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Abstract. We propose a technique for a training set approximation
and its usage in kernel methods. The approach aims to represent data
in a low dimensional space with possibly minimal representation error
which is similar to the Principal Component Analysis (PCA). In contrast
to the PCA, the basis vectors of the low dimensional space used for
data representation are properly selected vectors from the training set
and not as their linear combinations. The basis vectors can be selected
by a simple algorithm which has low computational requirements and
allows on-line processing of huge data sets. The proposed method was
used to approximate training sets of the Support Vector Machines and
Kernel Fisher Linear Discriminant which are known method for learning
classifiers. The experiments show that the proposed approximation can
significantly reduce the complexity of the found classifiers (the number
of the support vectors) while retaining their accuracy.

1 Introduction

The kernel methods have become a fast developing branch of machine learning
and pattern recognition in several past years. The kernel methods use kernel
functions to perform the feature space straightening effectively. This technique
allows to exploit established theory behind the linear algorithms to design their
non-linear counterparts. The representatives of these methods are for instance
the Support Vector Machines (SVM) [11] and the Kernel Fisher Linear Discrim-
inant (KFLD) [5] which serve as classifier design or Kernel Principal Component
Analysis (KPCA) [10] useful for non-linear feature extraction. The kernel learn-
ing methods are generally characterized by the following properties:

– The training data X = [x1, . . . ,xn], xi ∈ X are transformed by a func-
tion φ:X → F to a new high dimensional feature space F . We denote
the set of training data transformed to the high dimensional space F as
F = [φ(x1), . . . , φ(xn)].
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– The kernel functions k:X × X → < are used to avoid problems of high
dimensionality of the space F . The value of kernel function corresponds to
the dot product of the non-linearly mapped data, i.e., k(xi,xj) = φ(xi)T ·
φ(xj). This implies that the algorithm must use the dot products of training
data only. The matrix of all the dot products in the space F is denoted as
the kernel matrix K(i, j) = k(xi,xj) and it is of size [n× n].

– The solution found is linear in the feature space F , i.e. the function f(x) =
wT · φ(x) + b we search for is characterized by a vector w ∈ F and a
scalar b ∈ <. The function f(x) is expressed in terms of kernel expansion
f(x) =

∑n
i=1 αik(x,xi) + b, where αi, i = 1, ..., n are real coefficients. The

vector w ∈ F is determined as a linear combination of transformed training
data, i.e., w =

∑n
i=1 αiφ(xi).

When using the kernel method the following problems can be encountered:

– The storage of the training data in terms of the dot products is too expensive
since the size of kernel matrix K increases quadratically with the number of
training data.

– The solution f(x) =
∑n

i=1 αik(xi,x)+b is not sparse, i.e., many coefficients
αi are nonzero. It can occur for instance in the SVM when the number of
support vectors is huge or in the KFLD and the KPCA, since there is the
solution expressed using all training data. The non-sparse solution implies
an expensive evaluation of the function f(x) (e.g., slow classification).

Several approaches to the problem of non-sparse kernel expansion were pro-
posed. These methods are based on approximating the found solution, e.g., the
reduced set method [2,9] or the method by Osuna et. al [7].

We propose a new solution to the problems mentioned above which is based
on approximating the training set in the non-linear kernel space F .

The novel approach is described in Section 2. The application of the proposed
approach to the SVM and KLFD is described in Section 4. The experiments
performed are mentioned in Section 5 and Section 6 concludes the paper.

2 Training set approximation

The transformed training data F = [φ(x1), . . . , φ(xn)] live in a subspace span(F) ⊆
F . Let us suppose that we have a finite set Xr = [r1, . . . , rm], ri ∈ X , m < n,
and its image in the feature space F , i.e, the set Fr = [φ(r1), . . . , φ(rm)]. Let
us also suppose that the vectors φ(ri) are linearly independent and so that they
form a basis of linear subspace span(Fr) ⊆ F . We aim to express the transformed
training data F in a linear basis defined by the set Fr. A method how to prop-
erly select the set Xr is described in the sequel. The F′ = [φ(x1)′, . . . , φ(xn)′]
will denote a set of approximations of vectors F = [φ(x1), . . . , φ(xn)] which will
be computed as minimal square error projections on the subspace span(Fr). It
means that the approximation φ(x)′ ∈ F′ of a vector φ(x) ∈ F is expressed
as a linear combination of vectors of Fr, i.e., φ(x)′ = Fr · β (we used matrix



notation). The vector β contains real coefficients of linear combination and it is
computed as

β = argmin
β′

(φ(x)− Fr · β′)T · (φ(x)− Fr · β′) .

