n×n] but evalu-
ates kernel functionk(xi,xj) when needed. The evaluation
of the kernel functionk(xi,xj) is the bottleneck of this it-
erative algorithms. We use approximation of the training s
by the setΓ = [γ1, . . . ,γn] which requiresO(mn) mem-
ory. The approximation of value of the kernel function ca
be computed ask(xi,xj)′ = γi

T · γj , which is the dot
product of twom-dimensional vectors requiringO(m) op-
erations. By selectingm we can trade-off the precision of
approximation and the computational/memory demands.

The SVM algorithms in general find the discriminan
function in the form

f(x) =
n∑

i=1

αik(x,xi) + b =
n∑

i=1

αiφ(x)T · φ(xi) + b ,

where coefficientsαi are non-zero only for a subset of train
ing patterns. The patterns with non-zeroαi are called Sup-
port Vectors (SVs). The SVM itself yields the sparse solu
tion so that after training SVM using the training set approx
imation two cases can occur:

1. The number of SVs is less than the number of vecto
used for training set approximation, i.e.,nSV < m. In
this case, it is of advantage to use the found SVs to re
resent the discriminant functionf(x).

2. The number of SVs is higher than the number of vecto
used for training set approximation, i.e.,nSV > m. In
this case, we take the approximations of the SVs to re
resent the discriminant functionf(x) and recomputed the
multipliersαi as described bellow.
s

-

-

The SVs (training vectors withαi 6= 0) are expressed as
linear combinations of the vectorsXr used in the approxi-
mation. The discriminant functionf(x) is expressed using
the vectorsXr instead of using the SVs, i.e.,

f ′(x) =
n∑

i=1

αiφ(x)T · φ′(xi) + b

=
n∑

i=1

αiφ(x)T ·
m∑

j=1

βijφ(rj) + b

=
m∑

j=1

k(x, rj)
n∑

i=1

αiβi,j + b

=
m∑

j=1

α′
jk(x, rj) + b

where we usedβij to denote thej-th component of the vec-
tor βi. Now we can see the vectors of the setXr as a
new support vectors andα′

i as the new multipliers. Us-
ing strategy described above we always have the num
min(nSV,m) of vectors to represent the discriminant func
tion.

Let us note that it would be of advantage to use the set
SVs as the vectors approximating the training set. The re
son is that the SVs determine the SVM classifier and co
sequently these vectors should be well approximated. T
possible solution is: (i) to find the SVM classifier, (ii) to
makeXr from the found SVs and (iii) to train the SVM
classifier again.

4.2 Approximation of KFLD

The KFLD [4, 5, 6] is a non-linear extension of the clas-
sical Fisher Linear Discriminant (FLD) using the kerne
trick. Let [(x1, y1), . . . , (xn, yn)] be a training set of pat-
ternsx ∈ X and corresponding labels bey ∈ [−1,+1].
Let µ1 = 1

|i+|
∑

i∈i+
xi, µ2 = 1

|i−|
∑

i∈i−
xi denote the

mean values of patterns from the first and the second cla
respectively. Thei+ denotes set of indices of training pat
terns set with labely = +1, i− with labelsy = −1, respec-
tively. Likewise, letC1 = 1

|i+|
∑

i∈i+
(xi−µ1)·(xi−µ1)T

, C2 = 1
|i−|

∑
i∈i−

(xi − µ2) · (xi − µ2)T be covariation
matrices of the patterns from the first and the second cla
The FLD aims to find such a normal vectorw of the dis-
criminant functionf(x) = wT · x + b that maximizes the
ratio

w = argmax
w′

(w′T · (µ1 − µ2))2

w′T · (C1 + C2) ·w′ . (4)

The biasb can be found by one-dimensional search. Whe
assuming normally distributed data then the FLD yields o
timal Bayesian decision strategy. Moreover, when we a
sume equal a priori class probabilities then the biasb can
be determined directly. This is used in the experiments d
scribed below.

