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1 IntrodutionIn this ontribution, our Statistial Pattern Reogntion Toolbox (abbreviated STPR toolbox,built on top of Matlab, freely downloadable and usable for aademi or non-pro�t purposes) isbriey skethed and namely its newly developed features are introdued. The STPR toolboxwas reated within a diploma thesis projet of the �rst author in early 2000 [FHS00℄ as ademonstration tool of a monograph M.I. Shlesinger, V. Hlav�a�: Ten letures on the statistialand pattern reognition [SH99℄. The STPR toolbox has been developed sine then and othermethods that we found interesting were inluded. We fous primarily to these additions inthis paper.The aim of the toolbox is (i) to help the reader of the monograph to understand the patternreognition algorithms, (ii) to provide to the user the tool for experimenting with variouspattern reognition methods, and (iii) to provide the teahers of pattern reognition oursesthe tool they an use with their students in laboratory exerises.2 The toolbox overviewWe �rst briey list methods whih have been inluded in the STPR toolbox at the time itwas written in February 2000. The newly added algorithms will be disussed in the omingsetions.The �rst part of the STPR toolbox onsists of the methods for synthesis of the linear disrim-inant funtion. Both the algorithms for learning from �nite point sets and in�nite point sets1) This work was supported by the Czeh Ministry of Eduation, projet Center for Applied Cybernetis,LN00B096.
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(mixtures of Gaussians) are implemented. The main representatives of this part deal with�nite point sets are Pereptron learning rule, Kozine's algorithm, algorithms �nding Fisher'slassi�ers and linear version of the Support Vetor Mahines. The seond part deals within�nite point sets, e.g. mixtures of Gaussians, and its ore is the Generalized Anderson's taskproposed by M.I. Shlesinger. This task belongs to the lass of non-Bayesian approahes.The third part of the toolbox is devoted to synthesis of the quadrati disriminant funtion.It ontains funtions whih map the original feature spae into the new one with higherdimension. In the new feature spae, linear algorithms an be used for e�etive reognition.The fourth part of the STPR toolbox deals with learning algorithms, i.e. the algorithmswhih build a statistial model from given training data. The Minimax learning algorithmsand several versions of the Expetation-Maximization (EM) algorithm are implemented. TheMinimax learning algorithm estimates normally distributed statistial models for the asewhen training set is labeled and the data are not randomly seleted. Implemented versions ofthe EM algorithm �nd statistial model as a weighted mixture of Gaussians from unlabeleddata.3 New features in the STPR toolboxThe toolbox has been extended by the EM algorithm �nding onditionally independent sta-tistial model, the Kernel Prinipal Component Analysis method and the implementation ofthe Support Vetor Mahines. We will give brief desription of these methods in the followingthree subsetions.3.1 EM algorithm for onditionally independent statistial modelThe EM algorithm searhes for the statistial model m� by solving the following optimizationproblem m� = argmaxm nXi=1 logXk2K p(k)p(xijk; ak) :The model m = (p(k); akjk 2 K) is desribed by a priori probabilities of lasses p(k), k 2 K,and by parameters ak, k 2 K, whih determine a onditional probabilities p(xijk; ak). Trainingdata xi; i = 1; 2; : : : ; n, are supposed to be independently and identially distributed featurevetors whih represent the examined problem.The most often used model is a mixture of Gaussians or, more generally, a model from theexponential family. The algorithm that �nds weighted mixture of Gaussians for orrelatedand unorrelated data is implemented in the toolbox as well. But there exist other less-known model for whih the EM algorithm an be used. One of them is a model we all the



onditionally independent model, whih is de�ned as follows.Suppose that the examined objet is desribed by two observable features x 2 X and y 2 Yand by an unobservable state k 2 K. The sets X; Y and K are supposed to be �nite. Thefeatures x and y are onditionally independent, i.e. p(x; yjk) = p(xjk) � p(yjk), 8x 2 X,8y 2 Y , 8k 2 K.It has been proven that for the ase of two states only, i.e. k = f1; 2g, the EM algorithms�nds a global maximum of the likelihood funtion [Sh97℄. This onlusion does not hold for amodel based on the mixture of Gaussians. The onditionally independent model has severalfurther interesting properties whih are analyzed in [SH99℄. In addition to the mentioned EMalgorithm, the STPR toolbox ontains useful funtions