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Kernel represenation of the Kesler construction for
Multi-class SVM classification

Vojtěch Franc, V́aclav Hlav́ač

Abstract

We propose a transformation from the multi-class SVM classification problem to the single-
class SVM problem which is more convenient for optimization. The proposed transforma-
tion is based on simplifying the original problem and employing the Kesler construction
which can be carried out by the use of properly defined kernel only. The experiments
conducted indicate that the proposed method is comparable with the one-against-all de-
composition solved by the state-of-the-art SMO algorithm.

1 Introduction

The standard Support Vector Machines (SVM) [8] are designed for dichotomic classification
problem (two classes only, called also binary classification). The multi-class classification prob-
lem is commonly solved by a decomposition to several binary problems for which the standard
SVM can be used. For instance, one-against-all (1-a-a) decomposition is often applied. In this
case the classification problem tok classes is decomposed tok dichotomic decisionsfm(x),
m ∈ K = {1, . . . , k}, where the rulefm(x) separates training data of them-th class from the
other training patterns. The classification of a patternx is performed according to maximal
value of functionsfm(x), m ∈ K, i.e., the label ofx is computed asargmaxm∈K fm(x).

For the SVM, however, the multi-class problem can be solved directly [8, 9]. Let us consider
that we are given labelled training patterns{(xi, yi) : i ∈ I}, where a patternxi is from ann-
dimensional spaceX and its label attains a value from a setK. TheI = {1, . . . , l} denotes a
set of indices. The linear classification rulesfm(x) = 〈wm, x〉+ bm, m ∈ K (the dot product is
denoted by〈., .〉) can be found directly by solving the multi-class SVM problem

min
w,b,ξ

1
2

∑
m∈K

||wm||2 + C ·
∑
i∈I

∑
m∈K\{yi}

(ξm
i )d ,

s.t. 〈wyi
, xi〉+ byi

− (〈wm, xi〉+ bm) ≥ 1− ξm
i ,

ξm
i ≥ 0 , i ∈ I ,m ∈ K \ {yi} .

(1)

Similarly to the dichotomic SVM, the minimization of the sum of norms‖wm‖2 leads to maxi-
mization of the margin between classes. For a non-separable case, the sum of(ξm

i )d weighted by
a regularization constantC means that the cost function penalizes misclassification of training
data. The linear(d = 1) or quadratic(d = 2) cost functions are often used.



To employ kernel functions [8] into non-linear classification rulesfm(x), one has to formu-
late a dual form of the multi-class SVM decision (1) which is defined as [8, 9]

min
α

∑
i∈I

∑
j∈I

(1
2
cyi

j AiAj −
∑

m∈K

αm
i αyi

j + 1
2

∑
m∈K

αn
i αm

j )k(xi, xj)− 2
∑
i∈I

∑
m∈K

αm
i ,

s.t.
∑
i∈I

αm
i =

∑
i∈I

cm
i Ai , m ∈ K ,

0 ≤ αm
i ≤ C ,αyi

i = 0,

Ai =
∑

m∈K

αm
i , cyi

j =

{
1 if yi = yj ,
0 if yi 6= yj ,

i ∈ I ,m ∈ K .

(2)

The dual problem (2) hask · l variables andl of them are always zero. The number of variables
is too large in practical problems and consequently it is very difficult to solve the dual quadratic
problem directly. There is a solution which employs a decomposition method and solves series
of smaller quadratic problems. However, the constraints of the problem (2) are too compli-
cated to allow direct use of efficient decomposition methods developed for dichotomic decision
problems, e.g., the Sequential Minimal Optimizer (SMO) algorithm [6].

We propose (i) to modify slightly the original problem (1) by adding the term(1/2)
∑

m∈K b2
m

to the objective function, and (ii) to transform the modified problem to the single-class SVM
problem which is considerably simpler than the previous formulation. Efficient algorithms can
be used to solve the new problem. Moreover, the proposed transformation can be performed by
the properly defined kernel function only. The addition of the(1/2) b term in the objective func-
tion was suggested by Mangasarian [5] for the dichotomic problem. Solutions of the modified
problem mostly coincides with the solutions of the original problem [5].

The following section describes proposed approach in details.

2 From multi-class SVM to single-class SVM

We consider modified multi-class SVM where the(1/2) b2 is added to the objective function of
the (1) which leads to

min
w,b,ξ

1
2

∑
m∈K

(||wm||2 + b2) + C ·
∑
i∈I

∑
m∈K\{yi}

(ξm
i )d ,

s.t.
〈wyi

, xi〉+ byi
− (〈wm, xi〉+ bm) ≥ 1− ξm

i ,
ξm
i ≥ 0 , i ∈ I m ∈ K \ {yi} .

(3)

We name the problem (3) defined above as the multi-class BSVM problem (B stands for the
added bias). Next we introduce a transformation which translates the multi-class BSVM prob-



lem (3) to the single-class SVM problem. The single-class SVM problem is defined as

min
w,ξ

1
2
||w||2 + C

∑
i∈I

(ξi)
d ,

s.t. 〈w, zi〉 ≥ 1− ξi , i ∈ I .

