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Abstra
t. This paper des
ribes a simple learning algorithm for maximalmargin 
lassi�ers. The algorithm is based on the S
hlesinger-Kozine
'salgorithm (S-K-Algorithm) whi
h �nds maximal margin hyperplane witha given pre
ision for separable data. We propose (i) a generalization ofthe S-K-Algorithm to the non-linear algorithm using kernel fun
tionsand (ii) a method whi
h allows the use of the S-K-Algorithm for non-separable data. The proposed algorithm is simple to implement and, asthe experiments showed, 
ompetitive to the state-of-the-art algortihms.1 Introdu
tion, related work and notationMaximal margin 
lassi�ers �nd a de
ision strategy whi
h separates the trainingdata with the maximal margin. This leads to minimization of the stru
turalrisk and to good generalization 
apabilities of the 
lassi�er. This is justi�edby both experimental eviden
e and theoreti
al studies [11, 9, 10℄. The SupportVe
tor Ma
hines (SVMs) [10℄ transform the learning pro
ess of the maximalmargin 
lassi�er to the Quadrati
 Programming (QP). Although the QP taskis well explored it requires 
ompli
ated optimization algorithms and, moreover,pro
essing of large amounts of data is 
omputationally demanding.We propose a simple, on-line learning algorithm whi
h �nds non-linear max-imal margin 
lassi�er with the given pre
ision. The approa
h is based on anveps-solution algorithm whi
h yields linear de
ision rule whi
h have margin dif-ferent from the optimal one at most by a 
onstant ". The veps-solution algorithmwas proposed by M.I. S
hlesinger et al. [7℄ and its more re
ent analysis is avail-able in the monograph [6℄. This iterative algorithm uses an update rule that wasproposed by B.N. Kozine
 [4℄. We will 
all the algorithm the S
hlesinger-Kozine
algorithm and abbreviate it as S-K-Algorithm.The advantages of the S-K-Algorithm are its simpli
ity for programming, fast
onvergen
e to the solution and its on-line pro
essing of data. The disadvantages



of the S-K-Algorithm are that it �nds only linear 
lassi�ers and requires linearlyseparable data.Our 
ontribution lies in the generalization of the S-K-Algorithm to the non-linear one using kernel fun
tions [1℄. We also propose the generalization to thenon-separable 
ase where the generalized optimal hyperplane [10℄ with quadrati

ost fun
tion is sear
hed for. Experiments 
ondu
ted have shown that the pro-posed algorithm is 
ompetitive to the SVMs while its programming is 
onsider-ably simpler.The rest of the paper is stru
tured as follows. Se
tion 2 de�nes the optimaland the "-optimal hyperplane. Se
tion 3 des
ribes the original S-K-Algorithm forlinear and separable 
ases. In Se
tion 4, the kernel version of the S-K-Algorithmis proposed and Se
tion 5 provides generalization to the non-separable 
ase.Experiments are given in Se
tion 6. Se
tion 7 
on
ludes the paper.2 Optimal and "-optimal separating hyperplaneThe sets X1 = fxi: i 2 I1g and X2 = fxi: i 2 I2g denote training patterns forthe �rst and the se
ond 
lass, where I = I1 [ I2 are the sets of indi
es. Thenumbers yi = +1, i 2 I1 and yi = �1, i 2 I2 denote pattern labels.The 
lasses, i.e ve
tor sets X1 and X2, are linearly separable if there exist ave
tor w and a threshold � su
h that the set of inequalitieshw; xii � � ; i 2 I1 ; hw; xii < � ; i 2 I2 (1)holds. The ve
tor w and threshold � determine a separating hyperplane hw; xi =�. Let us introdu
e fun
tionm(w; �) = mini2I �yi � (hw; xii � �)jjwjj � :Its value is the shortest distan
e from the hyperplane hw; xi = � to ve
tor setsX1and X2. If the inequalities (1) have a solution then there is an optimal separatinghyperplane [10℄, whi
h is the solution offw�; ��g = argmaxw;� m(w; �) : (2)The real positive number m� = m(w�; ��) is the maximal margin between thesets X1 and X2. Let us de�ne so 
alled "-optimal separating hyperplane [6℄ now,whi
h is determined by the ve
tor w and � satisfying the following 
onditionm� �m(w; �) � " ; (3)where " is an arbitrary positive 
onstant. In other words, the margin de�ned bythe (3) di�ers from the optimal margin by " at most.