for visualization and for working withobtained results.3.2 Kernel Prinipal Component AnalysisThe method alled Kernel Prinipal Component Analysis (Kernel PCA) [SSM98, RLdT01℄implies two steps. The �rst one is a non-linear mapping of the feature spae whih generalizeslinear algorithms (e.g. Pereptron learning rule) to non-linear algorithms. The seond stepis the standard Prinipal Component Analysis (PCA). In the non-linear mapping method,vetors from the original feature spae x 2 X are mapped by the funtion �:X ! Y onto thevetors y 2 Y from the new feature spae of onsiderably higher dimension.The PCA is a well-known statistial analysis tehnique whih linearly projets data onto theprinipal subspae. The PCA is based on �nding the eigenvalues and eigenvetors of theovariane matrix C = 1NY Y T , where Y = fy1; y2; :::; yNg are the training olumn vetors.Performing these two steps separately an beome omputationally demanding beause thedimension of the new feature spae Y an be very high or even in�nite. For instane, thedimension of the new feature spae for a polynomial funtion �(x) is equal to 0� d+ p� 1p 1A,where p is a degree of the polynomial and d is a dimension of the original feature spae. Thusfor the polynomial of degree p = 4 and data of dimension d = 256 is dim(Y ) = 183; 181; 376.A way how to avoid this problem is to use kernel funtions. It is known that linear algorithms,whih depend only on the data by dot produts, denoted hxi; xji, an be made non-linear byreplaing dot produts by the kernel funtion k(xi; xj) = h�(xi); �(xj)i. Its omputation doesnot require an expliit mapping of vetors xi; xj into a higher dimensional spae. This relationis expressed by the funtion k(xi; xj) in an easier manner. It has been proven in [SSM98℄ thatthere is one-to-one mapping between the non-zero eigenvetors of the matrix C = 1NXXT andthe non-zero eigenvetors of matrix K = 1NXTX. As mentioned above, the matrix K an be



substituted by the kernel matrix Ki;j = h�(xi); �(xj)i = k(xi; xj) in the non-linear ase.The toolbox ontains standard kernels (i.e. polynomial, quadrati, Gaussian Radial Basisfuntions, sigmoid kernels, splines and Fourier expansion) but other ones an be simply added.The Kernel PCA essentially extends apability of the linear algorithms implemented in thetoolbox, i.e. Pereptron learning rule, Kozine's algorithm, Fisher's lassi�ers or algorithmsfor Anderson's task.3.3 Support Vetor Mahines for lassi�ation problemsWe implemented Support Vetor Mahines (SVM) [Vap95℄, whih is the training algorithmhaving two main features: (1) it automatially tunes the apaity of the lassi�er (trade-o�between the ability to learn ompliated disriminant funtions and the ability of generaliza-tion) by maximizing the margin between the lasses, (2) it allows to learn variety of non-lineardisriminant funtions by the use of non-linear kernels (f. Setion 3.2).The SVM in its basi form learns a lassi�er from two training point sets X1 and X2. Con-sidering the linear ase, the SVM �nds suh deision hyperplane, whih maximizes a marginbetween the training lasses and minimizes an overlap of the training points. This learningtask an be expressed as the quadrati optimization problem(w; b) = argminw;b 12 jjwjj2 + CXi �i (1)with linear onstrains hxi; wi+ b � +1� �i ; for xi 2 X1 ; (2)hxi; wi+ b � �1 + �i ; for xi 2 X2 ; (3)�i � 0 ; 8i ;C > 0 ;where w is a normal vetor of the deision hyperplane and b is its threshold. The number �iis 0 if the point xi does not overlap the hyperplane or is �i > 0 if it does. The �rst addend12 jjwjj2 in the objetive funtion (1) mirrors the requirement of the maximal margin betweenlasses and the seond member CPi �i expresses that the overlap of the training points shouldbe as small as possible. The onstant C determines the trade-o� between points overlap andmaximal margin. This parameter must be presribed by the user. The onditions (2) and(3) state that the training points from the �rst lass X1 and the seond lass X2 must lie indi�erent subspaes determined by the found hyperplane.The optimization problem desribed above an be transformed into a dual optimization prob-lem [Fle87℄ where training points appear only in dot produts hxi; xji. For this formulation,



