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Abstract. This paper contributes to the statistical pattern recognition
problem in which two classes of objects are considered and either of them
is described by a mixture of Gaussian distributions. The components of
either mixture are known, and unknown are only their weights. The class
(state) of the object k is to be found at the mentioned incomplete a priori
knowledge of the statistical model and the known observation z. The
task can be expressed as a statistical decision making with non-random
interventions. The task was formulated and solved first by Anderson and
Bahadur [1] for a simpler case where each of two classes is described by
a single Gaussian. The more general formulation with more Gaussians
describing each of two classes was suggested by M.I. Schlesinger under
the name generalized Anderson’s task (abbreviated GAT in the sequel).
The linear solution to GAT was proposed in [5] and described recently
in a more general context in a monograph [4].

This contribution provides (i) a formulation of GAT, (ii) a taxonomy
of various solutions to GAT including their brief description, (iii) the
novel improvement to one of its solutions by proposing better direction
vector for next iteration, (iv) points to our implementation of GAT in
a more general Statistical Pattern Recognition Toolbox (in MATLAB,
public domain) and (v) shows experimentally the performance of the
improvement (iii).

1 Definition of the Generalized Anderson’s Task

Let X be a multidimensional linear space. The result of object observation is a
point x in the n-dimensional feature space X. Let k& be an unobservable state
which can have only two possible value k € {1,2}. It is assumed that conditional
probabilities px |k (z|k),z € X,k € K are multidimensional Gaussian distribu-
tions. Mathematical expectations u; and covariance matrices oy, k = 1,2, of
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these distributions are not known. The only knowledge available is that param-
eters (u1,01) belong to a certain known set of parameters {(u/,07)|j € J;} and
similarly for (uz2,09) it is set {(1/,07)|j € J2} (J1, Jo denote set of indexes). Pa-
rameters p; and oy denote real but unknown statistical parameters of an object
in the state k = 1. Parameters {u/, 07} for a certain upper index j represents
one pair from possible pairs of values.

The goal is to find a decision strategy ¢: X — {1,2} mapping feature space
X to space of the clagsses K that minimizes the value

J i
jgrglf:thZE(q,u ,07), (1)

where (g, i, 07) is a probability that the Gaussian random vector x with
mathematical expectation p/ and covariance matrix o fulfills either constraint
g(z) = 1for j € Jy or q(x) = 2 for j € Jy. In other words, it is the probability
that the random vector z will be classified to the different class then it actually
belongs to.

We are interested in the solution of the formulated task under an additional
constraint on the decision strategy g. The requirements is that the discriminant
function should be linear, i.e. a hyperplane (@, z) = 6 and

N ].,lf <Oé,l’> >0’
q(z,0,0) = {2, if (a, ) < 0, (2)

for certain vector @ € X and the scalar . The expression in angle brackets («, z)
denote scalar product of vectors «, z.
The task (1) satisfying condition (2) minimizes probability of classification
error and can be rewritten as
a,0} = argmin max_e(q(z, o, 0), 4, 7). 3
{00} = avgmin_ e <(a(z.0,6), ) (3)
This is a generalization of the known Anderson’s and Bahadur’s task [1] that

was formulated and solved for a simpler case, where each class is described by
only one distribution, i.e. [Ji| = |J2] = 1. A toy example is shown in Figure 1.

2 Solution to the generalized Anderson’s task

There are several approaches how to solve GAT. They are thoroughly analyzed
in [4]. First, we will list them and (in next section) we will focus on one of them
which we have improved.

— General Algorithm Framework. The general method based on proofs
which leads to the optimal solution defined by the criterion (3). We shell
devote our attention to this approach in Section 3

— Solution by the help of optimization using general gradient theo-
rem. The criterion (3) defining GAT is unimodal but it is neither convex nor
differentiable [4]. Thus standard hill climbing methods cannot be used but
so called generalized gradient optimization theorem [6] can be used instead.
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Class 1 Oa, x =16

/ Class 2

Fig. 1. An example of GAT. The first class is described by Gaussians with parameters
{(u',0"),(?,0%),(*,0°)} and the second class by {(u*,0"), (u°,0°), (u°,°)}. Mean
values p/ are denoted by crosses and covariance matrices o7 by ellipsoids. The line
represents found linear decision rule which maximizes Mahalanob is distance from the
nearest distribution {(u*,c"), (13, 0%), (u*,o*)}. The points =}, laying and the decision
hyperplane have the nearest Mahalanobis distance from given distribution.