3 S-K-AlgorithmIn this se
tion, we will des
ribe the S-K-Algorithm, whi
h �nds the "-optimalseparating hyperplane (3). We will introdu
e the S-K-Algorithmwithout detailedanalysis and proof of 
onvergen
e, whi
h 
an be found in [6℄.The algorithm is based on the idea that two point sets X1; X2 
an be opti-mally separated by the hyperplane whi
h is perpendi
ular to the ve
tor w�1�w�2and passes through the 
enter of the abs
issa joining the points w�1 and w�2 . Thepoints w�1 and w�2 belong into the 
onvex hulls X1 and X2, and they are thepoints whi
h determine the shortest distan
e between these 
onvex hulls, i.e.fw�1 ; w�2g = argminw12X1;w22X2 jjw1 � w2jj : (4)The ve
tor w� = w�1 � w�2 and the threshold � = 12 (jjw�1 jj2 � jjw�2 jj2) determinethe hyperplane whi
h 
oin
ide to the optimal hyperplane de�ned by (2).The idea mentioned above is implemented into the algorithm as follows.At the beginning, w1, w2 is set to an arbitrary point from the set X1, X2,respe
tively. Then the point w2 is �xed and w1 is moved toward w2 as mu
h aspossible. Similarly, the point w1 found is �xed and the point w2 is moved towardw1. This pro
ess is repeated until the "-optimality 
ondition is satis�ed. Theadaptation rule used in the algorithm ensures that the ve
tor w1, w2 does notleave the 
onvex hull X1,X2 respe
tively. A modi�
ation of (3) is used as thestopping 
ondition. The the �rst term m� is unknown sin
e it is a width of theoptimal margin. The value m� 
an be repla
ed by its upper bound. It is obviousthat the norm of the ve
tor w = w1�w2, w1 2 X1, w2 2 X2 is the 
losest upperbound we have. The algorithm outlined is des
ribed below.1. The ve
tor w1 is set to an arbitrary ve
tor from the set X1 and w2 to anarbitrary ve
tor from the set X2.2. A ve
tor xt 2 X1 satisfying 
ondition�xt � w2; w1 � w2jjw1 � w2jj� � jjw1 � w2jj � "2 (5)is sear
hed for. If su
h ve
tor xt is found then go to Step 3. Otherwise ave
tor xt 2 X2 whi
h satis�es 
ondition�x2 � w1; w2 � w1jjw1 � w2jj� � jjw1 � w2jj � "2 : (6)is sear
hed for. If su
h ve
tor xt is found then go to Step 4. If neither (5) nor(6) is satis�ed for any ve
tor then the ve
tors w1 and w2 de�ne the "-optimalhyperplane hw; xi = �, where w = w1 �w2 and � = 12 (jjw1jj2 � jjw2jj2). Themargin of found hyperplane is equal to jjwjj.3. If the point xt whi
h satis�es the 
ondition (5) exists then wnew2 = w2 andthe new ve
tor wnew1 is 
omputed aswnew1 = (1� k) � w1 + k � xt ;



where k = min�1; hw1 � w2; w1 � xtijjw1 � xtjj2 � :The algorithm 
ontinues with Step 2.4. If the point xt whi
h satis�es the 
ondition (6) exists then wnew1 = w1 andthe new ve
tor wnew2 is 
omputed aswnew2 = (1� k) � w2 + k � xt ;where k = min�1; hw2 � w1; w2 � xtijjw2 � xtjj2 � :The algorithm 
ontinues to Step 2.This algorithm builds a sequen
e of ve
tors w = w1 � w2, whi
h 
onverges tothe optimal solution w� when the input data are linearly separable. If the dataare not linearly separable then the algorithm 
onverges to zero ve
tor. In ea
halgorithm step, the norm jjwjj de
reases to jjwnew jj = K � jjwjj, 0 < K < 1, whi
hmeans that for " > 0 the algorithm stops after �nite number steps. The proof aswell as an estimate of K is given in [6℄.Let us note, that a speed of the algorithm 
onvergen
e 
an be estimated fromthe upper and lower bound of the optimal solution m�. The upper bound is thenorm of ve
tor jjwjj and the lower bound is the term in the left side of 
ondition(5) and (6), respe
tively. We will show a plot of these bounds in experimentsSe
tion 6.4 Kernel S-K-algorithmThis se
tion des
ribes the way how to generalize S-K-Algorithm to learn non-linear dis
riminant fun
tions. The underlying idea is to express the S-K-Algorithmin terms of dot produ
ts and use the kernel tri
k [1{3℄.Let us mention the idea of the kernel tri
k at the beginning. The input datafrom the original spa
e X are non-linearly mapped into a new high (possiblein�nite) dimensional spa
e Y . The mapping is de�ned by a fun
tion �:X ! Y .Let k:X �X ! R be a fun
tion, a value of whi
h 
orresponds to the dot produ
tof the non-linearly mapped ve
tors �(xi) and �(xj), i.e.k(xi; xj) = h�(xi); �(xj )i; 8xi; xj 2 X :It implies that any linear algorithm in whi
h data appear in the term of thedot produ
t 
an be non-linearized by substituting kernel fun
tions for these dotprodu
ts. The rest of this se
tion shows how to rewrite the S-K-Algorithm tothe form of dot produ
ts.The idea is to express the iterated ve
tors w1 and w2 as the 
onvex 
om-bination of point sets X1 and X2. We introdu
e multipliers �i; i 2 I whi
h