we have to introdue lass label yi; i = 1; 2; :::; m, whih is yi = +1 for xi 2 X1 and yi = �1for xi 2 X2. Then the dual optimization problem an be written as� = argmax� mPi=1�i � 12 mPi;j=1�i�jyiyjhxi; xji ;0 � �i � C ; i = 1; 2; : : : ; m ;mPi=1�iyi = 0 :The found values � determine the vetor w asw = mXi=1 �iyixi:Let us note, that we an sum up only over suh vetors xi those orresponding �i is non-zero.These vetors are alled Support Vetors. The threshold b an be omputed using Karush-Kuhn-Tuker onditions, playing a main role in analysis of this problem. Spei�ally, we �ndthe subset I = fi = 1; 2; : : : ; m: 0 < �i < Cg and ompute threshold asb = 1jIjXi2I yi � (1� hw; xii) ;where the average value of the threshold is used sine it is numerially more feasible. Finally,a given lassi�ed point x is assigned to the lass aording to the sign of funtionf(x) = mXi=1 �i yi hxi; xi+ b : (4)Again, the above summation an be done only over Support Vetors.The dual expression makes the learning problem independent of the dimension. Moreover,when these dot produts are replaed by the non-linear kernel funtion k(xi; xj) then the SVMan be used to �nd non-linear lassi�ers (see Setion 3.2).SVM implemented in the toolbox uses the Matlab Optimization toolbox to numerial op-timization. Let us note that implemented basi version of SVM is appliable for small tomoderate values of input data size. For large problems (tens of thousands of patterns), stan-dard algorithms for quadrati optimization (like those in Matlab) annot be used diretly.E�etive methods based on deomposition of the initial problems to smaller omputationallyfeasible ones were proposed in [Vap95℄, [Pla98℄. We plan to inlude these methods into nextversion of the STPR toolbox.The further restrition of the basi SVM omes from its formulation for two lasses only. Weimplemented a simple extension whih deomposes the initial -lass problem into ,  > 2,dihotomies solvable by the basi algorithm. Spei�ally, for the i-th lass we learn lassi�erwhih assigns points x 2 Xi into one lass and the other points x 2 [i 6=j;j=1;:::;Xj intothe seond lass. We obtain one disriminant funtion fi(x) for eah lass, whih is de�nedsimilarly as in Equation (4). Given points are assigned to the lass x with the maximal valueof disriminant funtion, i.e. x = argmaxi=1;:::; fi(x).



4 ExperimentsWe will demonstrate the use of the newly implemented algorithms on the Ripley's dataset[Rip94℄. This dataset onstitutes a well-known syntheti problem of small size and in two-dimensional spae. The set onsists of 250 training and 1000 testing patterns belonginginto two lasses. Both the testing set and the training set are heavily overlapped. In thisexperiment, the SVM are ompared to the non-linear version of the simple linear algorithmwhih follows the similar reently published approahes [RLdT01, FCC98℄We learnt three types of disriminant funtions - linear, quadrati and a disriminant or-responding to the Radial Basis Funtion kernel (denoted RBF). As a learning algorithm wealways used SVM with orresponding kernel ompared with the algorithm solving Ander-son's task. The Anderson's task produes only linear deision boundary but it an be easilyextended to non-linear boundaries using a non-linear mapping. We used both the expliitmapping for quadrati disriminant funtion and the Kernel PCA with RBF kernel.Let us give a brief desription of the Anderson's task. The aim of the original Anderson'stask is to separate two lasses, eah is desribed by one Gaussian1) and to minimize theprobability of lassi�ation error. No weights of these distributions are required, whih isespeially useful when a priori probabilities of lasses are not available. Moreover, it has beenproven [SH99℄ that use of this lassi�er is admissible, even if distributions are not Gaussian andthere is no additional information about their shape. Implementation of the algorithm solvingthe Anderson's task is onsiderably simpler ompared with the SVM. Roughly speaking, thealgorithm tries to �nd suh a hyperplane that maximizes Mahalanobis distane from meanvalue of both lass to the hyperplane. For detailed desription we refer to [SH99℄.To use this lassi�er, we have to know parameters of Gaussians, i.e. mean value � andovariane matrix �, of eah lass. We estimated these parameters by sample mean andsample ovariane matrix. For linear deision boundary, we estimated � and � diretly inthe input spae. In the ase, the quadrati boundary and the RBF boundary were learned,we �rst non-linearly mapped the input spae to a new spae with higher dimension. In thease of quadrati boundary, the funtion for expliit mapping was used. In the ase of RBFboundary, its orresponding feature spae has in�nite dimension, the Kernel PCA with theRBF kernel was used. The dimension of the spae was redued to d = 10.The obtained results are summarized in Table 1. Disriminant boundaries found lassi�ersare shown in Figure 1. Notie that boundaries found by SVM and non-linear algorithm forAnderson's task are similar even though both approahes are very di�erent.1)Let us note that the toolbox ontains not only algorithm for this task but also others whih solve so alledGeneralized Anderson's task where the lasses are supposed to be desribed by a �nite mixture of Gaussians.



