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Abstract We propose a technique for a training set ap- k(z;,zj) = ¢(zi)T - ¢(x;), are used to avoid prob-
proximation and its usage in kernel methods. The approach lems of high dimensionality of the spagé This implies
aims to represent data in a low dimensional space with pos- that the algorithm must use the dot products of training
sibly minimal representation error which is similar to the data only. The matrix of all dot products in the spa€e
Principal Component Analysis (PCA). In contrast to the is denoted as the kernel matdk(é, j) = k(x;, «;) and

PCA, the basis vectors of the low dimensional space used for  itis of size[n x n].
data representation are properly selected vectors from the
training set and not as their linear combinations. The basis
vectors can be selected by a simple algorithm which has low
computational requirements and allows on-line processing
of huge data sets. The proposed method was used to ap- .
proximate training sets of the Support Vector Machinesand ' — 2 ey i (@s).

Kernel Fisher Linear Discriminant which are known method  when using the kernel method the following problems can
for learning classifiers. The experiments show that the pro- pe encountered:

posed approximation can significantly reduce the complexity

of the found classifiers (the number of the support vectors) ® The storage of the training data in terms of the dot prod-
while retaining their accuracy. ucts is too expensive since the size of kernel makix

increases quadratically with the number of training data.

e The solution found is expressed in terms of kernel expan-
sionf(xz) =Y.' | auk(x, x;)+b, wherea;, i = 1,...,n
are real coefficients which determine the veaiore F
as a linear combination of transformed training data, i.e.,

_ e The computation of the kernel functiohéx;, x;) is ex-
1 Introduction pensive.

The kernel methods have become a fast developing branch o The solution which is expressed as a kernel expansion
of machine learning and pattern recognition in several past  f(z) = " L aik(xi, ) + b is not sparse, i.e., many

. i= v Sy
years. The kernel methods use kernel functions to perform  coefficientso; are nonzero. This situation can occurs for
the feature space straightening effectively. This technique  instance in the SVM when the number of support vectors

allows to exploit established theory behind the linear al- is huge or in the KFLD and the KPCA, since there is the
gorithms to design their non-linear counterparts. The rep-  splution expressed using all training data. The non-sparse
resentatives of these methods are for instance the Support  solution implies an expensive evaluation of the function
Vector Machines (SVM)12] and the Kernel Fisher Linear f() (e.g., slow classification or feature extraction).
Discriminant (KFLD) ] which serve as classifier design or

Kernel Principal Component Analysis (KPCA)1] useful Several approaches to the problem of non-sparse ker-

for non-linear feature extraction. The kernel learning meth- nel expansion were proposed. These methods are based

ods are generally characterized by the following properties: On approximating the found solution, e.g., the reduced set
method P, 10] or the method by Osuna et. al|[

e The training dat&X = [x1,...,xy,], ; € X are trans- We propose a new solution to the problems mentioned
formed by a functionp: ¥ — F to a new high dimen- above which is based on approximating the training set in
sional feature spac&. We denote the set of training  the non-linear kernel spack.
data transformed to the high dimensional sp&tes The novel approach will be described in SectibriThe
F = [¢(z1),...,P(xn)]. application of the proposed approach to the SVM and KLFD

is described in Sectiod. The experiments performed are

e The solution found is linear in the feature spatei.e. mentioned in Sectio and Sectioré concludes the paper.
the functionf(z) = w” - ¢(x) + b we search for is
characterized by a vectaw € F and a scalab € R. 2 Training set approximation

e The kernel functiong: X x X — R which corresponds The transformed training dala = [¢(x1), . . ., (x4, )] live

to the dot products of non-linearly mapped data, i.e., ina subspacepan(F) C F. Let us suppose that we have a
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finite setX, = [r1,...,rm], 7 € X, m < n, and its image
inthe feature spacg, i.e, the seF, = [¢(71), ..., d(Tm)].
Let us also suppose that the vecteis:;) are linearly in-

explained in the sequel) we can obtain a good approximation
as experiments show (see below). Let us mention4hiat
just expression of the vectgfx)’ = F,.- 3 in the orthonor-

dependent and so that they form a basis of linear subspace mal basis (columns of matriR are basis vectors) of the