— g-optimal solution. The e-solution method finds such a decision hyper-
plane («,#) that the probability of wrong classification is smaller than a
given limit gy, i.e.

ax_ e((a,8), 14, 0%) < g.
jdnax (e, 0), 17, 07) < eo
The optimal solution (3) does not need to be found so that the problem is
thus easier. The task is reduced to splitting two sets of ellipsoids their radius
is determined by the €y. This task can be solved by Kozinec’s algorithm [4]
which is similar to Perceptron learning rule.

3 Algorithm framework

In this section we will introduce the general algorithm framework which solves
GAT. Our contribution to this algorithm will be given in Section 4. The algo-
rithm framework as well as concepts we will use are thoroughly analyzed and
proved in [4]. We will introduce them without proofs.
Our goal is, in accordance with the definition of GAT (see Section 1), to
optimize following criterion
@,8)} = argmin max_e(g(z, o, 8), 4, 07). 4
{00} = avgmin_ s <(a(z.0,6), ') (4)
Where «, 6 are parameters of a decision hyperplane (a,z) = 6 we are searching
for. Vectors u?,j € J; U J> and matrices 07,5 € Jy U J> are parameters of
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Gaussians describing the first class J; and the second class J>. This optimization
task can be transformed to equivalent optimization task

o = argmax min r(a, y?, 07). (5)
a JjeJ
The task (5) is more suitable for both analysis and computation. The trans-
formation consists of (i) introducing homogeneous coordinates by adding one
constant coordinate, (ii) merging both the classes together by swapping one
class along origin of coordinates, (iii) expressing of probability ¢(q(z, @), u’,o7)
using number r(a, p?, o7).

(i) Introducing homogenous coordinates leads to formally simpler problem since
only vector o' = [a, —6)] is looked for and the threshold 6 is hidden in the (n+
1)-th cooridinate of vector . New mean vectors '/ = [pi7, 1] and covariance

matrices o = are used after it. Notice that new covariance matrices

ol 0

00
have the last column and the last row zero since constant coordinate was
added.

(ii) Having decision hyperplane (a',z') = 0, which passes the origin of coor-
dinates, it holds that e(q(z',a'),u"7,0') = e(q(2', '), —p",0"),5 € Jo.
It allows us to merge the input parameter sets into one set of parame-
ters {(u"9,0")|j € J} = {(u9,0)]j € J}U{(-uh,0)]j € Ja}. To
make notation simpler we will use further on notation z,c, ', 0’ instead
Of 1‘”, a//, //’”ja o.//j‘

(iii) The number r(a, p/, 07) is the Mahalanobis distance between the normal
distribution N(p?,07) and a point z, laying on the hyperplane (a,z) = 0
which has the smallest distance. It has been proven [4] that e(q(z, o, 8), u?, o9)
monotonically decreases when r(a,u/,07) incereases which allows us ex-
change minmax criterion (4) to maxmin (5). The point with the smallest
distance is

v = argmin (0 — ), (0) " (4 — ) = i — B iy
z|{o,z)=0 (aa ol - a>
The number r(a, p#, 07) can be computed as
ol 09) = (8 — ), (09) - (1 — ) = BB
(o, 07 - @)

The objective function in criterion (5) is unimodal and monotonically de-
creasing function. The algorithm which solves the criterion is similar to hill
climbing methods but the direction in which the criterion impoves cannot be
computed as a derivative since it is not differentiable. The main part of algo-
rithm consists of (i) finding of an improving direction A« in which criterion
descends and (ii) determining how much to move in the direction Aa. The con-
vergence of the algorithm crucially depends on the method found the improving
direction Aa.
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First, we will introduce the algorithm framework, then the original method
finding Aa will be given and finally we will introduce our improvement which
concerns finding Aa.