The well known analytical solution of this problem is

β = (Fr
T · Fr)−1 · Fr

T · φ(x). (1)

The solution for β in the terms of dot product has form

β = Kr
−1 · kr(x) , (2)

where x ∈ X is a vector to be approximated, Kr = Fr
T · Fr is a kernel matrix

[m×m] of vectors from the set Xr and kr(x) is a vector [m×1] containing values
of kernel functions of x and r ∈ Xr, i.e., kr(x) = [k(x, r1), . . . , k(x, rm)]. We
denote βi the vector which contains coefficients computed for a vector xi ∈ X.
Thus the approximated value of kernel function of training vectors xi, xj ∈ X
is computed as

k′(xi,xj) = (φ(xi)′)T · φ(xj)′ = (Fr · βi)T · (Fr · βj) = βi
T ·Kr · βj .

As the kernel matrix Kr is positive definite it can be decomposed by the Choleski
factorization as Kr = RT · R, where matrix R is an upper triangular matrix.
We can simplify the computation of the approximated kernel function as

k′(xi,xj) = βi
T ·RT ·R · βj = γi

T · γj , (3)

i.e., a dot product of vectors γi and γj . Now, we can represent the training set
X mapped to the non-linear space F by a matrix Γ = [γ1, . . . ,γn] of size [m×n]
instead of the kernel matrix K [n×n], where m is the number of vectors Fr used
to approximate subspace span(F) and n is the number of training vectors. When
we put Fr = F then m = n and we always obtain the perfect approximation
without error, i.e., k(xi,xj) = k′(xi,xj). The perfect approximation is obtained
if span(Fr) = span(F), which can occur even if m < n, for instance when the
number of training data is high and the data are linearly dependent in the space
F . However, even if span(Fr) 6= span(F) (actually we always select Fr such
that span(Fr) ⊆ span(F) as will be explained in the sequel) we can obtain a
good approximation as experiments show (see below). Let us mention that γ is
just expression of the vector φ(x)′ = Fr ·β in the orthonormal basis (columns of
matrix R are basis vectors) of the subspace span(Fr). The next section describes
an approach how to select vectors of the set Xr used for approximation.

3 Algorithm

Let se(x) denote an approximation error of non-linearly mapped the training
vector φ(x) which is defined as

se(x) = (φ(x)− φ(x)′)T · (φ(x)− φ(x)′)
= (φ(x)− Fr · β)T · (φ(x)− Fr · β)
= k(x,x)− 2kr(x)T · β + βT ·Kr · β



We propose to use a simple greedy algorithm which iteratively adds the vectors
with the highest se(x) to the set Xr and iterates until the prescribed limit on
the approximation error is achieved, i.e., se(x) < ε, ∀x ∈ X, or until allowed
size m (our limitations on memory) of the set Xr is achieved. Such algorithm
can look as follows:

Algorithm 1: Training set approximation

1. Initialize the Xr = [r], where r = argmax
x∈X

k(x, x).

2. Iterate while the size of Xr is less than m:
(a) Compute se(x) = k(x,x) − 2kr(x)T · β + βT · Kr · β for all training

vectors which are not yet included in Xr, i.e., x ∈ X \Xr. It requires to
compute β = Kr

−1 · kr(x) where Kr is a kernel matrix of the current
set Xr.

(b) If max
x∈X\Xr

se(x) < ε then exit the algorithm else insert the x = argmax
x∈X\Xr

se(x)

to the set Xr and continue iterations.

The result of the Algorithm 1 is a subset Xr ⊆ X which contains the basis
vectors as well as the matrix Kr

−1 useful to compute the new representation of
data using (2).

When using Sherman-Woodbury formula [3] for matrix inverse Kr
−1 then

the computationally complexity of the algorithm is O(nm3). The Algorithm 1
does not only minimize the approximation error se(x) but it also minimizes the
mean square error since

mse =
n∑

i=1

(φ(xi)−φ(xi)′)T ·(φ(xi)−φ(xi)′) =
n∑

i=1

se(xi) ≤ (n−m) max
x∈X\Xr

se(x).

Step 1 can be seen as a selection of the training vector with worst approximation
error when the subset Xr is empty, i.e., all vectors are projected onto the origin.
Note, that all vectors φ(r), r ∈ Xr selected by the Algorithm 1 are vertices of
the convex hull of the non-linearly mapped training data 1.

Let us mention the connection to the classical Principal Component Analysis
(PCA) or Kernel Principal Component Analysis (KPCA) [10], which exactly
minimizes the mean square error mse. However, the basis vectors are linear
combinations of all the training data which means that the KPCA requires all
training data to represent solution. The basis vectors found by the proposed
method are selected vectors from the training set which is more convenient for
kernel methods. Moreover, the proposed Algorithm 1 allows on-line processing
of data. On the other hand, the Algorithm 1 finds only approximate solution.

