
Workshop on the Kernel and Subspae Methods for Computer Vision adjointto the International Conferene on Arti�al Neural Networks, ProeedingsA. Leonardis and H. Bishof (Ed.), August 25, 2001, Tehnishe Universitaet,Wien, Austria, pages 1{11.A Simple Learning Algorithm for MaximalMargin Classi�erVojt�eh Fran and V�alav Hlav�a�Czeh Tehnial University, Faulty of Eletrial EngineeringDepartment of Cybernetis, Center for Mahine Pereption121 35 Praha 2, Karlovo n�am�est�� 13, Czeh RepubliAbstrat. This paper desribes a simple learning algorithm for maximalmargin lassi�ers. The algorithm is based on the Shlesinger-Kozine'salgorithm (S-K-Algorithm) whih �nds maximal margin hyperplane witha given preision for separable data. We propose (i) a generalization ofthe S-K-Algorithm to the non-linear algorithm using kernel funtionsand (ii) a method whih allows the use of the S-K-Algorithm for non-separable data. The proposed algorithm is simple to implement and, asthe experiments showed, ompetitive to the state-of-the-art algortihms.1 Introdution, related work and notationMaximal margin lassi�ers �nd a deision strategy whih separates the trainingdata with the maximal margin. This leads to minimization of the struturalrisk and to good generalization apabilities of the lassi�er. This is justi�edby both experimental evidene and theoretial studies [11, 9, 10℄. The SupportVetor Mahines (SVMs) [10℄ transform the learning proess of the maximalmargin lassi�er to the Quadrati Programming (QP). Although the QP taskis well explored it requires ompliated optimization algorithms and, moreover,proessing of large amounts of data is omputationally demanding.We propose a simple, on-line learning algorithm whih �nds non-linear max-imal margin lassi�er with the given preision. The approah is based on anveps-solution algorithm whih yields linear deision rule whih have margin dif-ferent from the optimal one at most by a onstant ". The veps-solution algorithmwas proposed by M.I. Shlesinger et al. [7℄ and its more reent analysis is avail-able in the monograph [6℄. This iterative algorithm uses an update rule that wasproposed by B.N. Kozine [4℄. We will all the algorithm the Shlesinger-Kozinealgorithm and abbreviate it as S-K-Algorithm.The advantages of the S-K-Algorithm are its simpliity for programming, fastonvergene to the solution and its on-line proessing of data. The disadvantages



of the S-K-Algorithm are that it �nds only linear lassi�ers and requires linearlyseparable data.Our ontribution lies in the generalization of the S-K-Algorithm to the non-linear one using kernel funtions [1℄. We also propose the generalization to thenon-separable ase where the generalized optimal hyperplane [10℄ with quadratiost funtion is searhed for. Experiments onduted have shown that the pro-posed algorithm is ompetitive to the SVMs while its programming is onsider-ably simpler.The rest of the paper is strutured as follows. Setion 2 de�nes the optimaland the "-optimal hyperplane. Setion 3 desribes the original S-K-Algorithm forlinear and separable ases. In Setion 4, the kernel version of the S-K-Algorithmis proposed and Setion 5 provides generalization to the non-separable ase.Experiments are given in Setion 6. Setion 7 onludes the paper.2 Optimal and "-optimal separating hyperplaneThe sets X1 = fxi: i 2 I1g and X2 = fxi: i 2 I2g denote training patterns forthe �rst and the seond lass, where I = I1 [ I2 are the sets of indies. Thenumbers yi = +1, i 2 I1 and yi = �1, i 2 I2 denote pattern labels.The lasses, i.e vetor sets X1 and X2, are linearly separable if there exist avetor w and a threshold � suh that the set of inequalitieshw; xii � � ; i 2 I1 ; hw; xii < � ; i 2 I2 (1)holds. The vetor w and threshold � determine a separating hyperplane hw; xi =�. Let us introdue funtionm(w; �) = mini2I �yi � (hw; xii � �)jjwjj � :Its value is the shortest distane from the hyperplane hw; xi = � to vetor setsX1and X2. If the inequalities (1) have a solution then there is an optimal separatinghyperplane [10℄, whih is the solution offw�; ��g = argmaxw;� m(w; �) : (2)The real positive number m� = m(w�; ��) is the maximal margin between thesets X1 and X2. Let us de�ne so alled "-optimal separating hyperplane [6℄ now,whih is determined by the vetor w and � satisfying the following onditionm� �m(w; �) � " ; (3)where " is an arbitrary positive onstant. In other words, the margin de�ned bythe (3) di�ers from the optimal margin by " at most.



