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zAbstra
t. This paper 
ontributes to the statisti
al pattern re
ognitionproblem in whi
h two 
lasses of obje
ts are 
onsidered and either of themis des
ribed by a mixture of Gaussian distributions. The 
omponents ofeither mixture are known, and unknown are only their weights. The 
lass(state) of the obje
t k is to be found at the mentioned in
omplete a prioriknowledge of the statisti
al model and the known observation x. Thetask 
an be expressed as a statisti
al de
ision making with non-randominterventions. The task was formulated and solved �rst by Anderson andBahadur [1℄ for a simpler 
ase where ea
h of two 
lasses is des
ribed bya single Gaussian. The more general formulation with more Gaussiansdes
ribing ea
h of two 
lasses was suggested by M.I. S
hlesinger underthe name generalized Anderson's task (abbreviated GAT in the sequel).The linear solution to GAT was proposed in [5℄ and des
ribed re
entlyin a more general 
ontext in a monograph [4℄.This 
ontribution provides (i) a formulation of GAT, (ii) a taxonomyof various solutions to GAT in
luding their brief des
ription, (iii) thenovel improvement to one of its solutions by proposing better dire
tionve
tor for next iteration, (iv) points to our implementation of GAT ina more general Statisti
al Pattern Re
ognition Toolbox (in MATLAB,publi
 domain) and (v) shows experimentally the performan
e of theimprovement (iii).1 De�nition of the Generalized Anderson's TaskLet X be a multidimensional linear spa
e. The result of obje
t observation is apoint x in the n-dimensional feature spa
e X . Let k be an unobservable statewhi
h 
an have only two possible value k 2 f1; 2g. It is assumed that 
onditionalprobabilities pXjK(xjk); x 2 X; k 2 K are multidimensional Gaussian distribu-tions. Mathemati
al expe
tations �k and 
ovarian
e matri
es �k ; k = 1; 2, of



2 Vojt�e
h Fran
 and V�a
lav Hlav�a�
these distributions are not known. The only knowledge available is that param-eters (�1; �1) belong to a 
ertain known set of parameters f(�j ; �j)jj 2 J1g andsimilarly for (�2; �2) it is set f(�j ; �j)jj 2 J2g (J1; J2 denote set of indexes). Pa-rameters �1 and �1 denote real but unknown statisti
al parameters of an obje
tin the state k = 1. Parameters f�j ; �jg for a 
ertain upper index j representsone pair from possible pairs of values.The goal is to �nd a de
ision strategy q:X ! f1; 2g mapping feature spa
eX to spa
e of the 
lasses K that minimizes the valuemaxj2J1[J2 "(q; �j ; �j); (1)where "(q; �j ; �j) is a probability that the Gaussian random ve
tor x withmathemati
al expe
tation �j and 
ovarian
e matrix �j ful�lls either 
onstraintq(x) = 1 for j 2 J2 or q(x) = 2 for j 2 J1. In other words, it is the probabilitythat the random ve
tor x will be 
lassi�ed to the di�erent 
lass then it a
tuallybelongs to.We are interested in the solution of the formulated task under an additional
onstraint on the de
ision strategy q. The requirements is that the dis
riminantfun
tion should be linear, i.e. a hyperplane h�; xi = � andq(x; �; �) = �1; if h�; xi > �;2; if h�; xi < �; (2)for 
ertain ve
tor � 2 X and the s
alar �. The expression in angle bra
kets h�; xidenote s
alar produ
t of ve
tors �; x.The task (1) satisfying 
ondition (2) minimizes probability of 
lassi�
ationerror and 
an be rewritten asf�; �g = argmin�;� maxj2J1[J2 "(q(x; �; �); �j ; �j): (3)This is a generalization of the known Anderson's and Bahadur's task [1℄ thatwas formulated and solved for a simpler 
ase, where ea
h 
lass is des
ribed byonly one distribution, i.e. jJ1j = jJ2j = 1. A toy example is shown in Figure 1.2 Solution to the generalized Anderson's taskThere are several approa
hes how to solve GAT. They are thoroughly analyzedin [4℄. First, we will list them and (in next se
tion) we will fo
us on one of themwhi
h we have improved.{ General Algorithm Framework. The general method based on proofswhi
h leads to the optimal solution de�ned by the 
riterion (3). We shelldevote our attention to this approa
h in Se
tion 3{ Solution by the help of optimization using general gradient theo-rem. The 
riterion (3) de�ning GAT is unimodal but it is neither 
onvex nordi�erentiable [4℄. Thus standard hill 
limbing methods 
annot be used butso 
alled generalized gradient optimization theorem [6℄ 
an be used instead.