3.1 General algorithm framework for GAT
Algorithm:

1. Transformations. First, as we mentioned above, we have to perform trans-
formations of (u?,07),j € J; U .Jo. Then we obtain one set (u’,07),j € J.
The algorithm processes the transformed parameters and its result is vector
a also in the transformed space. When the algorithm exits we can easily
transform the a back into the original space.

2. Initialization. Such a vector is found that all scalar products (aq, p’),j € J
are positive. If such a; does not exist then the algorithm exits and indicates
that there is not a solution with probability of wrong classification less than
50%. Lower index t of the vector a; denotes iteration number.

3. Improving direction. The improving direction A« is found which satisfies

minr(oy + k- Aa, ? ;7)) > minr(ay, p?, 07), (6)
jedJ jeg
where k is a positive real number. If no vector A« satisfying (6) is found then
the current vector a; solves the task and algorithm exits. In the opposite case
the algorithm proceeds to the following step.
4. Movement in the improving direction. A positive real number is looked
for which satisfies

k = argmaxminr(ay + k- Aa, p?, 07).
k>0 J€J

A new vector a4 is calculated as app1 = oy + k - Aa.
5. Additional stop condition. If a change in criterial function value during
thise iterations is less than giving limit A, i.e.

| Ijnei‘I]lT(Oét, :ujv aj) - I].Ig?r(a(t*thistﬁ luj’ aj)| < A4,

then the algorithm exits else continues in iterations by jumping to step 3.

The algorithm can exit in two cases. The first possibility is in the step 3 when
the improve is not found then the vector a; corresponds to the optimal solution
(proof in [4]).

The second possibility can occur when a change in criterial function value
after tp;s¢ iterations is smaller than prescribed threshold A,. This phenomenon
is checked in step 5. Ideally, this case should not occur but due to numerical
solution during optimization it is possible. The occurance of this case means
that the algorithm got stuck in some improving direction A« and the current
solution a; does not need to be optimal. This case is undesirable and thus we
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intended to find suitable method that finds improving direction in the step 3
and avoids this case.

The main part of the algorithm is step 3 and step 4. The improving direction
is searched for in the step 3. Having found the improving direction we should
decide how much to move in this direction, it is solved in the step 4. Following
subsections deal with these two subtasks.

3.2 Numerical optimization of the criterion depending on one real
variable

Having finished the step 3 the current solution « and the improving direction Aa
are available. The aim is to find the vector a1 = oy + k - Aa which determines
the next value of the solution. This vector has to maximize minjcsr(a + k -
Aa, pi?,07), so we have new optimization problem
k = argmaxminr(a + k - Aa, !, %),
k>0 JE€J

where k is a real positive number. To solve this optimization task we have to find
a maximum of a real function of one real variable. This task we solve numerically
(details are given in [4]).

3.3 Search for an improving direction A«

Here we will describe step 3 of the algorithm, that finds a direction in which
the error decreases. Overall effectivity of the algorithm crucially depends upon
this direction as the performed experiments have shown. Such vector Aa must
ensure that the classification error decreases in this direction, i.e.

minr(a; + k- Aa, 1/, 07) > minr(ag, p?, 67), 7
jEJ(t I )],EJ(t/J ) (7)

where k is any positive real number. It is proved in [4] that the vector A«
satisfying the condition (7) must fulfill

(Aa,zd) > 0,5 € J°. (8)

The set J° contains the distributions with highest error or lowest Mahalanobis
distance, i.e. {j|j € J°} = argmin;c ; r(a, p?, 7).
The original approach, proposed in [4], determines improving direction as
(Aa,y’)

Ao = argmax min ————+, 9
B Jen | Aaf ©)

where y/ = \/Tjé—]—a), then dalpha is a direction in which the classification
error for the worst distributions j € J° decreases the quickest. The task (9) is
equivalent to the separation of finite point set with maximal margin. We used
linear Support Vector Machines (SVM) algorithm [2].

