
Computer Analysis of Images and Patterns : Proeedings of the 9thInternational Conferene, W. Skarbek (Ed.), pages 169{176, Warsaw, Poland,September 2001, Springer.A ontribution to the Shlesinger's algorithmseparating mixtures of GaussiansVojt�eh Fran and V�alav Hlav�a�Czeh Tehnial University, Faulty of Eletrial Engineering,Center for Mahine Pereption121 35 Praha 2, Karlovo n�am�est�� 13, Czeh Republihttp://mp.felk.vut.zfxfranv,hlavag�mp.felk.vut.zAbstrat. This paper ontributes to the statistial pattern reognitionproblem in whih two lasses of objets are onsidered and either of themis desribed by a mixture of Gaussian distributions. The omponents ofeither mixture are known, and unknown are only their weights. The lass(state) of the objet k is to be found at the mentioned inomplete a prioriknowledge of the statistial model and the known observation x. Thetask an be expressed as a statistial deision making with non-randominterventions. The task was formulated and solved �rst by Anderson andBahadur [1℄ for a simpler ase where eah of two lasses is desribed bya single Gaussian. The more general formulation with more Gaussiansdesribing eah of two lasses was suggested by M.I. Shlesinger underthe name generalized Anderson's task (abbreviated GAT in the sequel).The linear solution to GAT was proposed in [5℄ and desribed reentlyin a more general ontext in a monograph [4℄.This ontribution provides (i) a formulation of GAT, (ii) a taxonomyof various solutions to GAT inluding their brief desription, (iii) thenovel improvement to one of its solutions by proposing better diretionvetor for next iteration, (iv) points to our implementation of GAT ina more general Statistial Pattern Reognition Toolbox (in MATLAB,publi domain) and (v) shows experimentally the performane of theimprovement (iii).1 De�nition of the Generalized Anderson's TaskLet X be a multidimensional linear spae. The result of objet observation is apoint x in the n-dimensional feature spae X . Let k be an unobservable statewhih an have only two possible value k 2 f1; 2g. It is assumed that onditionalprobabilities pXjK(xjk); x 2 X; k 2 K are multidimensional Gaussian distribu-tions. Mathematial expetations �k and ovariane matries �k ; k = 1; 2, of



2 Vojt�eh Fran and V�alav Hlav�a�these distributions are not known. The only knowledge available is that param-eters (�1; �1) belong to a ertain known set of parameters f(�j ; �j)jj 2 J1g andsimilarly for (�2; �2) it is set f(�j ; �j)jj 2 J2g (J1; J2 denote set of indexes). Pa-rameters �1 and �1 denote real but unknown statistial parameters of an objetin the state k = 1. Parameters f�j ; �jg for a ertain upper index j representsone pair from possible pairs of values.The goal is to �nd a deision strategy q:X ! f1; 2g mapping feature spaeX to spae of the lasses K that minimizes the valuemaxj2J1[J2 "(q; �j ; �j); (1)where "(q; �j ; �j) is a probability that the Gaussian random vetor x withmathematial expetation �j and ovariane matrix �j ful�lls either onstraintq(x) = 1 for j 2 J2 or q(x) = 2 for j 2 J1. In other words, it is the probabilitythat the random vetor x will be lassi�ed to the di�erent lass then it atuallybelongs to.We are interested in the solution of the formulated task under an additionalonstraint on the deision strategy q. The requirements is that the disriminantfuntion should be linear, i.e. a hyperplane h�; xi = � andq(x; �; �) = �1; if h�; xi > �;2; if h�; xi < �; (2)for ertain vetor � 2 X and the salar �. The expression in angle brakets h�; xidenote salar produt of vetors �; x.The task (1) satisfying ondition (2) minimizes probability of lassi�ationerror and an be rewritten asf�; �g = argmin�;� maxj2J1[J2 "(q(x; �; �); �j ; �j): (3)This is a generalization of the known Anderson's and Bahadur's task [1℄ thatwas formulated and solved for a simpler ase, where eah lass is desribed byonly one distribution, i.e. jJ1j = jJ2j = 1. A toy example is shown in Figure 1.2 Solution to the generalized Anderson's taskThere are several approahes how to solve GAT. They are thoroughly analyzedin [4℄. First, we will list them and (in next setion) we will fous on one of themwhih we have improved.{ General Algorithm Framework. The general method based on proofswhih leads to the optimal solution de�ned by the riterion (3). We shelldevote our attention to this approah in Setion 3{ Solution by the help of optimization using general gradient theo-rem. The riterion (3) de�ning GAT is unimodal but it is neither onvex nordi�erentiable [4℄. Thus standard hill limbing methods annot be used butso alled generalized gradient optimization theorem [6℄ an be used instead.