(4)

This problem (4) can be already solved by algorithms which are considerably simpler than the
original problems (1) or (3). The dual form of the problem (4) with the linear cost function
d = 1 is

max
α

∑
i∈I

αi − 1
2

∑
i∈I

∑
j∈I

αi · αj · k(zi, zj) ,

s.t. 0 ≤ αi ≤ C , i ∈ I ,

(5)

wherek(zi, zj) was substituted for the dot products〈zi, zj〉. The case with the quadratic cost
function d = 2 can be solved as the separable case using the kernel functionk′(xi, xj) =
k(xi, xj) + δi,j · 1

2C
. The dual form of the separable case is the same as the problem (5) up to

the constraints which simplify to0 ≤ αi. We will describe two simple algorithms for solving
the single-class SVM problem in Section 3.

The transformation from the multi-class BSVM problem to the single-class SVM problem
is based on the Kesler’s construction [1]. This construction maps the inputn-dimensional space
X to a new(n+1) ·k-dimensional spaceY where the multi-class problem appears as the single-
class problem. Each training patternxi is mapped to new(k − 1) patternszm

i , m ∈ K \ {yi}
defined as follows. Let us assume that coordinates ofzm

i are divided intok slots. If each slot
zm

i (j), j ∈ K hasn + 1 coordinates then

zm
i (j) =


[xi, 1] , for j = yi ,

−[xi, 1] , for j = m ,
0 , otherwise.

(6)

We seek a vectorw composed of vectorsw1, . . . , wk and thresholdsb1, . . . , bk in the new space
Y as

w = [[w1, b1], [w2, b2], . . . , [wk, bk]] . (7)

For instance, whenk = 4 andyi = 3 then the vectorszm
i , m = 1, 2, 4 are constructed as

z1
i = [ −[xi, 1] 0 [xi, 1] 0 ]

z2
i = [ 0 −[xi, 1] [xi, 1] 0 ]

z4
i = [ 0 0 [xi, 1] −[xi, 1] ]

Performing the transformation (6) we obtain a set{zm
i : i ∈ I m ∈ K\{yi}} containing(k−1)·l

vectors. Each constraint of the multi-class BSVM problem can be expressed as〈w, zm
i 〉 ≥

1 − ξm
i using the transformed vectors. It is obvious that by substitutingw to the objective

function of the single-class SVM problem the objective function (4) becomes equivalent to the



objective function (3) of the multi-class BSVM. Consequently, the multi-class BSVM problem
can be equivalently expressed as the single-class SVM problem,

min
w

1
2
||w||2 + C ·

∑
i∈I

∑
m∈K\{yi}

(ξm
i )d ,

s.t. 〈w, zm
i 〉 ≥ 1− ξm

i ,
i ∈ I m ∈ K \ {yi} .

(8)

At a first look the introduced transformation seems to be intractable because of increased di-
mension. However, in the dual form in which the data appears in terms of dot products only the
transformation can be performed by introducing a properly defined kernel function.

Let zm
i andzn

j be two vectors fromY created by the transformation (6). Note that the vector
zm

i has theyi-th coordinate slot equal to[xi, 1], them-th slot equal to−[xi, 1], and remaining
coordinates equal to zero. The vectorzn

j is created likewise. Consequently, the dot product
〈zm

i , zn
j 〉 is equal to the sum of dot products between[xi, 1] and[xj, 1] which occupy the same

coordinate slot. The sign of these dot products is positive ifyi = yj or m = n and negative if
yi = n or yj = n. If all the numbersyi, yj, m, andn differ then the dot product is equal to zero.
The construction of the dot product〈zm

i , zn
j 〉 can be easily expressed using the Kronecker delta,

i.e.,δ(i, j) = 1 for i = j, andδ(i, j) = 0 for i 6= j. The dot product betweenzm
i andzn

j is

〈zm
i , zn

j 〉 = (〈xi, xj〉+ 1) · (δ(yi, yj) + δ(m, n)− δ(yi, n)− δ(yj, m)) .

The dot products〈xi, xj〉 are replaced by the kernel functionk(xi, xj) in the non-linear case.
The kernel functionk′(zm

i , zn
j ) involving transformations (6) and non-linear case is constructed

as
k′(zm

i , zn
j ) = (k(xi, xj) + 1) · (δ(yi, yj) + δ(m, n)− δ(yi, n)− δ(yj, m)) . (9)

It implies that solving the dual form (5) of the single-class SVM problem with the kernel (9) is
equivalent to solving the dual form of the multi-class BSVM problem (3). As the result of the
dual single-class problem we obtain a set ofαm

i , i = 1, . . ., m = 1, . . . , k, m 6= yi multipliers
corresponding to the transformed vectorszm

i . These multipliersαm
i determine the vectorswm

and thresholdsbm which can be obtained by reverting the transform (7).
The normal vectorw in the transformed spaceY is equal tow =

∑
i∈I

∑
m∈K\{yi} zm

i αm
i .