3 S-K-AlgorithmIn this setion, we will desribe the S-K-Algorithm, whih �nds the "-optimalseparating hyperplane (3). We will introdue the S-K-Algorithmwithout detailedanalysis and proof of onvergene, whih an be found in [6℄.The algorithm is based on the idea that two point sets X1; X2 an be opti-mally separated by the hyperplane whih is perpendiular to the vetor w�1�w�2and passes through the enter of the absissa joining the points w�1 and w�2 . Thepoints w�1 and w�2 belong into the onvex hulls X1 and X2, and they are thepoints whih determine the shortest distane between these onvex hulls, i.e.fw�1 ; w�2g = argminw12X1;w22X2 jjw1 � w2jj : (4)The vetor w� = w�1 � w�2 and the threshold � = 12 (jjw�1 jj2 � jjw�2 jj2) determinethe hyperplane whih oinide to the optimal hyperplane de�ned by (2).The idea mentioned above is implemented into the algorithm as follows.At the beginning, w1, w2 is set to an arbitrary point from the set X1, X2,respetively. Then the point w2 is �xed and w1 is moved toward w2 as muh aspossible. Similarly, the point w1 found is �xed and the point w2 is moved towardw1. This proess is repeated until the "-optimality ondition is satis�ed. Theadaptation rule used in the algorithm ensures that the vetor w1, w2 does notleave the onvex hull X1,X2 respetively. A modi�ation of (3) is used as thestopping ondition. The the �rst term m� is unknown sine it is a width of theoptimal margin. The value m� an be replaed by its upper bound. It is obviousthat the norm of the vetor w = w1�w2, w1 2 X1, w2 2 X2 is the losest upperbound we have. The algorithm outlined is desribed below.1. The vetor w1 is set to an arbitrary vetor from the set X1 and w2 to anarbitrary vetor from the set X2.2. A vetor xt 2 X1 satisfying ondition�xt � w2; w1 � w2jjw1 � w2jj� � jjw1 � w2jj � "2 (5)is searhed for. If suh vetor xt is found then go to Step 3. Otherwise avetor xt 2 X2 whih satis�es ondition�x2 � w1; w2 � w1jjw1 � w2jj� � jjw1 � w2jj � "2 : (6)is searhed for. If suh vetor xt is found then go to Step 4. If neither (5) nor(6) is satis�ed for any vetor then the vetors w1 and w2 de�ne the "-optimalhyperplane hw; xi = �, where w = w1 �w2 and � = 12 (jjw1jj2 � jjw2jj2). Themargin of found hyperplane is equal to jjwjj.3. If the point xt whih satis�es the ondition (5) exists then wnew2 = w2 andthe new vetor wnew1 is omputed aswnew1 = (1� k) � w1 + k � xt ;



where k = min�1; hw1 � w2; w1 � xtijjw1 � xtjj2 � :The algorithm ontinues with Step 2.4. If the point xt whih satis�es the ondition (6) exists then wnew1 = w1 andthe new vetor wnew2 is omputed aswnew2 = (1� k) � w2 + k � xt ;where k = min�1; hw2 � w1; w2 � xtijjw2 � xtjj2 � :The algorithm ontinues to Step 2.This algorithm builds a sequene of vetors w = w1 � w2, whih onverges tothe optimal solution w� when the input data are linearly separable. If the dataare not linearly separable then the algorithm onverges to zero vetor. In eahalgorithm step, the norm jjwjj dereases to jjwnew jj = K � jjwjj, 0 < K < 1, whihmeans that for " > 0 the algorithm stops after �nite number steps. The proof aswell as an estimate of K is given in [6℄.Let us note, that a speed of the algorithm onvergene an be estimated fromthe upper and lower bound of the optimal solution m�. The upper bound is thenorm of vetor jjwjj and the lower bound is the term in the left side of ondition(5) and (6), respetively. We will show a plot of these bounds in experimentsSetion 6.4 Kernel S-K-algorithmThis setion desribes the way how to generalize S-K-Algorithm to learn non-linear disriminant funtions. The underlying idea is to express the S-K-Algorithmin terms of dot produts and use the kernel trik [1{3℄.Let us mention the idea of the kernel trik at the beginning. The input datafrom the original spae X are non-linearly mapped into a new high (possiblein�nite) dimensional spae Y . The mapping is de�ned by a funtion �:X ! Y .Let k:X �X ! R be a funtion, a value of whih orresponds to the dot produtof the non-linearly mapped vetors �(xi) and �(xj), i.e.k(xi; xj) = h�(xi); �(xj )i; 8xi; xj 2 X :It implies that any linear algorithm in whih data appear in the term of thedot produt an be non-linearized by substituting kernel funtions for these dotproduts. The rest of this setion shows how to rewrite the S-K-Algorithm tothe form of dot produts.The idea is to express the iterated vetors w1 and w2 as the onvex om-bination of point sets X1 and X2. We introdue multipliers �i; i 2 I whih