Table 1: SVM ompared to non-linearized Anderson's task.Class. error Class. error Floating point(testing data) (training data) operationsSVM (linear, C=100) 10 % 15 % 7309:8 � 106Anderson (linear) 12 % 16 % 0:0056 � 106SVM (quadrati, C=100) 10 % 16 % 7556:9 � 106Anderson + quadrati mapping 9 % 15 % 0:0256 � 106SVM (RBF, C=100) 10 % 12 % 8746:2 � 106Anderson + Kernel PCA (RBF, dim = 10) 10 % 12 % 275:7691 � 106
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Figure 1: Deision boundaries of lassi�ers learnt on Riplay's data set by SVM (solid line) andalgorithm for Anderson's task (dashed line). In the piture with linear disrimiant funtion,shapes of estimated ovariane matries are also displayed.Results given by the non-linear algorithm for Anderson's task are well ompetitive with SVMin ahieved errors rates. Moreover, they are onsiderably faster if judged by number of usedoating operations. It shows that the simpler algorithm an ompete with SVM very well.



5 ConlusionsThe Statistial Pattern Reognition Toolbox built on top of Matlab has been briey intro-dued. This paper onentrated to extensions of our toolbox unpublished so far, namely: (a)EM algorithm for onditionally independent statistial model, (b) Kerner Prinipal Compo-nent Analysis, () Support Vetor Mahines. Classi�er learnt by () and linear algorithmsolving Anderson's task non-linearized by (b) were experimentally tested. What might besurprising to the reader is that the originally linear algorithm for Anderson's task that istransformed to a nonlinear algorithm by the Kernel PCA yields omparable results to ur-rently fashionable SVM even it is simpler.We intend to keep developing the STPR toolbox in our future work.We aknowledge the help of Prof. M.I. Shlesinger, who brought our attention to problemsreported in this ontribution and keeps showing us how to approah them.Referenes[FCC98℄ T.T. Friess, N. Cristianini, and C. Campbell. The kernel adatron algorithm: A fast and simplelearning proedure for support vetor mahines. In Pro. 15th International Conferene on MahineLearning. Morgan Kaufman Publishers, 1998.[FHS00℄ V. Fran, V. Hlav�a�, and M. I. Shlesinger. Linear and quadrati lassi�ation toolbox for Matlab.In Toma�s Svoboda, editor, Proeedings of the Czeh Pattern Reognition Workshop, pages 89{99,Per�sl�ak, Czeh Republi, February 2000. Czeh Soiety for Pattern Reognition, Prague.[Fle87℄ R. Flether. Pratial Methods of Optimization. John Wiley and Sons, In., 2nd edition edition,1987.[Pla98℄ J.C. Platt. Fast training of support vetors mahines using sequential minimal optimization, 1998.[Rip94℄ B.D. Riplay. Neural networks and related methods for lassi�ation (withdisusion). J. RoyalStatistial So. Series B, 56:409{456, 1994.[RLdT01℄ A. Ruiz and P.E. L�opez-de Teruel. Nonlinear kernel-based statistial pattern analysis. IEEE Trans.on Neural Networks, 12(1):16{33, January 2001.[Sh97℄ M. I. Shlesinger. Identi�kaia statistieskih parametrov v odnoj modeli uslovnoj nezavisimosti, inRussian (Statistial parameters identi�ation of one onditional independene model ). TehnialReport 1895, UTIA AV CR, Prague, Czeh Republi, January 1997.[SH99℄ M. I. Shlesinger and V. Hlav�a�. Deset p�redn�a�sek z teorie statistik�eho a strukturn��ho rozpozn�av�an��,in Czeh (Ten letures on statistial and strutural pattern reognition). Czeh Tehnial UniversityPublishing House, Praha, Czeh Republi, 1999. English version is supposed to be published byKluwer Aademi Publishers in 2001.[SSM98℄ B. Sh�olkopf, A. Smola, and K.R. M�uller. Nonlinear omponent analysis as a kernel eigenvalueproblem. Neural Computation, 10(5),1299-1319, 1998.[Vap95℄ V. N. Vapnik. The nature of statistial learning theory. Springer-Verlag, New York, 1995.