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Fig. 1. An example of GAT. The �rst 
lass is des
ribed by Gaussians with parametersf(�1; �1); (�2; �2); (�3; �3)g and the se
ond 
lass by f(�4; �4); (�5; �5); (�6; �6)g. Meanvalues �j are denoted by 
rosses and 
ovarian
e matri
es �j by ellipsoids. The linerepresents found linear de
ision rule whi
h maximizes Mahalanob is distan
e from thenearest distribution f(�1; �1); (�3; �3); (�4; �4)g. The points xj0 laying and the de
isionhyperplane have the nearest Mahalanobis distan
e from given distribution.{ "-optimal solution. The "-solution method �nds su
h a de
ision hyper-plane (�; �) that the probability of wrong 
lassi�
ation is smaller than agiven limit "0, i.e. maxj2J1[J2 "((�; �); �j ; �j) < "0:The optimal solution (3) does not need to be found so that the problem isthus easier. The task is redu
ed to splitting two sets of ellipsoids their radiusis determined by the "0. This task 
an be solved by Kozine
's algorithm [4℄whi
h is similar to Per
eptron learning rule.3 Algorithm frameworkIn this se
tion we will introdu
e the general algorithm framework whi
h solvesGAT. Our 
ontribution to this algorithm will be given in Se
tion 4. The algo-rithm framework as well as 
on
epts we will use are thoroughly analyzed andproved in [4℄. We will introdu
e them without proofs.Our goal is, in a

ordan
e with the de�nition of GAT (see Se
tion 1), tooptimize following 
riterionf�; �g = argmin�;� maxj2J1[J2 "(q(x; �; �); �j ; �j): (4)Where �; � are parameters of a de
ision hyperplane h�; xi = � we are sear
hingfor. Ve
tors �j ; j 2 J1 [ J2 and matri
es �j ; j 2 J1 [ J2 are parameters of
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Gaussians des
ribing the �rst 
lass J1 and the se
ond 
lass J2. This optimizationtask 
an be transformed to equivalent optimization task� = argmax� minj2J r(�; �j ; �j): (5)The task (5) is more suitable for both analysis and 
omputation. The trans-formation 
onsists of (i) introdu
ing homogeneous 
oordinates by adding one
onstant 
oordinate, (ii) merging both the 
lasses together by swapping one
lass along origin of 
oordinates, (iii) expressing of probability "(q(x; �); �j ; �j)using number r(�; �j ; �j).(i) Introdu
ing homogenous 
oordinates leads to formally simpler problem sin
eonly ve
tor �0 = [�;��℄ is looked for and the threshold � is hidden in the (n+1)-th 
ooridinate of ve
tor �. New mean ve
tors �0j = [�j ; 1℄ and 
ovarian
ematri
es �0j = ��j 00 0� are used after it. Noti
e that new 
ovarian
e matri
eshave the last 
olumn and the last row zero sin
e 
onstant 
oordinate wasadded.(ii) Having de
ision hyperplane h�0; x0i = 0, whi
h passes the origin of 
oor-dinates, it holds that "(q(x0; �0); �0j ; �0j) = "(q(x0; �0);��0j ; �0j); j 2 J2.It allows us to merge the input parameter sets into one set of parame-ters f(�00j ; �00j)jj 2 Jg = f(�0j ; �0j)jj 2 J1g [ f(��0j ; �0j)jj 2 J2g. Tomake notation simpler we will use further on notation x; �; �j ; �j insteadof x00; �00; �00j ; �00j .(iii) The number r(�; �j ; �j) is the Mahalanobis distan
e between the normaldistribution N(�j ; �j) and a point xj0 laying on the hyperplane h�; xi = 0whi
h has the smallest distan
e. It has been proven [4℄ that "(q(x; �; �); �j ; �j)monotoni
ally de
reases when r(�; �j ; �j) in
ereases whi
h allows us ex-
hange minmax 
riterion (4) to maxmin (5). The point with the smallestdistan
e isxj0 = argminxjh�;xi=0h(�j � x); (�j)�1 � (�j � x)i = �j � h�; �jih�; �j � �i�j � �:The number r(�; �j ; �j) 
an be 
omputed asr(�; �j ; �j) = h(�j � xj0); (�j)�1 � (�j � xj0)i = h�; �jiph�; �j � �i :The obje
tive fun
tion in 
riterion (5) is unimodal and monotoni
ally de-
reasing fun
tion. The algorithm whi
h solves the 
riterion is similar to hill
limbing methods but the dire
tion in whi
h the 
riterion impoves 
annot be
omputed as a derivative sin
e it is not di�erentiable. The main part of algo-rithm 
onsists of (i) �nding of an improving dire
tion �� in whi
h 
riteriondes
ends and (ii) determining how mu
h to move in the dire
tion ��. The 
on-vergen
e of the algorithm 
ru
ially depends on the method found the improvingdire
tion ��.