orresponds to the training data xi; i 2 I . The relation of the multipliers �i andthe vetors w1 and w2 is expressed asw1 =Xi2I1 �i � xi ; w2 =Xi2I2 �i � xi ; Xi2I1 �i = 1 ; Xi2I2 �i = 1 : (7)We will show that the adaptation step of the S-K-Algorithm an be arried outas the hange of the oeÆient vetors �1, �2. Let us suppose that the algorithmarrived to Step 3 and the oeÆient k and vetor xt 2 X1 have been alreadyomputed. The adaptation of the vetor w1 is omputed aswnew1 = (1� k) � w1 + k � xt : (8)Substituting (7) to (8) we getXi2I1 �newi � xi = (1� k) �Xi2I1 �i � xi + k � xt =Xi2I1[(1� k) + k � �it℄ � �i � xi ;where we used the Kroneker delta �it = 0 for i 6= t and �it = 1 for i = t. Itmeans that the adaptation step for �i; i 2 I1 an be arried out as�newi = � (1� k) � �i; for i = t;(1� k) � �i + k; otherwiseand similarly for the ase when �i; i 2 I2 are adapted. Also the rest of thealgorithm, i.e. equations in Step 2 and omputation of the number k in Step 3, 4an be expressed using the multipliers �i. It turns out that after this expressionthe data appear in terms of the dot produt only and the kernel funtions anbe used.We will derive this expression only for the ondition (5) whih is evaluatedin Step 2. The other relations we will introdue without derivation as they aresimilar. The evaluation of the ondition (5) requires values of the terms hxt �w2; w1 � w2i and jjw1 � w2jj2. Substituting (7) to the �rst term yieldshxt � w2; w1 � w2i == hxt; w1i � hw1; w2i � hxt; w2i+ hw2; w2i= Pi2I1 �ihxt; xii � Pi2I1 Pj2I2 �i�2hxi; xji � Pi2I2 �ihxt; xii+ Pi2I2 Pj2I2 �i�2hxi; xji :Similarly for the seond term we getjjw1 � w2jj2 == Pi2I1 Pj2I1 �i�jhxi; xji � 2 Pi2I1 Pj2I2 �i�jhxi; xji+ Pi2I2 Pj2I2 �i�jhxi; xji= Pi2I Pj2I �i�jyiyjhxi; xji :It is obvious that the data appear in terms of the dot produt only. It allowsus to substitute the kernel funtions k(xi; xj) for the dot produts hxi; xji. Theresult of the S-K-Algorithm, after the transformation mentioned above, are the



multipliers �i and the threshold �. The reognition of unknown pattern x isarried out aording to the sign of the funtionf(x) = h�(w); �(x)i�� =Xi2I1 �ik(xi; x)�Xi2I2 �ik(xi; x)�� =Xi2I �iyik(xi; x)��:The Kernel version of the S-K-Algorithm is introdued bellow.1. Initialization. The oeÆients �i; i 2 I are set to�i = �1; if i = i1 or i = i2;0; otherwise;where i1 is an arbitrary index from I1 and i2 is an arbitrary index from I2.2. Auxiliary variables omputation. The following numbers are omputeda =Xi2I1 Xj2I1 �i�jk(xi; xj); b =Xi2I2 Xj2I2 �i�jk(xi; xj); =Xi2I1 Xj2I2 �i�jk(xi; xj);di = Xj2I1 �jk(xi; xj); ei = di �Xj2I2 �jk(xi; xj); for i 2 I1 ;fi = Xj2I2 �jk(xi; xj); gi = fi �Xj2I1 �jk(xi; xj); for i 2 I2 :3. Multipliers �i; i 2 I1 update. The index t = argmini2I1 ei is found. If the ondi-tion et + b� pa� 2+ b � pa� 2+ b� "2 (9)holds then �newi = �i; i 2 I2 and update �newi ; i 2 I1 as�newi = ��i(1� k) + k; for i = t;�i(1� k); otherwise;where k = a� et � pa� 2dt + k(xt; xt)and go to Step 2. If the ondition (9) does not hold then go to Step 4.4. Multipliers �i; i 2 I2 update. The index t = argmini2I2 gi is found. If the ondi-tion gt + a� pa� 2+ b � pa� 2+ b� "2 (10)