orresponds to the training data xi; i 2 I . The relation of the multipliers �i andthe ve
tors w1 and w2 is expressed asw1 =Xi2I1 �i � xi ; w2 =Xi2I2 �i � xi ; Xi2I1 �i = 1 ; Xi2I2 �i = 1 : (7)We will show that the adaptation step of the S-K-Algorithm 
an be 
arried outas the 
hange of the 
oeÆ
ient ve
tors �1, �2. Let us suppose that the algorithmarrived to Step 3 and the 
oeÆ
ient k and ve
tor xt 2 X1 have been already
omputed. The adaptation of the ve
tor w1 is 
omputed aswnew1 = (1� k) � w1 + k � xt : (8)Substituting (7) to (8) we getXi2I1 �newi � xi = (1� k) �Xi2I1 �i � xi + k � xt =Xi2I1[(1� k) + k � �it℄ � �i � xi ;where we used the Krone
ker delta �it = 0 for i 6= t and �it = 1 for i = t. Itmeans that the adaptation step for �i; i 2 I1 
an be 
arried out as�newi = � (1� k) � �i; for i = t;(1� k) � �i + k; otherwiseand similarly for the 
ase when �i; i 2 I2 are adapted. Also the rest of thealgorithm, i.e. equations in Step 2 and 
omputation of the number k in Step 3, 4
an be expressed using the multipliers �i. It turns out that after this expressionthe data appear in terms of the dot produ
t only and the kernel fun
tions 
anbe used.We will derive this expression only for the 
ondition (5) whi
h is evaluatedin Step 2. The other relations we will introdu
e without derivation as they aresimilar. The evaluation of the 
ondition (5) requires values of the terms hxt �w2; w1 � w2i and jjw1 � w2jj2. Substituting (7) to the �rst term yieldshxt � w2; w1 � w2i == hxt; w1i � hw1; w2i � hxt; w2i+ hw2; w2i= Pi2I1 �ihxt; xii � Pi2I1 Pj2I2 �i�2hxi; xji � Pi2I2 �ihxt; xii+ Pi2I2 Pj2I2 �i�2hxi; xji :Similarly for the se
ond term we getjjw1 � w2jj2 == Pi2I1 Pj2I1 �i�jhxi; xji � 2 Pi2I1 Pj2I2 �i�jhxi; xji+ Pi2I2 Pj2I2 �i�jhxi; xji= Pi2I Pj2I �i�jyiyjhxi; xji :It is obvious that the data appear in terms of the dot produ
t only. It allowsus to substitute the kernel fun
tions k(xi; xj) for the dot produ
ts hxi; xji. Theresult of the S-K-Algorithm, after the transformation mentioned above, are the



multipliers �i and the threshold �. The re
ognition of unknown pattern x is
arried out a

ording to the sign of the fun
tionf(x) = h�(w); �(x)i�� =Xi2I1 �ik(xi; x)�Xi2I2 �ik(xi; x)�� =Xi2I �iyik(xi; x)��:The Kernel version of the S-K-Algorithm is introdu
ed bellow.1. Initialization. The 
oeÆ
ients �i; i 2 I are set to�i = �1; if i = i1 or i = i2;0; otherwise;where i1 is an arbitrary index from I1 and i2 is an arbitrary index from I2.2. Auxiliary variables 
omputation. The following numbers are 
omputeda =Xi2I1 Xj2I1 �i�jk(xi; xj); b =Xi2I2 Xj2I2 �i�jk(xi; xj);
 =Xi2I1 Xj2I2 �i�jk(xi; xj);di = Xj2I1 �jk(xi; xj); ei = di �Xj2I2 �jk(xi; xj); for i 2 I1 ;fi = Xj2I2 �jk(xi; xj); gi = fi �Xj2I1 �jk(xi; xj); for i 2 I2 :3. Multipliers �i; i 2 I1 update. The index t = argmini2I1 ei is found. If the 
ondi-tion et + b� 
pa� 2
+ b � pa� 2
+ b� "2 (9)holds then �newi = �i; i 2 I2 and update �newi ; i 2 I1 as�newi = ��i(1� k) + k; for i = t;�i(1� k); otherwise;where k = a� et � 
pa� 2dt + k(xt; xt)and go to Step 2. If the 
ondition (9) does not hold then go to Step 4.4. Multipliers �i; i 2 I2 update. The index t = argmini2I2 gi is found. If the 
ondi-tion gt + a� 
pa� 2
+ b � pa� 2
+ b� "2 (10)