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e the algorithm framework, then the original method�nding �� will be given and �nally we will introdu
e our improvement whi
h
on
erns �nding ��.3.1 General algorithm framework for GATAlgorithm:1. Transformations. First, as we mentioned above, we have to perform trans-formations of (�j ; �j); j 2 J1 [ J2. Then we obtain one set (�j ; �j); j 2 J .The algorithm pro
esses the transformed parameters and its result is ve
tor� also in the transformed spa
e. When the algorithm exits we 
an easilytransform the � ba
k into the original spa
e.2. Initialization. Su
h a ve
tor is found that all s
alar produ
ts h�1; �ji; j 2 Jare positive. If su
h �1 does not exist then the algorithm exits and indi
atesthat there is not a solution with probability of wrong 
lassi�
ation less than50%. Lower index t of the ve
tor �t denotes iteration number.3. Improving dire
tion. The improving dire
tion �� is found whi
h satis�esminj2J r(�t + k ���; �j ; �j) > minj2J r(�t; �j ; �j); (6)where k is a positive real number. If no ve
tor�� satisfying (6) is found thenthe 
urrent ve
tor �t solves the task and algorithm exits. In the opposite 
asethe algorithm pro
eeds to the following step.4. Movement in the improving dire
tion. A positive real number is lookedfor whi
h satis�es k = argmaxk>0 minj2J r(�t + k ���; �j ; �j):A new ve
tor �t+1 is 
al
ulated as �t+1 = �t + k ���:5. Additional stop 
ondition. If a 
hange in 
riterial fun
tion value duringthist iterations is less than giving limit �r, i.e.jminj2J r(�t; �j ; �j)�minj2J r(�(t�thist); �j ; �j)j � �r;then the algorithm exits else 
ontinues in iterations by jumping to step 3.The algorithm 
an exit in two 
ases. The �rst possibility is in the step 3 whenthe improve is not found then the ve
tor �t 
orresponds to the optimal solution(proof in [4℄).The se
ond possibility 
an o

ur when a 
hange in 
riterial fun
tion valueafter thist iterations is smaller than pres
ribed threshold �r. This phenomenonis 
he
ked in step 5. Ideally, this 
ase should not o

ur but due to numeri
alsolution during optimization it is possible. The o

uran
e of this 
ase meansthat the algorithm got stu
k in some improving dire
tion �� and the 
urrentsolution �t does not need to be optimal. This 
ase is undesirable and thus we
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intended to �nd suitable method that �nds improving dire
tion in the step 3and avoids this 
ase.The main part of the algorithm is step 3 and step 4. The improving dire
tionis sear
hed for in the step 3. Having found the improving dire
tion we shouldde
ide how mu
h to move in this dire
tion, it is solved in the step 4. Followingsubse
tions deal with these two subtasks.3.2 Numeri
al optimization of the 
riterion depending on one realvariableHaving �nished the step 3 the 
urrent solution � and the improving dire
tion��are available. The aim is to �nd the ve
tor �t+1 = �t+ k ��� whi
h determinesthe next value of the solution. This ve
tor has to maximize minj2J r(� + k ���; �j ; �j), so we have new optimization problemk = argmaxk>0 minj2J r(� + k ���; �j ; �j);where k is a real positive number. To solve this optimization task we have to �nda maximum of a real fun
tion of one real variable. This task we solve numeri
ally(details are given in [4℄).3.3 Sear
h for an improving dire
tion ��Here we will des
ribe step 3 of the algorithm, that �nds a dire
tion in whi
hthe error de
reases. Overall e�e
tivity of the algorithm 
ru
ially depends uponthis dire
tion as the performed experiments have shown. Su
h ve
tor �� mustensure that the 
lassi�
ation error de
reases in this dire
tion, i.e.minj2J r(�t + k ���; �j ; �j) > minj2J r(�t; �j ; �j); (7)where k is any positive real number. It is proved in [4℄ that the ve
tor ��satisfying the 
ondition (7) must ful�llh��; xj0i > 0; j 2 J0: (8)The set J0 
ontains the distributions with highest error or lowest Mahalanobisdistan
e, i.e. fjjj 2 J0g = argminj2J r(�; �j ; �j).The original approa
h, proposed in [4℄, determines improving dire
tion as�� = argmax�� minj2J0 h��; yjij��j ; (9)where yj = xj0ph�;�j ��i , then dalpha is a dire
tion in whi
h the 
lassi�
ationerror for the worst distributions j 2 J0 de
reases the qui
kest. The task (9) isequivalent to the separation of �nite point set with maximal margin. We usedlinear Support Ve
tor Ma
hines (SVM) algorithm [2℄.Following se
tion des
ribes the new method, whi
h approximates Gaussiandistribution with an identity 
ovarian
e matrix, tries to improve the algorithm.