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Fig. 1. An example of GAT. The �rst lass is desribed by Gaussians with parametersf(�1; �1); (�2; �2); (�3; �3)g and the seond lass by f(�4; �4); (�5; �5); (�6; �6)g. Meanvalues �j are denoted by rosses and ovariane matries �j by ellipsoids. The linerepresents found linear deision rule whih maximizes Mahalanob is distane from thenearest distribution f(�1; �1); (�3; �3); (�4; �4)g. The points xj0 laying and the deisionhyperplane have the nearest Mahalanobis distane from given distribution.{ "-optimal solution. The "-solution method �nds suh a deision hyper-plane (�; �) that the probability of wrong lassi�ation is smaller than agiven limit "0, i.e. maxj2J1[J2 "((�; �); �j ; �j) < "0:The optimal solution (3) does not need to be found so that the problem isthus easier. The task is redued to splitting two sets of ellipsoids their radiusis determined by the "0. This task an be solved by Kozine's algorithm [4℄whih is similar to Pereptron learning rule.3 Algorithm frameworkIn this setion we will introdue the general algorithm framework whih solvesGAT. Our ontribution to this algorithm will be given in Setion 4. The algo-rithm framework as well as onepts we will use are thoroughly analyzed andproved in [4℄. We will introdue them without proofs.Our goal is, in aordane with the de�nition of GAT (see Setion 1), tooptimize following riterionf�; �g = argmin�;� maxj2J1[J2 "(q(x; �; �); �j ; �j): (4)Where �; � are parameters of a deision hyperplane h�; xi = � we are searhingfor. Vetors �j ; j 2 J1 [ J2 and matries �j ; j 2 J1 [ J2 are parameters of



4 Vojt�eh Fran and V�alav Hlav�a�Gaussians desribing the �rst lass J1 and the seond lass J2. This optimizationtask an be transformed to equivalent optimization task� = argmax� minj2J r(�; �j ; �j): (5)The task (5) is more suitable for both analysis and omputation. The trans-formation onsists of (i) introduing homogeneous oordinates by adding oneonstant oordinate, (ii) merging both the lasses together by swapping onelass along origin of oordinates, (iii) expressing of probability "(q(x; �); �j ; �j)using number r(�; �j ; �j).(i) Introduing homogenous oordinates leads to formally simpler problem sineonly vetor �0 = [�;��℄ is looked for and the threshold � is hidden in the (n+1)-th ooridinate of vetor �. New mean vetors �0j = [�j ; 1℄ and ovarianematries �0j = ��j 00 0� are used after it. Notie that new ovariane matrieshave the last olumn and the last row zero sine onstant oordinate wasadded.(ii) Having deision hyperplane h�0; x0i = 0, whih passes the origin of oor-dinates, it holds that "(q(x0; �0); �0j ; �0j) = "(q(x0; �0);��0j ; �0j); j 2 J2.It allows us to merge the input parameter sets into one set of parame-ters f(�00j ; �00j)jj 2 Jg = f(�0j ; �0j)jj 2 J1g [ f(��0j ; �0j)jj 2 J2g. Tomake notation simpler we will use further on notation x; �; �j ; �j insteadof x00; �00; �00j ; �00j .(iii) The number r(�; �j ; �j) is the Mahalanobis distane between the normaldistribution N(�j ; �j) and a point xj0 laying on the hyperplane h�; xi = 0whih has the smallest distane. It has been proven [4℄ that "(q(x; �; �); �j ; �j)monotonially dereases when r(�; �j ; �j) inereases whih allows us ex-hange minmax riterion (4) to maxmin (5). The point with the smallestdistane isxj0 = argminxjh�;xi=0h(�j � x); (�j)�1 � (�j � x)i = �j � h�; �jih�; �j � �i�j � �:The number r(�; �j ; �j) an be omputed asr(�; �j ; �j) = h(�j � xj0); (�j)�1 � (�j � xj0)i = h�; �jiph�; �j � �i :The objetive funtion in riterion (5) is unimodal and monotonially de-reasing funtion. The algorithm whih solves the riterion is similar to hilllimbing methods but the diretion in whih the riterion impoves annot beomputed as a derivative sine it is not di�erentiable. The main part of algo-rithm onsists of (i) �nding of an improving diretion �� in whih riteriondesends and (ii) determining how muh to move in the diretion ��. The on-vergene of the algorithm ruially depends on the method found the improvingdiretion ��.