span(F,) C F. We aim to express the transformed train-
ing dataF using linear basis defined by the d8f. A
method how to properly select the S¥t. is described in
the sequel. Th&' = [p(x1),..., ¢(xy)’] will denote a
set of approximations of vectol8 = [¢(x1),...,¢(xy,)]
which will be computed as minimal square error projections
on the subspacepan(F,.). It means that the approximation
¢(x)" € F' of a vectorg(x) € F is expressed as a linear
combination of vectors dF,, i.e.,¢(x) = F, - 3 (we used
matrix notation). The vectg8 contains real coefficients of
linear combination and it is computed as

8 = argmin (¢(z) = Fr - )" (6(2) ~ Fr -6 .

The well known analytical solution of this problem is

/8 = (FrT . Fr)_l : FrT . (b(:E) (1)
The solution for3 in the terms of dot product has form
B=K, ' -k(x), @

wherex € X is a vector to be approximatedS, =
F.T . F, is a kernel matrixjm x m] of vectors from the
setX, and k,.(x) is a vector[m x 1] containing values
of kernel functions ofx andr» ¢ X,, i.e, k.(x) =
[k(z,71),...,k(z,7m)]. We denoted; the vector which
contains coefficients computed for a vecigr € X. Thus
the approximated value of kernel function of training vectors
x;, ¢; € X is computed as

(o(x:)")" - p(a5)
= (Fr-B:)" - (Fr-B5)
= /BiT Ky ﬁj :

Since the kernel matriX, [m x m] is positive definite ¥,

k’(mi,mj)

contains linearly independent vectors) it can be decomposed

by the Choleski factorization &€, = R” - R, where ma-
trix R is an upper triangular matrix. We can simplify the
computation of the approximated kernel function as

K(zs25) =67 -RT-R-Bj=v" -7, @)

i.e., a dot product of vectorg; and~;. Now, we can repre-
sent the training sé&X mapped to the non-linear spageby
amatrixT’ = [y1, ..., vn] Of size[m x n] instead of the ker-
nel matrixK [n x n], wherem is the number of vectorB,.
used to approximate subspagewn(F) andn is the num-
ber of training vectors. When we pht. = F thenm = n
and we always obtain the perfect approximation without er-
ror, i.e., k(x;, z;) = k'(x;, ;). The perfect approxima-
tion is obtained ifspan(F,) = span(F), which can occur
even ifm < n, for instance when the number of training

data is high and the data are linearly dependent in the space

F. However, even ikpan(F,) # span(F) (actually we
always selecF, such thaspan(F,) C span(F) as will be

subspacepan(F,). The next section describes an approach
how to select vectors of the sKt. used for approximation.

3 Algorithm

Let se(x) denote an approximation error of non-linearly
mapped the training vectar(x) which is defined as

se(z) = (¢(x) — o))" - (s(x) — o(x)")
= (¢ m)fFr/g>T(¢(m)7Fr/B)
= k(z,z) -2k, ()T -B+8T K. -

We propose to use a simple greedy algorithm which itera-
tively adds the vectors with the highes{x) to the setX,

and iterates until the prescribed limit on the approximation
error is achieved, i.ese(z) < ¢, Ve € X, or until al-
lowed sizem (our limitations on memory) of the s&, is
achieved. Such algorithm can look as follows:

Algorithm 1: Training set approximation

1. Initialize theX, = [r], wherer is a randomly selected
vectorz € X.

2. lterate while the size oK. is less thann:

e Computese(x) = k(x, ) — 2k, (x)"-8+08" K, -3
for all training vectors which are not yet included
in X,, i.e., z € X\ X,. It requires to compute
g =K. ' k,.(x) whereK, is a kernel matrix of
the current seX.,..

e If max,ex\x, se(x) < e then exit the algorithm else
insert thex = argmax,cx\x, se(x) to the setX,
and continue iterations.