holds then �newi = �i; i 2 I1 and update �newi ; i 2 I2 as�newi = ��i(1� k) + k; for i = t;�i(1� k); otherwise;where k = b� gt � 
pb� 2ft + k(xt; xt)and go to Step 2. If the 
ondition (10) does not hold then go to Step 5.5. Threshold 
omputation. The threshold is 
omputed as � = 12 (a� b) and themargin is m = 12pa� 2
+ b.If the input data are linearly separable in the non-linear feature spa
e thenthe algorithm exits after �nite number of iterations. For non-separable data thealgorithm 
onverges to the zero ve
tor.5 Non-separable 
aseIn this se
tion, we will des
ribe the way how to 
ope with the non-separable
ase. To this end, we will �rst introdu
e another formulation of the problem of�nding optimal hyperplane whi
h isfw; �g = argminw;b 12 jjwjj2 ; (11)subje
t to yi(hw; xii � �) � 1 ; i 2 I :This problem formulation is used in the Support Ve
tor Ma
hines and thefound hyperplane hw; xi = � is 
alled to be in the 
anoni
al form sin
e themini2I yi(hw; xii � �) = 1. The hyperplane hw0; xi = �0 de�ned by (4) whi
h theS-K-Algorithm returns 
oin
ide to the hyperplane hw; xi = � but it has not the
anoni
al form sin
e mini2I yi(hw0; xii � �0) = jjwjj2=2. It is obvious thatw = s � w0 ; � = s � �0 ;where s 2 R and 
an be 
omputed ass = 2jjwjj2 :The normalization of the solution returned by the Kernel S-K-Algorithm to the
anoni
al form lies in a 
hange of the Step 5 to�0 = (a� b)(a� 2
+ b) ; �0i = 2�i(a� 2
+ b) ; i 2 I : (12)



Then the fun
tion f(x) = Pi2I �0ik(xi; x) + �0 de�nes 
anoni
al hyperplane inthe non-linear feature spa
e indu
ed by the given kernel. Let us note, that themultipliers �0i 
omputed by the Kernel S-K-Algorithm 
oin
ide to the Lagrangianmultipliers of the dual form of (11) (see [10℄), whi
h SVMs 
ompute.When the data are not-linearly separable then there is no hyperplane without
lassi�
ation error on the training data. The generalized optimal hyperplane [10℄whi
h is de�ned as a solution offw; �; �i; i 2 Ig = argminw;b 12 jjwjj2 + CXi2I (�i)p ; (13)subje
t to yi(hw; xii � �) � 1� �i ; i 2 I; �i � 0 ;
an be found instead. The pres
ribed 
onstant C 2 R determines trade-o� be-tween a width of the margin and the training error. The training error is ap-proximated by the 
ost fun
tion Pi2I(�i)p. The variables �i relax the set ofinequalities and they are 
alled sla
k variables. The SVMs use a linear 
ost fun
-tion p = 1 for whi
h the problem leads to the quadrati
 programming. Furtheron, we will be interested in the quadrati
 
ost fun
tion p = 2.In [8℄, a transformation is proposed, whi
h modi�es the task (13) with quadrati

ost fun
tion to the task (11) where no 
ost fun
tion is presented. To this end,the input n-dimensional spa
e X is transformed to a new n+l-dimensional spa
eX 0, where the non-separable data be
ome separable. The input ve
tor xi 2 X ismapped to a new x0i 2 X 0 asx0ji =8<:xji ; for j = 1; :::; n ;yip2C ; for j = n+ i ;0 ; otherwise ; (14)where the upper index denotes 
oordinate number. Next, we introdu
e a newnormal ve
tor w0j = �wj ; for j = 1; :::; n ;p2C�j�n ; otherwise : (15)If we substitute w0 and x0i to (11) then it turns to the problem (13) with quadrati

ost fun
tion p = 2.To apply the mentioned transformation to the Kernel S-K-Algorithm, wemust only 
hange the kernel fun
tion k(xi; xj) to a new k0(xi; xj), whi
h isde�ned as k0(xi; xj) = �k(xi; xj) ; for j 6= i ;k(xi; xj) + 12C ; for i = j : (16)At the end, we will summarize mentioned extension of the Kernel S-K-Algorithm. The Step 5 is repla
ed by the relations (12) and the kernel fun
tionk(xi; xj) is repla
ed by the k0(xi; xj) de�ned by (16). After this modi�
ation thesolution returned by the S-K-Algorithm 
oin
ides to the solution of the task (13)with 
ost quadrati
 
ost fun
tion p = 2.



