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1 Introdu
tionIn this 
ontribution, our Statisti
al Pattern Re
ogntion Toolbox (abbreviated STPR toolbox,built on top of Matlab, freely downloadable and usable for a
ademi
 or non-pro�t purposes) isbrie
y sket
hed and namely its newly developed features are introdu
ed. The STPR toolboxwas 
reated within a diploma thesis proje
t of the �rst author in early 2000 [FHS00℄ as ademonstration tool of a monograph M.I. S
hlesinger, V. Hlav�a�
: Ten le
tures on the statisti
aland pattern re
ognition [SH99℄. The STPR toolbox has been developed sin
e then and othermethods that we found interesting were in
luded. We fo
us primarily to these additions inthis paper.The aim of the toolbox is (i) to help the reader of the monograph to understand the patternre
ognition algorithms, (ii) to provide to the user the tool for experimenting with variouspattern re
ognition methods, and (iii) to provide the tea
hers of pattern re
ognition 
oursesthe tool they 
an use with their students in laboratory exer
ises.2 The toolbox overviewWe �rst brie
y list methods whi
h have been in
luded in the STPR toolbox at the time itwas written in February 2000. The newly added algorithms will be dis
ussed in the 
omingse
tions.The �rst part of the STPR toolbox 
onsists of the methods for synthesis of the linear dis
rim-inant fun
tion. Both the algorithms for learning from �nite point sets and in�nite point sets1) This work was supported by the Cze
h Ministry of Edu
ation, proje
t Center for Applied Cyberneti
s,LN00B096.
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(mixtures of Gaussians) are implemented. The main representatives of this part deal with�nite point sets are Per
eptron learning rule, Kozine
's algorithm, algorithms �nding Fisher's
lassi�ers and linear version of the Support Ve
tor Ma
hines. The se
ond part deals within�nite point sets, e.g. mixtures of Gaussians, and its 
ore is the Generalized Anderson's taskproposed by M.I. S
hlesinger. This task belongs to the 
lass of non-Bayesian approa
hes.The third part of the toolbox is devoted to synthesis of the quadrati
 dis
riminant fun
tion.It 
ontains fun
tions whi
h map the original feature spa
e into the new one with higherdimension. In the new feature spa
e, linear algorithms 
an be used for e�e
tive re
ognition.The fourth part of the STPR toolbox deals with learning algorithms, i.e. the algorithmswhi
h build a statisti
al model from given training data. The Minimax learning algorithmsand several versions of the Expe
tation-Maximization (EM) algorithm are implemented. TheMinimax learning algorithm estimates normally distributed statisti
al models for the 
asewhen training set is labeled and the data are not randomly sele
ted. Implemented versions ofthe EM algorithm �nd statisti
al model as a weighted mixture of Gaussians from unlabeleddata.3 New features in the STPR toolboxThe toolbox has been extended by the EM algorithm �nding 
onditionally independent sta-tisti
al model, the Kernel Prin
ipal Component Analysis method and the implementation ofthe Support Ve
tor Ma
hines. We will give brief des
ription of these methods in the followingthree subse
tions.3.1 EM algorithm for 
onditionally independent statisti
al modelThe EM algorithm sear
hes for the statisti
al model m� by solving the following optimizationproblem m� = argmaxm nXi=1 logXk2K p(k)p(xijk; ak) :The model m = (p(k); akjk 2 K) is des
ribed by a priori probabilities of 
lasses p(k), k 2 K,and by parameters ak, k 2 K, whi
h determine a 
onditional probabilities p(xijk; ak). Trainingdata xi; i = 1; 2; : : : ; n, are supposed to be independently and identi
ally distributed featureve
tors whi
h represent the examined problem.The most often used model is a mixture of Gaussians or, more generally, a model from theexponential family. The algorithm that �nds weighted mixture of Gaussians for 
orrelatedand un
orrelated data is implemented in the toolbox as well. But there exist other less-known model for whi
h the EM algorithm 
an be used. One of them is a model we 
all the