The result of the Algorithm 1 is a subs&t, € X which
contains the basis vectors as well as the majx * useful
to compute the new representation of data usifg (

When using Sherman-Woodbury formulg] for matrix
inverseK, ! then the computationally complexity of the
algorithm isO(nm?). The Algorithm 1 does not only min-
imize the approximation errofe(x) but it also minimizes
the mean square error

n n

mse = (p(@s)—p(@;)) " (p(ai)—p(a:)') =Y se(a;)

i=1 i=1
since it minimizes the upper bound

mse < (n—m) mi)? se(x) .
reXy

However, the approximation set found is not ensured to be
the optimal one. To find the optimal approximation set one



would have to try all :l ) possibilities which is compu-

tationally infeasible.

Let us mention the connection to the classical Principal
Component Analysis (PCA) or Kernel Principal Component
Analysis (KPCA) [L1], which exactly minimizes the mean
square erromse. However, the basis vectors are linear com-
binations of all the training data which means that the KPCA
requires all training data to represent solution. The basis
vectors found by the proposed method are selected vectors
from the training set which is more convenient for kernel
methods. Moreover, the proposed Algorithm 1 allows on-
line processing of data. On the other hand, the Algorithm 1
finds only approximate solution.

Let us note that the found basis vectors can be orthogo-
nalized on-line using well known Gram-Schmidt procedure
or using the Choleski factorization which we used as de-
scribed aboveq).

4 Applications of training set approximation

In the following subsections we show how to use the pro-
posed method for learning the Support Vector Machines
(SVM) and Kernel Fisher Linear Discriminant (KFLD).

4.1 Approximation of SVM

The Sequential Minimal Optimizel8] is a representative
of the algorithms solving the SVM quadratic optimization
problem. The advantage of this algorithm is that it does not
require to store the whole kernel matk&[n x n] but evalu-
ates kernel functiok(x;, ;) when needed. The evaluation
of the kernel functiork(x;, x;) is the bottleneck of this it-
erative algorithms. We use approximation of the training set
by the sefl’ = [v1,...,~n] Which requiresO(mn) mem-
ory. The approximation of value of the kernel function can
be computed a&(z;,x;) = v’ - v, which is the dot
product of twom-dimensional vectors requirin@(m) op-
erations. By selecting: we can trade-off the precision of
approximation and the computational/memory demands.

The SVM algorithms in general find the discriminant
function in the form

f@) =) aik(z, @) +b=>_ ap(@)" - ¢(x;) +b,
=1 i=1

where coefficients,; are non-zero only for a subset of train-
ing patterns. The patterns with non-zerpare called Sup-
port Vectors (SVs). The SVM itself yields the sparse solu-
tion so that after training SVM using the training set approx-
imation two cases can occur:

1. The number of SVs is less than the number of vectors
used for training set approximation, i.esy < m. In
this case, it is of advantage to use the found SVs to rep-

resent the discriminant functiof(x).

. The number of SVs is higher than the number of vectors
used for training set approximation, i.egy > m. In
this case, we take the approximations of the SVs to rep-
resent the discriminant functigf{x) and recomputed the
multipliers«; as described bellow.

The SVs (training vectors withy; # 0) are expressed as
linear combinations of the vectod§, used in the approxi-
mation. The discriminant functiofi(x) is expressed using
the vectorsX, instead of using the SVs, i.e.,

() > ()" - ¢ (i) + b
=1

Z a;p(x)" - Z Bijé(ri) +b
i=1 =1

k(z,75) Zawﬂm +b

=1

INGE

.

!
ajk:

NE

(z,15) +b
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—

.

where we used;; to denote thg-th component of the vec-

tor 3;. Now we can see the vectors of the 3¢f as a
new support vectors and; as the new multipliers. Us-
ing strategy described above we always have the number
min(ngy, m) of vectors to represent the discriminant func-
tion.

Let us note that it would be of advantage to use the set of
SVs as the vectors approximating the training set. The rea-
son is that the SVs determine the SVM classifier and con-
sequently these vectors should be well approximated. The
possible solution is: (i) to find the SVM classifier, (ii) to
make X, from the found SVs and (iii) to train the SVM
classifier again.