Algorithm for Generalized Anderson's task 5First, we will introdue the algorithm framework, then the original method�nding �� will be given and �nally we will introdue our improvement whihonerns �nding ��.3.1 General algorithm framework for GATAlgorithm:1. Transformations. First, as we mentioned above, we have to perform trans-formations of (�j ; �j); j 2 J1 [ J2. Then we obtain one set (�j ; �j); j 2 J .The algorithm proesses the transformed parameters and its result is vetor� also in the transformed spae. When the algorithm exits we an easilytransform the � bak into the original spae.2. Initialization. Suh a vetor is found that all salar produts h�1; �ji; j 2 Jare positive. If suh �1 does not exist then the algorithm exits and indiatesthat there is not a solution with probability of wrong lassi�ation less than50%. Lower index t of the vetor �t denotes iteration number.3. Improving diretion. The improving diretion �� is found whih satis�esminj2J r(�t + k ���; �j ; �j) > minj2J r(�t; �j ; �j); (6)where k is a positive real number. If no vetor�� satisfying (6) is found thenthe urrent vetor �t solves the task and algorithm exits. In the opposite asethe algorithm proeeds to the following step.4. Movement in the improving diretion. A positive real number is lookedfor whih satis�es k = argmaxk>0 minj2J r(�t + k ���; �j ; �j):A new vetor �t+1 is alulated as �t+1 = �t + k ���:5. Additional stop ondition. If a hange in riterial funtion value duringthist iterations is less than giving limit �r, i.e.jminj2J r(�t; �j ; �j)�minj2J r(�(t�thist); �j ; �j)j � �r;then the algorithm exits else ontinues in iterations by jumping to step 3.The algorithm an exit in two ases. The �rst possibility is in the step 3 whenthe improve is not found then the vetor �t orresponds to the optimal solution(proof in [4℄).The seond possibility an our when a hange in riterial funtion valueafter thist iterations is smaller than presribed threshold �r. This phenomenonis heked in step 5. Ideally, this ase should not our but due to numerialsolution during optimization it is possible. The ourane of this ase meansthat the algorithm got stuk in some improving diretion �� and the urrentsolution �t does not need to be optimal. This ase is undesirable and thus we



6 Vojt�eh Fran and V�alav Hlav�a�intended to �nd suitable method that �nds improving diretion in the step 3and avoids this ase.The main part of the algorithm is step 3 and step 4. The improving diretionis searhed for in the step 3. Having found the improving diretion we shoulddeide how muh to move in this diretion, it is solved in the step 4. Followingsubsetions deal with these two subtasks.3.2 Numerial optimization of the riterion depending on one realvariableHaving �nished the step 3 the urrent solution � and the improving diretion��are available. The aim is to �nd the vetor �t+1 = �t+ k ��� whih determinesthe next value of the solution. This vetor has to maximize minj2J r(� + k ���; �j ; �j), so we have new optimization problemk = argmaxk>0 minj2J r(� + k ���; �j ; �j);where k is a real positive number. To solve this optimization task we have to �nda maximum of a real funtion of one real variable. This task we solve numerially(details are given in [4℄).3.3 Searh for an improving diretion ��Here we will desribe step 3 of the algorithm, that �nds a diretion in whihthe error dereases. Overall e�etivity of the algorithm ruially depends uponthis diretion as the performed experiments have shown. Suh vetor �� mustensure that the lassi�ation error dereases in this diretion, i.e.minj2J r(�t + k ���; �j ; �j) > minj2J r(�t; �j ; �j); (7)where k is any positive real number. It is proved in [4℄ that the vetor ��satisfying the ondition (7) must ful�llh��; xj0i > 0; j 2 J0: (8)The set J0 ontains the distributions with highest error or lowest Mahalanobisdistane, i.e. fjjj 2 J0g = argminj2J r(�; �j ; �j).The original approah, proposed in [4℄, determines improving diretion as�� = argmax�� minj2J0 h��; yjij��j ; (9)where yj = xj0ph�;�j ��i , then dalpha is a diretion in whih the lassi�ationerror for the worst distributions j 2 J0 dereases the quikest. The task (9) isequivalent to the separation of �nite point set with maximal margin. We usedlinear Support Vetor Mahines (SVM) algorithm [2℄.Following setion desribes the new method, whih approximates Gaussiandistribution with an identity ovariane matrix, tries to improve the algorithm.