The extension of the FLD to the non-linear discriminan
function analysis can be done by the use of the kernel fun
tions. We search for the discriminant function of the form

f(x) =
n∑

i=1

αik(x,xi) + b =
n∑

i=1

αiφ(x)T · φ(xi) + b ,
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which is linear in the spaceF . It can be shown [4] that the
optimization criterion (4) can be rewritten as the quadratic
optimization problem

α = argmin
α

αT ·K · Z ·K ·α + CαT ·α (5)

subject to

αT ·K · e = 2 , (6)

whereK is the kernel matrix of the setX = [x1, . . . ,xn] of
training patterns,C is a regularization constant,Z = Z+ +
Z− is a matrix of size[n× n] ande = e+ + e− is a vector
[n×1]. MatricesZ+, Z− and vectorse+, e− have a simple
structure and are defined as follows:

ek(i) =
{ 1

|ik| if yi = k

0 otherwise

Zk(i, j) =


0 if (yi 6= k) ∨ (yj 6= k)

− 1
|ik|2 if (yi = yj = k) ∧ (i 6= j)

1
|ik| −

1
|ik|2 if (yi = yj = k) ∧ (i = j)

Solving the optimization problem (5) yields the kernel
FLD (KFLD). Now we apply the training set approximation
method to this problem. The idea is to adopt an addition
constrain on the solution which ensures that the solution w
lie in span(Fr). Firstly, we express the discriminant func
tion in terms of the vectorsXr = [r1, . . . , rm] used for
approximation as

f(x) =
m∑

i=1

α′
ik(x, ri) + b =

m∑
i=1

α′
iφ(x)T · φ(ri) + b .

Secondly, we approximate the condition (6) as

α′T · Fr
T · F′ · e = α′T ·Kr ·B · e = α′T ·m′ = 2 ,

where the matrixB = [β1, . . . ,βn] contains approximation
coefficients of the training data andm′ is a vector[m × 1].
Finally, we approximate the quadratic objective function o
the criterion (5) as

α′T · Fr
T · F′ · Z · F′T · Fr ·α′

= α′T ·Kr ·B · Z ·BT ·Kr ·α′

= α′T ·N′ ·α′ ,

whereN′ is a matrix[m × m]. Now we can write the ap-
proximated optimization problem

α′ = argmin
α′

α′T ·N′ ·α′ + Cα′T ·α′ (7)

subject to

α′ ·m′ = 2 ,

where we optimize with respect to the vectorα′ of size[m×
1]. Let us note, that the approximated KFLD problem (7)
requires the computation with matrix of size[m×m] which
can be considerably smaller than the matrix[n × n] of the
original problem (without approximation) (5).
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Figure 1: Comparison between the PCA and its approximatio
computed by the proposed approach. The figures show the m
square errormse of representation with respect to the number o
basis vectorsm. The assessment is done on synthetically generat
training (a)(c) and testing (b)(d) data sets withn = 100 points
(a)(b) andn = 1000 points (c)(d).

5 Experiments

The next subsections describe three experiments we p
formed to assess the proposed approach. Firstly, we tes
how well the proposed Algorithm 1 can approximate th
training set compared to the PCA which finds the optim
solution. Secondly, we tested usage of the training set a
proximation with the SVM and the KFLD learning method
on a simple synthetic problem which allows to visualize th
found solution. Thirdly, we tested the proposed approach
the standard benchmark data sets.

5.1 Comparison with the PCA on synthetic data

We used the proposed approach for data representation
compare it to the standard PCA. We used synthetic data r
domly generated according to the Gaussian distribution. W
generated training and testing data sets containingn = 100
andn = 1000 points in100-dimensional space. We mea-
sured the mean square errormse between the original data
and their representation computed by the PCA and by t
proposed approach with respect to the number of used ba
vectors. The results can be seen in Figure1. It can be seen
from the results than the proposed approach is a slightly su
optimal on the training but fully comparable on the testin
data in terms of the mean square errormse.