6 ExperimentsWe tested the proposed Kernel S-K-Algorithm on the syntheti
 Ripley's [5℄ dataset. As a referen
e algorithm we used SVMs with quadrati
 
ost fun
tion (seeSe
tion 5). For the quadrati
 programming task of SVMs, we used Matlab Op-timization Toolbox.The Ripley's data set 
onstitutes a well-known syntheti
 problem of smallsize and in a two-dimensional spa
e. The set 
onsists of 250 training and 1000testing patterns belonging into two 
lasses whi
h are heavily overlapped. Theparameters of the Kernel S-K-Algorithm are: (i) kernel fun
tion, (ii) trade-o�
onstant C and (iii) pre
ision 
onstant set to " = 0:01. The SVMs do not have thepre
ision parameter whi
h is impli
itly hidden in the used quadrati
 program-ming algorithm. We learned 
lassi�ers with (i) linear kernel, (ii) RBF kernelwith � = 1, (iii) polynomial kernel of degree d = 2. We used trade-o� 
onstantranging from C = f1; 10; 100; 1000; 10000g. The best obtained 
lassi�er, havingthe smallest 
lassi�
ation error on test data, was enlisted to the 
omparative Ta-ble 1. We also measured (i) training 
lassi�
ation error, (ii) number of 
oatingpoint operations used for training, (iii) and the number of patterns determiningthe 
lassi�er, i.e. Support Ve
tors.Table 1. Comparison between Kernel S-K-Algorithm (KSK) and Support Ve
tor Ma-
hines (SVM) on Ripley data set. Both algorithms use quadrati
 
ost fun
tion.Class. error Class. error Floating point Number of(test) [%℄ (train) [%℄ operations Support Ve
torsSVM (linear, C=1) 11.30 14.80 4590 �106 165KSK (linear, C=10) 11.40 14.40 385 �106 149SVM (RBF � = 1, C=10000) 9.40 14.80 5995 �106 120KSK (RBF � = 1, C=10) 9.00 13.20 242�106 145SVM (poly d=2, C=10) 9.90 14.80 5180 �106 152KSK (poly d=2, C=10) 10.50 14.00 1081 �106 156To demonstrate an e�e
t of the 
onstant " in the Kernel S-K-Algorithm wevisualized the upper and lower bounds on the optimal solution. By the optimalsolution, we mean the maximal margin in the high dimensional feature spa
e,where the data are non-linearly mapped and are separable. The bounds areevaluated in ea
h algorithm step (see Se
tion 3) and determine its stop 
ondition.The algorithm exits when the di�eren
e between the upper and the lower bound,denoted as "-pre
ision, is less than given ". Figure 1 shows the plot of thesebounds with respe
t to iteration number. The plots 
orrespond to the 
lassi�erslisted in Table 1.



An implementation of the Kernel S-K-Algorithm 
an be found in the Statisti-
al Pattern Re
ognition toolbox for Matlab. The toolbox is freely downloadablefrom http://
mp.felk.
vut.
z/ xfran
v/stprtool.7 Con
lusionWe have proposed the method based on the S-K-Algorithm whi
h learns lin-ear maximal margin 
lassi�er with pres
ribed pre
ision. The advantage of theS-K-Algorithm is its simple programming, on-line pro
essing of data and fast
onvergen
e to the solution. A restri
ting property of the S-K-Algorithm is therequirement on separable training sets. Our 
ontribution lies in generalizationof the S-K-Algorithm to the non-linear 
ase by the use of kernel fun
tions. Anextension to the non-separable 
ase is proposed as well. The proposed algorithm�nds the generalized optimal margin with quadrati
 
ost fun
tion. The algo-rithm is simple to implement and does not require any additional optimizationpa
kages. The experiments 
ondu
ted show that is 
ompetitive to the SVMs.A
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Fig. 1. Convergen
e of the Kernel S-K-Algorithm to the solution for linear, RBF andpolynomial kernels (see Table 1).
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