The vectorwj ∈ X occupies thej-th coordinate slot and is determined by the weighted sum of
vectorszm

i which have the non-zeroj-th coordinate slot, so that

wj =
∑
i∈I

∑
m∈K\{yi}

xiα
m
i (δ(j, yi)− δ(j, m)) ,

bj =
∑
i∈I

∑
m∈K\{yi}

αm
i (δ(j, yi)− δ(j, m)) ,

holds. To classify the patternx in the non-linear case there is need to evaluatefj = 〈wj, φ(x)〉+
bj which is equal to

fj(x) =
∑
i∈I

k(xi, x)
∑

m∈K\{yi}

αm
i (δ(j, yi)− δ(j, m)) + bj .



Table 1: Benchmark datasets used for testing.

number of number of number of
patterns classes attributes

iris 150 3 4
wine 178 3 13
glass 214 6 13
thyroid 215 3 3

3 Algorithms to the single-class SVM problem

The introduced kernel allows us to solve the multi-class BSVM problem by the use of al-
gorithms solving the single-class SVM problem. Many efficient optimization algorithms for
the two-class problem can be readily modified to solve the one-class problem. We have con-
ducted several experiments (see Section 4) using the modified Sequential Minimal Optimizer
(SMO) [6] and the kernel Schlesinger-Kozinec algorithm [3].

The SMO for the single-class SVM problem can modify only one Lagrangian at a time
since the dual form does not contain the equality constrains. The framework of the modified
algorithm is preserved from the original one.

The kernel Schlesinger-Kozinec algorithm solves the two-class SVM problem with quadratic
cost function. This problem is transformed to the equivalent problem where the nearest points
from the convex hulls are sought. This transformed probllem can be solved by a simple iterative
procedure. The nearest point from the origin to one convex hull is sought in the modification to
the single-class SVM problem. We used the modified kernel Schlesinger-Kozinec’s algorithm
to train the multi-class BSVM problem with quadratic cost function and the modified SMO
algorithm for the linear cost function.

The implementation of both algorithms in Matlab is available [2].

4 Experiments

We tested the proposed method on the benchmark data sets selected from the UCI data reposi-
tory [7] and Statlog data collection. We scaled all the data to range[−1, 1]. Table 1 summarizes
the data sets used.

As a comparative approach we used the one-against-all decomposition and the SMO [6] al-
gorithm for learning the decomposed dichotomic SVM problems which we denote 1-a-a SMO.
To solve the single-class problem obtained employing the proposed kernel we used (i) the sim-
plified SMO algorithm denoted as M-1-SMO and (ii) the kernel Schlesinger-Kozinec algorithm
denoted as M-1-KSK both mentioned in Section 3.

We trained the classifiers using the Radial Basis Function (RBF) kernelk(xi, xj) = e−
||xi−xj ||

2

2·σ

with the σ = {2−3, 2−2, . . . , 23} and the regularization constantC = {20, 21, . . . , 27}. Each



Table 2: Results of comparison on the benchmark datasets. Measured: testing classification
errorCE [%], trainingtime [s] and number of support vectorsSVs.

1-a-a SMO M-1-SMO M-1-KSK

CE (C, σ) 2.7(27, 20) 2.0(25, 20) 2.0(24, 20)
iris time 0.12 0.22 0.44

SVs 17 30 19
CE (C, σ) 1.1(25, 23) 2.3(26, 23) 1.7(21, 21)

wine time 0.2 0.67 0.40
SVs 54 37 54
CE(C, σ) 37.0(25, 2−1) 28.7(23, 2−2) 31.1(20, 2−2)

glass time 14.10 4.06 1.37
SVs 150 167 177
CE(C, σ) 2.3(24, 20) 2.7(21, 2−1) 1.8(20, 2−1)

thyroid time 0.41 0.13 0.31
SVs 35 43 66

from the7× 8 pairs of(σ, C) was evaluated using10-fold cross validation method. The param-
eters which yielded the best average testing error rate are enlisted in Table 2. We also measured
average values of (i) the number of support vectors and (ii) the training time on training time on
Pentium PIII/750Mhz and (ii) number of support vectors.

5 Conclusions and future work

We propose a transformation from the multi-class SVM classification problem (1) to the single-
class SVM problem (4) for which efficient optimization algorithms exist. First the original
problem is slightly modified by adding the term(1/2)

∑
m∈K b2

m (similarly to Mangasarian [5]
in the dichotomic problem). Then the modified problem is transformed to the single-class SVM
problem which is carried out by the use of a properly defined kernel function only.

The experiments conducted indicate that the proposed method is comparable with the one-
against-all decomposition solved by the state-of-the-art SMO algorithm. It is worthwhile to
investigate the proposed kernel with other efficient algorithms which can solve the single-class
problem, e.g. the Nearest Point Algorithm [4] or the Successive Overrelaxation (SOR) algo-
rithm [5].
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