onditionally independent model, whi
h is de�ned as follows.Suppose that the examined obje
t is des
ribed by two observable features x 2 X and y 2 Yand by an unobservable state k 2 K. The sets X; Y and K are supposed to be �nite. Thefeatures x and y are 
onditionally independent, i.e. p(x; yjk) = p(xjk) � p(yjk), 8x 2 X,8y 2 Y , 8k 2 K.It has been proven that for the 
ase of two states only, i.e. k = f1; 2g, the EM algorithms�nds a global maximum of the likelihood fun
tion [S
h97℄. This 
on
lusion does not hold for amodel based on the mixture of Gaussians. The 
onditionally independent model has severalfurther interesting properties whi
h are analyzed in [SH99℄. In addition to the mentioned EMalgorithm, the STPR toolbox 
ontains useful fun
tions for visualization and for working withobtained results.3.2 Kernel Prin
ipal Component AnalysisThe method 
alled Kernel Prin
ipal Component Analysis (Kernel PCA) [SSM98, RLdT01℄implies two steps. The �rst one is a non-linear mapping of the feature spa
e whi
h generalizeslinear algorithms (e.g. Per
eptron learning rule) to non-linear algorithms. The se
ond stepis the standard Prin
ipal Component Analysis (PCA). In the non-linear mapping method,ve
tors from the original feature spa
e x 2 X are mapped by the fun
tion �:X ! Y onto theve
tors y 2 Y from the new feature spa
e of 
onsiderably higher dimension.The PCA is a well-known statisti
al analysis te
hnique whi
h linearly proje
ts data onto theprin
ipal subspa
e. The PCA is based on �nding the eigenvalues and eigenve
tors of the
ovarian
e matrix C = 1NY Y T , where Y = fy1; y2; :::; yNg are the training 
olumn ve
tors.Performing these two steps separately 
an be
ome 
omputationally demanding be
ause thedimension of the new feature spa
e Y 
an be very high or even in�nite. For instan
e, thedimension of the new feature spa
e for a polynomial fun
tion �(x) is equal to 0� d+ p� 1p 1A,where p is a degree of the polynomial and d is a dimension of the original feature spa
e. Thusfor the polynomial of degree p = 4 and data of dimension d = 256 is dim(Y ) = 183; 181; 376.A way how to avoid this problem is to use kernel fun
tions. It is known that linear algorithms,whi
h depend only on the data by dot produ
ts, denoted hxi; xji, 
an be made non-linear byrepla
ing dot produ
ts by the kernel fun
tion k(xi; xj) = h�(xi); �(xj)i. Its 
omputation doesnot require an expli
it mapping of ve
tors xi; xj into a higher dimensional spa
e. This relationis expressed by the fun
tion k(xi; xj) in an easier manner. It has been proven in [SSM98℄ thatthere is one-to-one mapping between the non-zero eigenve
tors of the matrix C = 1NXXT andthe non-zero eigenve
tors of matrix K = 1NXTX. As mentioned above, the matrix K 
an be



substituted by the kernel matrix Ki;j = h�(xi); �(xj)i = k(xi; xj) in the non-linear 
ase.The toolbox 
ontains standard kernels (i.e. polynomial, quadrati
, Gaussian Radial Basisfun
tions, sigmoid kernels, splines and Fourier expansion) but other ones 
an be simply added.The Kernel PCA essentially extends 
apability of the linear algorithms implemented in thetoolbox, i.e. Per
eptron learning rule, Kozine
's algorithm, Fisher's 
lassi�ers or algorithmsfor Anderson's task.3.3 Support Ve
tor Ma
hines for 
lassi�
ation problemsWe implemented Support Ve
tor Ma
hines (SVM) [Vap95℄, whi
h is the training algorithmhaving two main features: (1) it automati
ally tunes the 
apa
ity of the 
lassi�er (trade-o�between the ability to learn 
ompli
ated dis
riminant fun
tions and the ability of generaliza-tion) by maximizing the margin between the 
lasses, (2) it allows to learn variety of non-lineardis
riminant fun
tions by the use of non-linear kernels (
f. Se
tion 3.2).The SVM in its basi
 form learns a 
lassi�er from two training point sets X1 and X2. Con-sidering the linear 
ase, the SVM �nds su
h de
ision hyperplane, whi
h maximizes a marginbetween the training 
lasses and minimizes an overlap of the training points. This learningtask 
an be expressed as the quadrati
 optimization problem(w; b) = argminw;b 12 jjwjj2 + CXi �i (1)with linear 
onstrains hxi; wi+ b � +1� �i ; for xi 2 X1 ; (2)hxi; wi+ b � �1 + �i ; for xi 2 X2 ; (3)�i � 0 ; 8i ;C > 0 ;where w is a normal ve
tor of the de
ision hyperplane and b is its threshold. The number �iis 0 if the point xi does not overlap the hyperplane or is �i > 0 if it does. The �rst addend12 jjwjj2 in the obje
tive fun
tion (1) mirrors the requirement of the maximal margin between
lasses and the se
ond member CPi �i expresses that the overlap of the training points shouldbe as small as possible. The 
onstant C determines the trade-o� between points overlap andmaximal margin. This parameter must be pres
ribed by the user. The 
onditions (2) and(3) state that the training points from the �rst 
lass X1 and the se
ond 
lass X2 must lie indi�erent subspa
es determined by the found hyperplane.The optimization problem des
ribed above 
an be transformed into a dual optimization prob-lem [Fle87℄ where training points appear only in dot produ
ts hxi; xji. For this formulation,