holds then �newi = �i; i 2 I1 and update �newi ; i 2 I2 as�newi = ��i(1� k) + k; for i = t;�i(1� k); otherwise;where k = b� gt � pb� 2ft + k(xt; xt)and go to Step 2. If the ondition (10) does not hold then go to Step 5.5. Threshold omputation. The threshold is omputed as � = 12 (a� b) and themargin is m = 12pa� 2+ b.If the input data are linearly separable in the non-linear feature spae thenthe algorithm exits after �nite number of iterations. For non-separable data thealgorithm onverges to the zero vetor.5 Non-separable aseIn this setion, we will desribe the way how to ope with the non-separablease. To this end, we will �rst introdue another formulation of the problem of�nding optimal hyperplane whih isfw; �g = argminw;b 12 jjwjj2 ; (11)subjet to yi(hw; xii � �) � 1 ; i 2 I :This problem formulation is used in the Support Vetor Mahines and thefound hyperplane hw; xi = � is alled to be in the anonial form sine themini2I yi(hw; xii � �) = 1. The hyperplane hw0; xi = �0 de�ned by (4) whih theS-K-Algorithm returns oinide to the hyperplane hw; xi = � but it has not theanonial form sine mini2I yi(hw0; xii � �0) = jjwjj2=2. It is obvious thatw = s � w0 ; � = s � �0 ;where s 2 R and an be omputed ass = 2jjwjj2 :The normalization of the solution returned by the Kernel S-K-Algorithm to theanonial form lies in a hange of the Step 5 to�0 = (a� b)(a� 2+ b) ; �0i = 2�i(a� 2+ b) ; i 2 I : (12)



Then the funtion f(x) = Pi2I �0ik(xi; x) + �0 de�nes anonial hyperplane inthe non-linear feature spae indued by the given kernel. Let us note, that themultipliers �0i omputed by the Kernel S-K-Algorithm oinide to the Lagrangianmultipliers of the dual form of (11) (see [10℄), whih SVMs ompute.When the data are not-linearly separable then there is no hyperplane withoutlassi�ation error on the training data. The generalized optimal hyperplane [10℄whih is de�ned as a solution offw; �; �i; i 2 Ig = argminw;b 12 jjwjj2 + CXi2I (�i)p ; (13)subjet to yi(hw; xii � �) � 1� �i ; i 2 I; �i � 0 ;an be found instead. The presribed onstant C 2 R determines trade-o� be-tween a width of the margin and the training error. The training error is ap-proximated by the ost funtion Pi2I(�i)p. The variables �i relax the set ofinequalities and they are alled slak variables. The SVMs use a linear ost fun-tion p = 1 for whih the problem leads to the quadrati programming. Furtheron, we will be interested in the quadrati ost funtion p = 2.In [8℄, a transformation is proposed, whih modi�es the task (13) with quadratiost funtion to the task (11) where no ost funtion is presented. To this end,the input n-dimensional spae X is transformed to a new n+l-dimensional spaeX 0, where the non-separable data beome separable. The input vetor xi 2 X ismapped to a new x0i 2 X 0 asx0ji =8<:xji ; for j = 1; :::; n ;yip2C ; for j = n+ i ;0 ; otherwise ; (14)where the upper index denotes oordinate number. Next, we introdue a newnormal vetor w0j = �wj ; for j = 1; :::; n ;p2C�j�n ; otherwise : (15)If we substitute w0 and x0i to (11) then it turns to the problem (13) with quadratiost funtion p = 2.To apply the mentioned transformation to the Kernel S-K-Algorithm, wemust only hange the kernel funtion k(xi; xj) to a new k0(xi; xj), whih isde�ned as k0(xi; xj) = �k(xi; xj) ; for j 6= i ;k(xi; xj) + 12C ; for i = j : (16)At the end, we will summarize mentioned extension of the Kernel S-K-Algorithm. The Step 5 is replaed by the relations (12) and the kernel funtionk(xi; xj) is replaed by the k0(xi; xj) de�ned by (16). After this modi�ation thesolution returned by the S-K-Algorithm oinides to the solution of the task (13)with ost quadrati ost funtion p = 2.