Algorithm for Generalized Anderson's task 74 Loal approximation of the Gaussian distribution bythe identity ovariane matrixThe main ontribution of the paper is desribed in this setion. We have proposedthe new approah how to �nd the improving diretion in whih the error of theoptimized riterion dereases (see Setion 3.3).Eah distribution N(�j ; �j) is approximated in the point xj0 by the Gaussiandistribution N(�j ; E), where E denotes the identity matrix. In the ase when allthe ovariane matrixes are identity, GAT is equivalent to the optimal separationof �nite point sets. So we determine the improving vetor �� as the optimalsolution for the approximated distributions.The points xj0 for all the distributions are found �rst asr� = minj2J r(�j ; �j ; �) ;xj0 = �j � r�ph�; �j�i � �j � � ;then the improving diretion �� is omputed as�� = argmax�� minj2J h��; xj0ij��j : (10)The optimization problem (10) is solved by linear SVM algorithm.5 ExperimentsThe aim of the experiments was to ompare several algorithms solving GAT. Wehave tested algorithms on syntheti data. Experiments on real data are foreseen.The experiments have to determine (i) the ability of algorithms to �nd anaurate solution (lose to the optimal one) and (ii) their robustness with regardto various input data. We reated 180 data sets orresponding to task withknown solutions.We tested three algorithms. The �rst two algorithm GAT-ORIG and GAT-NEW ful�ll the general algorithm framework (see Setion 3) and the third oneGAT-GGRAD uses the generalized gradient theorem (see Setion 2). The algo-rithm GAT-ORIG uses the original method (see Setion 3.3) and the algorithmGAT-NEW uses our improvement (see Setion 4). All the algorithms mentionedin this paper are implemented in the Statistial Pattern Reognition Toolbox forMatlab [3℄.For eah algorithm we had to presribe a stopping ondition. The �rst stopondition is given by a maximal number of algorithm steps whih was set to10000. The seond one is a minimal improvement in the optimized riterionwhih was set to 1e� 8.Using of synthetially generated data allows us to ompare the solution foundby an algorithm to the known optimal solution. Moreover, we ould ontrol



8 Vojt�eh Fran and V�alav Hlav�a�omplexity of the problem: (i) the number of distributions desribing lassesvarying from 4 to 340; (2) dimension of data varying from 2 to 75; (3) thenumber of additional distributions whih do not a�et the optimal solution butwhih make work of the tested algorithm harder. Total number of randomlygenerated testing instanes was 180 used.Having results from the algortihms tested on the syntheti data we omputedfollowing statistis from: (i) mean deviation between the optimal and the foundsolution E(j"found�"optimalj) in [%℄, (ii) maximal deviation between the optimaland the found solution max("found � "optimal) in [%℄, (iii) number of wrongsolutions, i.e. their probability of wrong lassi�ation is worse by 1% omparedto the optimal solution. When this limit is exeeded we onsider the solution aswrong.Table 1 summarizes the results. We onlude that the algorithm GAT-NEWappeared as the best. This algorithm found the optimal solution in all tests. Thealgorithm GAT-GRAD failed in 7% in our tests. The algorithm GAT-ORIGfailed in 91:5% in our tests.Table 1. Experiment resultsGAT-ORIG GAT-NEW GAT-GGRADMean deviation in [%℄ 8.96 0 0.29Maximal deviation in [%℄ 35.14 0 10.56Wrong solutions in [%℄ 91.5 0 7
6 ConlusionsWe have proposed an improvement of the Shlesinger's algorithm separating thestatistial model given by the mixture of Gaussians (Generalized Anderson'stask, GAT) [4℄. We omposed and extensively tested three algorithms solvingGAT. One of them was our improvement. The tests were performed on 180 testases given by syntheti data as needed the ground truth. Our improvementoutperformed the other algorithms. All the tested methods are implemented inthe Statistial Pattern Reognition Toolbox for Matlab [3℄ that is free for use.AknowledgementV. Fran was supported by the Czeh Ministry of Eduation under ResearhProgramme J04/98:212300013 Deision and ontrol for industry. V. Hlav�a� wassupported by the Czeh Ministry of Eduation under Projet LN00B096.
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