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al approximation of the Gaussian distribution bythe identity 
ovarian
e matrixThe main 
ontribution of the paper is des
ribed in this se
tion. We have proposedthe new approa
h how to �nd the improving dire
tion in whi
h the error of theoptimized 
riterion de
reases (see Se
tion 3.3).Ea
h distribution N(�j ; �j) is approximated in the point xj0 by the Gaussiandistribution N(�j ; E), where E denotes the identity matrix. In the 
ase when allthe 
ovarian
e matrixes are identity, GAT is equivalent to the optimal separationof �nite point sets. So we determine the improving ve
tor �� as the optimalsolution for the approximated distributions.The points xj0 for all the distributions are found �rst asr� = minj2J r(�j ; �j ; �) ;xj0 = �j � r�ph�; �j�i � �j � � ;then the improving dire
tion �� is 
omputed as�� = argmax�� minj2J h��; xj0ij��j : (10)The optimization problem (10) is solved by linear SVM algorithm.5 ExperimentsThe aim of the experiments was to 
ompare several algorithms solving GAT. Wehave tested algorithms on syntheti
 data. Experiments on real data are foreseen.The experiments have to determine (i) the ability of algorithms to �nd ana

urate solution (
lose to the optimal one) and (ii) their robustness with regardto various input data. We 
reated 180 data sets 
orresponding to task withknown solutions.We tested three algorithms. The �rst two algorithm GAT-ORIG and GAT-NEW ful�ll the general algorithm framework (see Se
tion 3) and the third oneGAT-GGRAD uses the generalized gradient theorem (see Se
tion 2). The algo-rithm GAT-ORIG uses the original method (see Se
tion 3.3) and the algorithmGAT-NEW uses our improvement (see Se
tion 4). All the algorithms mentionedin this paper are implemented in the Statisti
al Pattern Re
ognition Toolbox forMatlab [3℄.For ea
h algorithm we had to pres
ribe a stopping 
ondition. The �rst stop
ondition is given by a maximal number of algorithm steps whi
h was set to10000. The se
ond one is a minimal improvement in the optimized 
riterionwhi
h was set to 1e� 8.Using of syntheti
ally generated data allows us to 
ompare the solution foundby an algorithm to the known optimal solution. Moreover, we 
ould 
ontrol
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omplexity of the problem: (i) the number of distributions des
ribing 
lassesvarying from 4 to 340; (2) dimension of data varying from 2 to 75; (3) thenumber of additional distributions whi
h do not a�e
t the optimal solution butwhi
h make work of the tested algorithm harder. Total number of randomlygenerated testing instan
es was 180 used.Having results from the algortihms tested on the syntheti
 data we 
omputedfollowing statisti
s from: (i) mean deviation between the optimal and the foundsolution E(j"found�"optimalj) in [%℄, (ii) maximal deviation between the optimaland the found solution max("found � "optimal) in [%℄, (iii) number of wrongsolutions, i.e. their probability of wrong 
lassi�
ation is worse by 1% 
omparedto the optimal solution. When this limit is ex
eeded we 
onsider the solution aswrong.Table 1 summarizes the results. We 
on
lude that the algorithm GAT-NEWappeared as the best. This algorithm found the optimal solution in all tests. Thealgorithm GAT-GRAD failed in 7% in our tests. The algorithm GAT-ORIGfailed in 91:5% in our tests.Table 1. Experiment resultsGAT-ORIG GAT-NEW GAT-GGRADMean deviation in [%℄ 8.96 0 0.29Maximal deviation in [%℄ 35.14 0 10.56Wrong solutions in [%℄ 91.5 0 7
6 Con
lusionsWe have proposed an improvement of the S
hlesinger's algorithm separating thestatisti
al model given by the mixture of Gaussians (Generalized Anderson'stask, GAT) [4℄. We 
omposed and extensively tested three algorithms solvingGAT. One of them was our improvement. The tests were performed on 180 test
ases given by syntheti
 data as needed the ground truth. Our improvementoutperformed the other algorithms. All the tested methods are implemented inthe Statisti
al Pattern Re
ognition Toolbox for Matlab [3℄ that is free for use.A
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