5.2 Training set approximation of SVM and KFLD
tested on Riply data set

We used the approach described in Section4 to find the
SVM and KFLD classifiers on the Riply [9] data set or, more
precisely, on its approximation. The Riply data sets consis
of testing and training set of2-dimensional data which can
be simply visualized. We used two kernel functions: (i) RB
with σ = 1 and (ii) polynomial of degree2. The number of
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SVM (σ=1)+Approximation (m=5)

x

y

Full SVM 
Approximation 

SVM (Poly 2)+Approximation (m=3)

x

y

Full SVM 

Approximation 

(a) (c)
SVM (σ=1)+Approximation (m=25)

x

y

Full SVM 

Approximation 

x

y
SVM (Poly 2)+Approximation (m=6)

Full SVM 

Approximation 

(b) (d)

Figure 2: Decision boundaries of the SVM classifiers found on th
full (solid line) and on the approximated (dashed line) training se
The big circles denote the data points used for approximation. F
detailed description see Table1 and the text.

RBF (σ = 1)
TrnErr TestErr nSV Fig

SVM 14.4 9.4 94 3(a)(b)
SVM+Approx (m = 5) 14.4 9.6 5 3(a)
SVM+Approx (m = 25) 14.4 9.4 25 3(b)
KLFD 14.8 10.4 250 4(a)(b)
KFLD+Approx (m = 5) 16.4 9.8 5 4(a)
KFLD+Approx (m = 25) 14.8 10.4 25 4(b)

Polynomial (d = 2)
SVM 14.0 9.9 90 3(c)(d)
SVM+Approx (m = 3) 14.4 13.5 3 3(c)
SVM+Approx (m = 6) 14.4 9.8 6 3(c)
KLFD 14.8 11.7 250 4(c)(d)
KFLD+Approx (m = 3) 13.6 10.8 3 4(c)
KFLD+Approx (m = 6) 14.8 11.8 6 4(d)

Table 1: Comparison of the SVM and the KFLD classifiers traine
on full and the approximated Riply data set.

vectors used for approximation wasm = 5 andm = 25 for
the RBF kernel andm = 3 andm = 6 for the polynomial
kernel. During tests we measured: (i) percentage of traini
error TrnErr, (ii) percentage of testing errorTestErr and
(iii) number of the support vectorsnSV. The overall results
are enlisted in Table1. The decision boundaries of found
classifiers can be seen in Figures2 and3. It can be seen that
the decision boundaries computed on the full training set a
on its approximation with sufficient number of basis vecto
almost coincide. The approximation approach preserved
classifiers accuracy but the number of support vectorsnSV

is significantly less.

5.3 Training set approximation of SVM and KFLD
tested on benchmark data sets

We tested the proposed approach described in Section4 to
find the SVM and KFLD classifier on selected problem
from the IDA benchmark repository [1] to assess the pro-
posed approach. The IDA repository contains both synthe
and real word binary problems. Each problem consists
100 realizations of training and testing sets. The assessm
is done on the all100 realizations and all the measured val
r

e

t

KFLD (σ=1)+Approximation (m=5)

x

y

Full KFLD 
Approximation 

KFLD (Poly2)+Approximation (m=3)

x

y

Full KFLD 

Approximation 

(a) (c)

x

y

KFLD (σ=1)+Approximation (m=25)

Full KFLD 

Approximation 

KFLD (Poly 2)+Approximation (m=6)

x

y

Full KFLD 

Approximation 

(b) (d)

Figure 3: Decision boundaries of the KFLD classifiers found o
the full (solid line) and on the approximated (dashed line) trainin
set. The big circles denote the data points used for approximati
For detailed description see Table1 and the text.

ues are computed as the mean values.
The Algorithm 1 used for approximation has two param

eters: (i) the maximal allowed approximation errorε and (ii)
the maximal number basis vectorsm. In these initial exper-
iments we set these parameters to fixed values. We set
parameterε = 0.001 andm = 0.1n (training set reduced
to 10% of its original size) for the SVM approximation and
m = 0.25n (training set reduced to25% of its original size)
for the KFLD approximation.

Free parameters of both the SVM and KFLD algorithm
are the argument of the used RBF kernel functionk(xi,xj) =
exp(−σ||xi − xj ||2) and regularization constantC. We
used first5 realization of data (this protocol was adopte
from [1]) to selected the best combination of paramete
σ = [2−8, 2−7, . . . , 23] and C = [20, 21, . . . , 212]. The
pairs of arguments(σ,C) which yielded the smallest testing
error were selected. During the experiments we measu
the following values:

TrnErr Percentage of training errors.