4.2 Approximation of KFLD

The KFLD [4, 5, 6] is a non-linear extension of the clas-
sical Fisher Linear Discriminant (FLD) using the kernel
trick. Let[(x1,41),.-.,(n,yn)] be a training set of pat-
ternsz € X and corresponding labels hee [—1,+1].
Letpy = 1 Yy, Tio B2 = 77 s @4 denote the
mean values of patterns from the first and the second class,
respectively. The_ denotes set of indices of training pat-
terns set with labej = +1, <_ with labelsy = —1, respec-
tively. Likewise, letC; = \z%rl Zi6i+ (x5—p1)-(x5—p1)7

,Ca = T1_| >iei (@i — p2) - (x; — p2)” be covariation
matrices of the patterns from the first and the second class.
The FLD aims to find such a normal vectar of the dis-
criminant functionf(z) = w’ - = + b that maximizes the

ratio

(w/T ! (I‘l’l - I‘l’z))2 (4)
w'T - (Cl + Cz) cw’
The biasbh can be found by one-dimensional search. When
assuming normally distributed data then the FLD vyields op-
timal Bayesian decision strategy. Moreover, when we as-
sume equal a priori class probabilities then the biaan
be determined directly. This is used in the experiments de-
scribed below.

The extension of the FLD to the non-linear discriminant

function analysis can be done by the use of the kernel func-
tions. We search for the discriminant function of the form

w = argmax
w/

flx) = ka(rfc,xi) +b= Zam(m)T (i) + b,



which is linear in the spac#’. It can be shown4] that the
optimization criterion 4) can be rewritten as the quadratic
optimization problem

a=argmina’ K-Z-K-a+Ca®l -« (5)
subject to

ol ' K-e=2, (6)

whereK is the kernel matrix of the s& = [x1, ..., x,] Of

training patterns( is a regularization constarif, = Z, +
Z_ is a matrix of sizgn x n] ande = e + e_ is a vector
[n x 1]. MatricesZ., Z_ and vectore., e_ have a simple
structure and are defined as follows:

L f i =k
N o= Tl T U
(i) { 5 otherwise
01 it (w#k)Vy#k)
Zy(i,j) = TP, it (yi=y; =k) A #)

Tl ~ T if (yi=y;=k)A(i=7)

Solving the optimization problen®) yields the kernel
FLD (KFLD). Now we apply the training set approximation
method to this problem. The idea is to adopt an additional
constrain on the solution which ensures that the solution will
lie in span(F,). Firstly, we express the discriminant func-
tion in terms of the vectorX, = [ry,...,7ry,] used for
approximation as

m

@) =3 olk(aro) +b= 3 olo@)” - o(ri) +b.

Secondly, we approximate the conditid®) &s

T FT . F.e=a" K, B-e=a" -m'=2,
where the matrisB = [34, . . ., B,] contains approximation
coefficients of the training data and’ is a vectoffm x 1].
Finally, we approximate the quadratic objective function of
the criterion b) as

OL/T-F T'F/'Z'F/T'F .a/
a7 K, -B-Z-BT K, o

a'T-N/-o/,

whereN’ is a matrix[m x m]. Now we can write the ap-
proximated optimization problem

o =argmina/? -N'- o' +Ca/T - o @)

o

subject to
o -m' =2,

where we optimize with respect to the vectdrof size[m x
1]. Let us note, that the approximated KFLD problen) (
requires the computation with matrix of sige x m] which
can be considerably smaller than the mafrix< n] of the
original problem (without approximationp).
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Figure 1: Comparison between the PCA and its approximation
computed by the proposed approach. The figures show the mean
square erromse of representation with respect to the number of
basis vectorgn. The assessment is done on synthetically generated
training (a)(c) and testing (b)(d) data sets with= 100 points
(a)(b) andn = 1000 points (c)(d).

5 Experiments

The next subsections describe three experiments we per-
formed to assess the proposed approach. Firstly, we tested
how well the proposed Algorithm 1 can approximate the
training set compared to the PCA which finds the optimal
solution. Secondly, we tested usage of the training set ap-
proximation with the SVM and the KFLD learning methods
on a simple synthetic problem which allows to visualize the
found solution. Thirdly, we tested the proposed approach on
the standard benchmark data sets.