Following section describes the new method, which approximates Gaussian
distribution with an identity covariance matrix, tries to improve the algorithm.



Algorithm for Generalized Anderson’s task 7

4 Local approximation of the Gaussian distribution by
the identity covariance matrix

The main contribution of the paper is described in this section. We have proposed
the new approach how to find the improving direction in which the error of the
optimized criterion decreases (see Section 3.3). _

Each distribution N (u/,07) is approximated in the point 7, by the Gaussian
distribution N(u/, E), where E denotes the identity matrix. In the case when all
the covariance matrixes are identity, GAT is equivalent to the optimal separation
of finite point sets. So we determine the improving vector Aa as the optimal
solution for the approximated distributions.

The points 2 for all the distributions are found first as

* —mi 3 i
r —rjylelglr(u ,00,a)
J_ 0 _ e
o= H (a, 07 ) 7

then the improving direction A« is computed as

A J
Aq = argmax min (Ao, zp)

st U 10
Aa  i€J  |Aq] (10)

The optimization problem (10) is solved by linear SVM algorithm.

5 Experiments

The aim of the experiments was to compare several algorithms solving GAT. We
have tested algorithms on synthetic data. Experiments on real data are foreseen.

The experiments have to determine (i) the ability of algorithms to find an
accurate solution (close to the optimal one) and (ii) their robustness with regard
to various input data. We created 180 data sets corresponding to task with
known solutions.

We tested three algorithms. The first two algorithm GAT-ORIG and GAT-
NEW fulfill the general algorithm framework (see Section 3) and the third one
GAT-GGRAD uses the generalized gradient theorem (see Section 2). The algo-
rithm GAT-ORIG uses the original method (see Section 3.3) and the algorithm
GAT-NEW uses our improvement (see Section 4). All the algorithms mentioned
in this paper are implemented in the Statistical Pattern Recognition Toolbox for
Matlab [3].

For each algorithm we had to prescribe a stopping condition. The first stop
condition is given by a maximal number of algorithm steps which was set to
10000. The second one is a minimal improvement in the optimized criterion
which was set to 1le — 8.

Using of synthetically generated data allows us to compare the solution found
by an algorithm to the known optimal solution. Moreover, we could control
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complexity of the problem: (i) the number of distributions describing classes
varying from 4 to 340; (2) dimension of data varying from 2 to 75; (3) the
number of additional distributions which do not affect the optimal solution but
which make work of the tested algorithm harder. Total number of randomly
generated testing instances was 180 used.

Having results from the algortihms tested on the synthetic data we computed
following statistics from: (i) mean deviation between the optimal and the found
solution E(|€ found —Eoptimait]) in [%], (il) maximal deviation between the optimal
and the found solution max(efound — Eoptimar) in [%], (iii) number of wrong
solutions, i.e. their probability of wrong classification is worse by 1% compared
to the optimal solution. When this limit is exceeded we consider the solution as
wrong.

Table 1 summarizes the results. We conclude that the algorithm GAT-NEW
appeared as the best. This algorithm found the optimal solution in all tests. The
algorithm GAT-GRAD failed in 7% in our tests. The algorithm GAT-ORIG
failed in 91.5% in our tests.

Table 1. Experiment results

| |GAT-ORIG|GAT-NEW|GAT-GGRAD|

Mean deviation in [%)] 8.96 0 0.29
Maximal deviation in [%]| 35.14 0 10.56
Wrong solutions in [% 91.5 0 7

6 Conclusions

We have proposed an improvement of the Schlesinger’s algorithm separating the
statistical model given by the mixture of Gaussians (Generalized Anderson’s
task, GAT) [4]. We composed and extensively tested three algorithms solving
GAT. One of them was our improvement. The tests were performed on 180 test
cases given by synthetic data as needed the ground truth. Our improvement
outperformed the other algorithms. All the tested methods are implemented in
the Statistical Pattern Recognition Toolbox for Matlab [3] that is free for use.
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