Let us note that the found basis vectors can be orthogonalized on-line using
well known Gram-Schmidt procedure or using the Choleski factorization which
we used as described above (3).
1 Thanks to J. Matas who pointed out this fact.



4 Applications of training set approximation

In this section we will describe the use of the proposed approximation approach
with connection to the Support Vector Machines (SVM) and Kernel Fisher Lin-
ear Discriminant (KFLD). The SVM and the KFLD are important representa-
tives of the methods learning the kernel classifiers.

4.1 Approximation of Support Vector Machines

The SVM aim to learn the classifier f(x):X → {−1,+1} from training data
X = [x1, ...,xn] and their hidden states y = [y1, ..., yn]T , yi ∈ {−1,+1}. Learning
of the linear SVM classifier f(x) = wT ·x+b is equivalent of solving the following
quadratic programming task

w, b = argmin
w,b

1
2
||w||2 + Cξ · e , s.t. Y · (XT ·w + be) ≥ e− ξ , (4)

where Y is a diagonal matrix made from the vector of hidden states y, e =
[1, 1, ..., 1]T and ξ = [ξ1, ξ2, ..., ξn] is a vector of slack variables. The non-linear
SVM corresponds to the linear SVM learned on the non-linearly transformed
training data F = [φ(x1), ...,φ(xn)]. The non-linear SVM classifier has the form
f(x) = wT ·φ(x)+ b = (Fα)T ·φ(x)+ b. Using the kernel functions we can write
||w||2 = αT ·K · α and FT ·w = K · α which can be substituted to the (4). It
results to the quadratic programming task for the non-linear SVM of the form

α, b = argmin
α,b

1
2
αT ·K ·α + Cξ · e , s.t. Y · (K ·α + be) ≥ e− ξ . (5)

The proposed method allows to find approximation of the full kernel matrix in
the form K′ = ΓT ·Γ, where Γ = [γ1, ...,γ] is a new representation of the training
data (see (3)). It can be easily shown (substituting K′ for K in (5)) that solving
the linear SVM (4) for the data Γ is equivalent to solving the non-linear SVM
(5) with the approximated kernel K′. Let w, b be the solution of (4) computed
for the data Γ. The approximated non-linear SVM classifier can be expressed as

f(x) =
m∑

i=1

αik(x, ri) + b and α = R−1 ·w .

In other words, we are able to find the approximated non-linear SVM clas-
sifier by the use of any solver for the linear SVM. Moreover, we can control
the complexity of the resulting classifier since the number of the vectors defin-
ing the classifier (virtual support vectors) can be prescribed beforehand by the
parameter m of the Algorithm 1.

4.2 Approximation of Kernel Fisher Linear Discriminant

The KFLD [4,5,6] is a non-linear extension of the classical Fisher Linear Dis-
criminant (FLD) using the kernel trick. The aim here is to learn the binary



non-linear classifier f(x) =
∑n

i=1 αik(x,xi) + b from the given training data.
It can be shown [4] that the learning of the KFLD can be expressed as the
quadratic programming task

α = argmin
α

αT ·N ·α + CαT ·α s.t. αT ·K · e = 2 . (6)

The matrix N is of size [n×n] is computed from the kernel matrix K. The vector
e is of size [n× 1]. Solving the quadratic programming problem (6) is infeasible
for large training sets. Moreover, the solution of the problem (6) is not sparse so
that all the training data must be stored which results to a slow classification.

The use of the approximated kernel matrix K′ = ΓT ·Γ leads to the essential
simplification of the problem (6). Following the derivation of the KFLD from [4],
but with approximated kernel matrix K′, yields a new quadratic programming
task of the approximated KFLD. This new task has the same form as the original
(6) but the matrix N is now of size [m×m] and the vector e is of size [m× 1].
Consequently the classifier is determined by m training data. Thus we can control
the complexity of the learning as well as the complexity of the resulting classifier
by the parameter m of the Algorithm 1.

5 Experiments

We tested the proposed approach described in Section 4 to find the approxi-
mated SVM and KFLD classifier on selected problems from the IDA benchmark
repository [1]. We used the Sequential Minimal Optimizer [8] to solve the linear
SVM and the Matlab Optimization Toolbox to solve the quadratic programming
task of the KFLD.

The IDA repository contains both synthetic and real word binary problems.
Each problem consists of 100 realizations of training and testing sets. The as-
sessment is done on the all 100 realizations and all the measured values are
computed as the mean values.

The Algorithm 1 used for approximation has two parameters: (i) the maximal
allowed approximation error ε and (ii) the maximal number of basis vectors m.
We set the parameter ε = 0.001 and m = 0.1n (training set reduced to 10% of its
original size) for the SVM approximation and m = 0.25n (training set reduced
to 25% of its original size) for the KFLD approximation.