5.1 Comparison with the PCA on synthetic data

We used the proposed approach for data representation and
compare it to the standard PCA. We used synthetic data ran-
domly generated according to the Gaussian distribution. We
generated training and testing data sets containirg 100
andn = 1000 points in100-dimensional space. We mea-
sured the mean square ertage between the original data
and their representation computed by the PCA and by the
proposed approach with respect to the number of used basis
vectors. The results can be seen in Figlrdt can be seen
from the results than the proposed approach is a slightly sub-
optimal on the training but fully comparable on the testing
data in terms of the mean square etice.

5.2 Training set approximation of SVM and KFLD
tested on Riply data set

We used the approach described in Sectoto find the
SVM and KFLD classifiers on the Ripl[ data set or, more
precisely, on its approximation. The Riply data sets consists
of testing and training set @&-dimensional data which can
be simply visualized. We used two kernel functions: (i) RBF
with o = 1 and (ii) polynomial of degre@. The number of
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Figure 2: Decision boundaries of the SVM classifiers found on the
full (solid line) and on the approximated (dashed line) training set.
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Figure 3: Decision boundaries of the KFLD classifiers found on
the full (solid line) and on the approximated (dashed line) training

The big circles denote the data points used for approximation. For set. The big circles denote the data points used for approximation.
detailed description see Tallend the text.

RBF (0 = 1)

TrnErr TestErr ng Fig
SVM 14.4 9.4 94 3(@)(b)
SVM+Approx (m = 5) 14.4 9.6 5 3(a)
SVM+ApPIOX (m = 25) 14.4 9.4 25 3(b)
KLFD 14.8 10.4 250 4(a)(b)
KFLD+Approx (m = 5) 16.4 9.8 5 4(a)
KFLD+Approx (m = 25) 14.8 10.4 25 4(b)

Polynomial @ = 2)

SUM 14.0 9.9 90 3(0)(d)
SVM+Approx (m = 3) 14.4 13.5 3 3(c)
SVM+Approx (m = 6) 14.4 9.8 6 3(c)
KLFD 14.8 11.7 250 4(c)(d)
KFLD+Approx (m = 3) 13.6 10.8 3 4(c)
KFLD+AppIox (m = 6) 14.8 11.8 G 4(d)

Table 1: Comparison of the SVM and the KFLD classifiers trained

on full and the approximated Riply data set.

vectors used for approximation was= 5 andm = 25 for

the RBF kernel andn = 3 andm = 6 for the polynomial
kernel. During tests we measured: (i) percentage of training
error TrnErr, (ii) percentage of testing err@festErr and

(iii) number of the support vectotssy . The overall results
are enlisted in Tabld. The decision boundaries of found
classifiers can be seen in Figuteand3. It can be seen that

For detailed description see Taldland the text.

ues are computed as the mean values.

The Algorithm 1 used for approximation has two param-
eters: (i) the maximal allowed approximation ergand (ii)
the maximal number basis vectors In these initial exper-
iments we set these parameters to fixed values. We set the
parametee = 0.001 andm = 0.1n (training set reduced
to 10% of its original size) for the SVM approximation and
m = 0.25n (training set reduced 5% of its original size)
for the KFLD approximation.

Free parameters of both the SVM and KFLD algorithm
are the argument of the used RBF kernel functitm;, ;) =
exp(—ol|z; — x;]|*) and regularization constaidt. We
used first5 realization of data (this protocol was adopted
from [1]) to selected the best combination of parameters
o= [278,277...,2) andC = [2°,2%,...,2!2]. The
pairs of argumenté&s, C') which yielded the smallest testing
error were selected. During the experiments we measured
the following values:

TrnErr Percentage of training errors.

the decision boundaries computed on the full training setand TestErr Percentage of testing errors.

on its approximation with sufficient number of basis vectors
almost coincide. The approximation approach preserved the
classifiers accuracy but the number of support veaig(s

is significantly less.