we have to introdu
e 
lass label yi; i = 1; 2; :::; m, whi
h is yi = +1 for xi 2 X1 and yi = �1for xi 2 X2. Then the dual optimization problem 
an be written as� = argmax� mPi=1�i � 12 mPi;j=1�i�jyiyjhxi; xji ;0 � �i � C ; i = 1; 2; : : : ; m ;mPi=1�iyi = 0 :The found values � determine the ve
tor w asw = mXi=1 �iyixi:Let us note, that we 
an sum up only over su
h ve
tors xi those 
orresponding �i is non-zero.These ve
tors are 
alled Support Ve
tors. The threshold b 
an be 
omputed using Karush-Kuhn-Tu
ker 
onditions, playing a main role in analysis of this problem. Spe
i�
ally, we �ndthe subset I = fi = 1; 2; : : : ; m: 0 < �i < Cg and 
ompute threshold asb = 1jIjXi2I yi � (1� hw; xii) ;where the average value of the threshold is used sin
e it is numeri
ally more feasible. Finally,a given 
lassi�ed point x is assigned to the 
lass a

ording to the sign of fun
tionf(x) = mXi=1 �i yi hxi; xi+ b : (4)Again, the above summation 
an be done only over Support Ve
tors.The dual expression makes the learning problem independent of the dimension. Moreover,when these dot produ
ts are repla
ed by the non-linear kernel fun
tion k(xi; xj) then the SVM
an be used to �nd non-linear 
lassi�ers (see Se
tion 3.2).SVM implemented in the toolbox uses the Matlab Optimization toolbox to numeri
al op-timization. Let us note that implemented basi
 version of SVM is appli
able for small tomoderate values of input data size. For large problems (tens of thousands of patterns), stan-dard algorithms for quadrati
 optimization (like those in Matlab) 
annot be used dire
tly.E�e
tive methods based on de
omposition of the initial problems to smaller 
omputationallyfeasible ones were proposed in [Vap95℄, [Pla98℄. We plan to in
lude these methods into nextversion of the STPR toolbox.The further restri
tion of the basi
 SVM 
omes from its formulation for two 
lasses only. Weimplemented a simple extension whi
h de
omposes the initial 
-
lass problem into 
, 
 > 2,di
hotomies solvable by the basi
 algorithm. Spe
i�
ally, for the i-th 
lass we learn 
lassi�erwhi
h assigns points x 2 Xi into one 
lass and the other points x 2 [i 6=j;j=1;:::;
Xj intothe se
ond 
lass. We obtain one dis
riminant fun
tion fi(x) for ea
h 
lass, whi
h is de�nedsimilarly as in Equation (4). Given points are assigned to the 
lass 
x with the maximal valueof dis
riminant fun
tion, i.e. 
x = argmaxi=1;:::;
 fi(x).