Free parameters of both the SVM and KFLD algorithm are the argument of
the used RBF kernel function k(xi,xj) = exp(−σ||xi−xj ||2) and regularization
constant C. We used first 5 realization of data to select the best combination of
parameters σ = [2−8, 2−7, . . . , 23] and C = [20, 21, . . . , 212]. The pairs of argu-
ments (σ,C) which yielded the smallest testing error were selected.

During the experiments we measured (i) percentage of training errors TrnErr,
(ii) percentage of testing errors TestErr, (iii) number of kernel evaluations used in
the training stage ker eval, and (iv) number of the support vectors nSV. In fact,
the nSV is a measure of classification speed and ker eval is a measure of speed of
the learning stage. In the case when the approximation was used ker eval means



the number of kernel evaluations used to compute the training set approximation
by the Algorithm 1 and the number of kernel evaluations used by the training
algorithm (SMO or KFLD) is enlisted in the brackets. The number in the brack-
ets actually means the number of computations of dot products γi

T · γj which
approximate the true kernel evaluations.

Table 1. Comparison of the SVM and the KFLD classifiers trained on full and
the approximated training sets.

Data set Method TrnErr TestErr ker eval nSV

BREAST SVM 20.69 25.36 2.7× 106 116

dim = 9 SVM+Approx 20.93 26.51 7.8× 103(264× 106) 20

ntrn = 200 KFLD 28.04 29.52 40× 103 200

ntst = 77 KFLD+Approx 20.82 29.82 18.8× 103(10× 103) 50

FLARE SVM 32.48 32.33 8.7× 106 570

dim = 9 SVM+Approx 32.48 32.33 49× 103(7.5× 106) 37

ntrn = 666 KFLD 33.19 33.09 443.6× 106 666

ntst = 400 KFLD+Approx 33.34 33.97 49× 103(24.6× 103) 37

HEART SVM 13.82 15.31 291.3× 103 100

dim = 13 SVM+Approx 13.95 15.44 5.6× 103(242.8× 103) 17

ntrn = 170 KFLD 14.43 16.31 28.9× 103 170

ntst = 100 KFLD+Approx 14.06 16.53 13.4× 103(7.3× 103) 42

RINGNORM SVM 0.07 1.60 1.7× 106 218

dim = 20 SVM+Approx 1.11 1.91 31.2× 103(1.7× 106) 40

ntrn = 400 KFLD 1.43 1.49 160× 103 400

ntst = 7000 KFLD+Approx 1.7 2.01 75.1× 103(40× 103) 100

TITANIC SVM 19.57 22.28 4.3× 106 85

dim = 3 SVM+Approx 19.56 22.94 3.4× 103(350× 103) 11

ntrn = 150 KFLD 21.99 23.81 22.5× 103 150

ntst = 2051 KFLD+Approx 22.47 24.26 2.8× 103(1.4× 103) 9

WAVEFORM SVM 2.68 9.92 1.0× 106 175

dim = 21 SVM+Approx 7.14 10.47 31.2× 103(4.4× 106) 40

ntrn = 400 KLFD 6.34 10.39 160× 103 400

ntst = 4600 KFLD+Approx 7.26 10.80 115× 103(75× 103) 100

The overall results of the experiments can be seen in Table 1. The experiments
show that the testing error TestErr of the classifiers found on the approximated
training sets equals or is slightly worse than that of the full training set. The
number of kernel evaluations ker eval used for training set approximation is
significantly smaller than that used by the learning algorithm. This can speed
up the learning time when the kernel evaluation is significantly more expensive
than the evaluation of the dot products γi

T · γj . The number of the support
vectors yielded by the approximation method is significantly smaller than that
without approximation. This is especially apparent in the case of the KFLD
where all the training data are used to represent decision rule.



6 Conclusions

We have proposed a simple method for data set approximation and its use for
approximating the kernel methods. The proposed method allows to reduce com-
plexity of the found solution as well as computational and memory demands of
the learning algorithms.

The idea of this method is to represent data in a lower dimensional space
with possibly minimal representation error which is similar to the Principal
Component Analysis (PCA). In contrast to the PCA, the basis vectors used for
data representation are selected from the training set and not as their linear
combinations. These basis vectors can be selected by a simple greedy algorithm
which does not require eigenvalue decomposition (as the PCA does) and its
complexity is O(nm3) where n is size of training set and m the number of the
basis vectors. The algorithm is on-line in nature and allows to process huge data.

We tested the proposed training set approximation in connection to the Sup-
port Vector Machines and Kernel Fisher Linear Discriminant. The results ob-
tained show that the proposed approximation can significantly reduce the num-
ber of the support vectors while retaining the accuracy of the found classifiers.
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