5.3 Training set approximation of SVM and KFLD
tested on benchmark data sets

We tested the proposed approach described in Seétion
find the SVM and KFLD classifier on selected problems
from the IDA benchmark repositornyl] to assess the pro-
posed approach. The IDA repository contains both synthetic

ker_eval The number of kernel evaluations used in the train-
ing stage which is, in fact, a measure of training time.
In the case when the approximation was used that the
ker_eval means the number of kernel evaluations used
to compute the training set approximation by the Algo-
rithm 1 and the number of kernel evaluations used by
the training algorithm (SMO or KFLD) is enlisted in the
brackets. The number in the brackets actually means the
number of computations of dot produets’ - ~; which
approximate the true kernel evaluations.

and real word binary problems. Each problem consists of ngy The number of the support vectors, i.e. the number of

100 realizations of training and testing sets. The assessment
is done on the all00 realizations and all the measured val-

pattern which determine the classifier and directly influ-
ences the speed of classification.



Data set | Method

BREAST

[ TrnErr | TestErr | ker_eval [ n ]
116
20
200

50

2.7 x 10°

7.8 x 102 (264 x 10°)
40 x 102

18.8 x 105 (10 x 109)

8.7 x 10°

49 x 103 (7.5 x 10°)
443.6 x 10°

49 x 103(24.6 x 103)
291.3 x 109

5.6 x 10°(242.8 x 10°)
28.9 x 103

13.4 X 105(7.3 x 109)

SVM
SVM+Approx
KFLD
KFLD+Approx
SVM
SVM+Approx
KFLD
KFLD+Approx
SVM
SVM+Approx
KFLD
KFLD+Approx

20.69
20.93
28.04
20.82

25.36
26.51
29.52
29.82

FLARE 32.48
32.48
33.19

33.34

32.33
32.33
33.09
33.97

570
37
666
37

HEART 13.82
13.95
14.43

14.06

15.31
15.44
16.31
16.53

100
17
170

RINGNORM SVM 0.07 1.60 1.7 x 10° 218
SVM+Approx 1.11 1.91 31.2 x 105(1.7 x 109) 40

KFLD 1.43 1.49 160 x 103 400

KFLD+Approx 1.7 2.01 75.1 x 105(40 x 103) 100

TITANIC SVM 19.57 22.28 4.3 x 100 85
SVM+Approx 19.56 22.94 3.4 x 103(350 x 109) 11

KFLD 21.99 23.81 22.5 x 103 150

KFLD+Approx 22.47 24.26 2.8 x 103(1.4 x 105) 9

WAVEFORM SVM 2.68 9.92 1.0 x 108 175
SVM+Approx 7.14 10.47 31.2 x 105(4.4 x 109) 40

KLFD 6.34 10.39 160 x 105 400

KFLD+Approx 7.26 10.80 115 x 103 (75 X 109) 100

Table 2: Comparison of the SVM and the KFLD classifiers trained
on full and the approximated training sets.

The overall results of the experiments can be seen in Ta-
ble 2. The experiments show that the testing effestErr
of the classifiers found on the approximated training sets
equals or is slightly worse than that of the full training set.
The number of kernel evaluatiorker_eval used for train-
ing set approximation is significantly smaller than that used
by the learning algorithm. This can speed up the learning
time when the kernel evaluation is significantly more ex-
pensive than the evaluation of the dot produgi$ - ~;.
The number of the support vectors yielded by the approxi-
mation method is significantly smaller than that without ap-
proximation. This is especially apparent in the case of the
KFLD where all the training data are used to represent deci-
sion rule.

6 Conclusions

We have proposed a simple method for data set approxima-
tion and its use for learning kernel methods. The proposed
method allows to reduce complexity of the found solution
(this solution is sparse) as well as computational and mem-
ory demands of the learning algorithms.

The idea of this method is to represent data in lower di-
mensional space with possibly minimal representation er-
ror which is similar to the Principal Component Analysis
(PCA). In contrast to the PCA, the basis vectors used for
data representation are selected vectors from the training set
and not their linear combinations. These basis vectors can
be selected by a simple greedy algorithm which does not re-
quire eigenvalue decomposition (as the PCA does) and its
complexity isO(nm?) wheren is size of training set andh
the number of the basis vectors. The algorithm is on-line in
nature and allows to process huge data sets.

We tested the proposed training set approximation in con-
nection to the Support Vector Machines and Kernel Fisher
Linear Discriminant. The results obtained show that the pro-
posed approximation can significantly reduce the number of
the support vectors while retaining the accuracy of the found

classifiers.
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