TestErr Percentage of testing errors.

ker eval The number of kernel evaluations used in the train
ing stage which is, in fact, a measure of training time
In the case when the approximation was used that t
ker eval means the number of kernel evaluations use
to compute the training set approximation by the Algo
rithm 1 and the number of kernel evaluations used b
the training algorithm (SMO or KFLD) is enlisted in the
brackets. The number in the brackets actually means
number of computations of dot productsγi

T · γj which
approximate the true kernel evaluations.

nSV The number of the support vectors, i.e. the number
pattern which determine the classifier and directly influ
ences the speed of classification.
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/0440.
Data set Method TrnErr TestErr ker eval nSV

BREAST SVM 20.69 25.36 2.7 × 106 116
SVM+Approx 20.93 26.51 7.8 × 103(264 × 106) 20

KFLD 28.04 29.52 40 × 103 200
KFLD+Approx 20.82 29.82 18.8 × 103(10 × 103) 50

FLARE SVM 32.48 32.33 8.7 × 106 570
SVM+Approx 32.48 32.33 49 × 103(7.5 × 106) 37

KFLD 33.19 33.09 443.6 × 106 666
KFLD+Approx 33.34 33.97 49 × 103(24.6 × 103) 37

HEART SVM 13.82 15.31 291.3 × 103 100
SVM+Approx 13.95 15.44 5.6 × 103(242.8 × 103) 17

KFLD 14.43 16.31 28.9 × 103 170
KFLD+Approx 14.06 16.53 13.4 × 103(7.3 × 103) 42

RINGNORM SVM 0.07 1.60 1.7 × 106 218
SVM+Approx 1.11 1.91 31.2 × 103(1.7 × 106) 40

KFLD 1.43 1.49 160 × 103 400
KFLD+Approx 1.7 2.01 75.1 × 103(40 × 103) 100

TITANIC SVM 19.57 22.28 4.3 × 106 85
SVM+Approx 19.56 22.94 3.4 × 103(350 × 103) 11

KFLD 21.99 23.81 22.5 × 103 150
KFLD+Approx 22.47 24.26 2.8 × 103(1.4 × 103) 9

WAVEFORM SVM 2.68 9.92 1.0 × 106 175
SVM+Approx 7.14 10.47 31.2 × 103(4.4 × 106) 40

KLFD 6.34 10.39 160 × 103 400
KFLD+Approx 7.26 10.80 115 × 103(75 × 103) 100

Table 2: Comparison of the SVM and the KFLD classifiers traine
on full and the approximated training sets.

The overall results of the experiments can be seen in T
ble 2. The experiments show that the testing errorTestErr
of the classifiers found on the approximated training se
equals or is slightly worse than that of the full training se
The number of kernel evaluationsker eval used for train-
ing set approximation is significantly smaller than that use
by the learning algorithm. This can speed up the learnin
time when the kernel evaluation is significantly more ex
pensive than the evaluation of the dot productsγi

T · γj .
The number of the support vectors yielded by the approx
mation method is significantly smaller than that without ap
proximation. This is especially apparent in the case of th
KFLD where all the training data are used to represent de
sion rule.

6 Conclusions

We have proposed a simple method for data set approxim
tion and its use for learning kernel methods. The propos
method allows to reduce complexity of the found solutio
(this solution is sparse) as well as computational and me
ory demands of the learning algorithms.

The idea of this method is to represent data in lower d
mensional space with possibly minimal representation e
ror which is similar to the Principal Component Analysi
(PCA). In contrast to the PCA, the basis vectors used f
data representation are selected vectors from the training
and not their linear combinations. These basis vectors c
be selected by a simple greedy algorithm which does not
quire eigenvalue decomposition (as the PCA does) and
complexity isO(nm3) wheren is size of training set andm
the number of the basis vectors. The algorithm is on-line
nature and allows to process huge data sets.

We tested the proposed training set approximation in co
nection to the Support Vector Machines and Kernel Fish
Linear Discriminant. The results obtained show that the pr
posed approximation can significantly reduce the number
the support vectors while retaining the accuracy of the fou
-

-

-

-

et
n
-
s

-

f

classifiers.
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