4 ExperimentsWe will demonstrate the use of the newly implemented algorithms on the Ripley's dataset[Rip94℄. This dataset 
onstitutes a well-known syntheti
 problem of small size and in two-dimensional spa
e. The set 
onsists of 250 training and 1000 testing patterns belonginginto two 
lasses. Both the testing set and the training set are heavily overlapped. In thisexperiment, the SVM are 
ompared to the non-linear version of the simple linear algorithmwhi
h follows the similar re
ently published approa
hes [RLdT01, FCC98℄We learnt three types of dis
riminant fun
tions - linear, quadrati
 and a dis
riminant 
or-responding to the Radial Basis Fun
tion kernel (denoted RBF). As a learning algorithm wealways used SVM with 
orresponding kernel 
ompared with the algorithm solving Ander-son's task. The Anderson's task produ
es only linear de
ision boundary but it 
an be easilyextended to non-linear boundaries using a non-linear mapping. We used both the expli
itmapping for quadrati
 dis
riminant fun
tion and the Kernel PCA with RBF kernel.Let us give a brief des
ription of the Anderson's task. The aim of the original Anderson'stask is to separate two 
lasses, ea
h is des
ribed by one Gaussian1) and to minimize theprobability of 
lassi�
ation error. No weights of these distributions are required, whi
h isespe
ially useful when a priori probabilities of 
lasses are not available. Moreover, it has beenproven [SH99℄ that use of this 
lassi�er is admissible, even if distributions are not Gaussian andthere is no additional information about their shape. Implementation of the algorithm solvingthe Anderson's task is 
onsiderably simpler 
ompared with the SVM. Roughly speaking, thealgorithm tries to �nd su
h a hyperplane that maximizes Mahalanobis distan
e from meanvalue of both 
lass to the hyperplane. For detailed des
ription we refer to [SH99℄.To use this 
lassi�er, we have to know parameters of Gaussians, i.e. mean value � and
ovarian
e matrix �, of ea
h 
lass. We estimated these parameters by sample mean andsample 
ovarian
e matrix. For linear de
ision boundary, we estimated � and � dire
tly inthe input spa
e. In the 
ase, the quadrati
 boundary and the RBF boundary were learned,we �rst non-linearly mapped the input spa
e to a new spa
e with higher dimension. In the
ase of quadrati
 boundary, the fun
tion for expli
it mapping was used. In the 
ase of RBFboundary, its 
orresponding feature spa
e has in�nite dimension, the Kernel PCA with theRBF kernel was used. The dimension of the spa
e was redu
ed to d = 10.The obtained results are summarized in Table 1. Dis
riminant boundaries found 
lassi�ersare shown in Figure 1. Noti
e that boundaries found by SVM and non-linear algorithm forAnderson's task are similar even though both approa
hes are very di�erent.1)Let us note that the toolbox 
ontains not only algorithm for this task but also others whi
h solve so 
alledGeneralized Anderson's task where the 
lasses are supposed to be des
ribed by a �nite mixture of Gaussians.



Table 1: SVM 
ompared to non-linearized Anderson's task.Class. error Class. error Floating point(testing data) (training data) operationsSVM (linear, C=100) 10 % 15 % 7309:8 � 106Anderson (linear) 12 % 16 % 0:0056 � 106SVM (quadrati
, C=100) 10 % 16 % 7556:9 � 106Anderson + quadrati
 mapping 9 % 15 % 0:0256 � 106SVM (RBF, C=100) 10 % 12 % 8746:2 � 106Anderson + Kernel PCA (RBF, dim = 10) 10 % 12 % 275:7691 � 106
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Figure 1: De
ision boundaries of 
lassi�ers learnt on Riplay's data set by SVM (solid line) andalgorithm for Anderson's task (dashed line). In the pi
ture with linear dis
rimiant fun
tion,shapes of estimated 
ovarian
e matri
es are also displayed.Results given by the non-linear algorithm for Anderson's task are well 
ompetitive with SVMin a
hieved errors rates. Moreover, they are 
onsiderably faster if judged by number of used
oating operations. It shows that the simpler algorithm 
an 
ompete with SVM very well.



5 Con
lusionsThe Statisti
al Pattern Re
ognition Toolbox built on top of Matlab has been brie
y intro-du
ed. This paper 
on
entrated to extensions of our toolbox unpublished so far, namely: (a)EM algorithm for 
onditionally independent statisti
al model, (b) Kerner Prin
ipal Compo-nent Analysis, (
) Support Ve
tor Ma
hines. Classi�er learnt by (
) and linear algorithmsolving Anderson's task non-linearized by (b) were experimentally tested. What might besurprising to the reader is that the originally linear algorithm for Anderson's task that istransformed to a nonlinear algorithm by the Kernel PCA yields 
omparable results to 
ur-rently fashionable SVM even it is simpler.We intend to keep developing the STPR toolbox in our future work.We a
knowledge the help of Prof. M.I. S
hlesinger, who brought our attention to problemsreported in this 
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