6 ExperimentsWe tested the proposed Kernel S-K-Algorithm on the syntheti Ripley's [5℄ dataset. As a referene algorithm we used SVMs with quadrati ost funtion (seeSetion 5). For the quadrati programming task of SVMs, we used Matlab Op-timization Toolbox.The Ripley's data set onstitutes a well-known syntheti problem of smallsize and in a two-dimensional spae. The set onsists of 250 training and 1000testing patterns belonging into two lasses whih are heavily overlapped. Theparameters of the Kernel S-K-Algorithm are: (i) kernel funtion, (ii) trade-o�onstant C and (iii) preision onstant set to " = 0:01. The SVMs do not have thepreision parameter whih is impliitly hidden in the used quadrati program-ming algorithm. We learned lassi�ers with (i) linear kernel, (ii) RBF kernelwith � = 1, (iii) polynomial kernel of degree d = 2. We used trade-o� onstantranging from C = f1; 10; 100; 1000; 10000g. The best obtained lassi�er, havingthe smallest lassi�ation error on test data, was enlisted to the omparative Ta-ble 1. We also measured (i) training lassi�ation error, (ii) number of oatingpoint operations used for training, (iii) and the number of patterns determiningthe lassi�er, i.e. Support Vetors.Table 1. Comparison between Kernel S-K-Algorithm (KSK) and Support Vetor Ma-hines (SVM) on Ripley data set. Both algorithms use quadrati ost funtion.Class. error Class. error Floating point Number of(test) [%℄ (train) [%℄ operations Support VetorsSVM (linear, C=1) 11.30 14.80 4590 �106 165KSK (linear, C=10) 11.40 14.40 385 �106 149SVM (RBF � = 1, C=10000) 9.40 14.80 5995 �106 120KSK (RBF � = 1, C=10) 9.00 13.20 242�106 145SVM (poly d=2, C=10) 9.90 14.80 5180 �106 152KSK (poly d=2, C=10) 10.50 14.00 1081 �106 156To demonstrate an e�et of the onstant " in the Kernel S-K-Algorithm wevisualized the upper and lower bounds on the optimal solution. By the optimalsolution, we mean the maximal margin in the high dimensional feature spae,where the data are non-linearly mapped and are separable. The bounds areevaluated in eah algorithm step (see Setion 3) and determine its stop ondition.The algorithm exits when the di�erene between the upper and the lower bound,denoted as "-preision, is less than given ". Figure 1 shows the plot of thesebounds with respet to iteration number. The plots orrespond to the lassi�erslisted in Table 1.



An implementation of the Kernel S-K-Algorithm an be found in the Statisti-al Pattern Reognition toolbox for Matlab. The toolbox is freely downloadablefrom http://mp.felk.vut.z/ xfranv/stprtool.7 ConlusionWe have proposed the method based on the S-K-Algorithm whih learns lin-ear maximal margin lassi�er with presribed preision. The advantage of theS-K-Algorithm is its simple programming, on-line proessing of data and fastonvergene to the solution. A restriting property of the S-K-Algorithm is therequirement on separable training sets. Our ontribution lies in generalizationof the S-K-Algorithm to the non-linear ase by the use of kernel funtions. Anextension to the non-separable ase is proposed as well. The proposed algorithm�nds the generalized optimal margin with quadrati ost funtion. The algo-rithm is simple to implement and does not require any additional optimizationpakages. The experiments onduted show that is ompetitive to the SVMs.AknowledgementThis researh was supported by the Grant Ageny of the Czeh Republi underthe grant GACR 102/00/1679 Geometry and appearane of a 3D sene from alarge olletion of images.Referenes1. A. Aizerman, M., M. Braverman, E., and L. I. Rozoner. Theoretial foundationsof the potential funtion method in pattern reognition learning. Automation andRemote Control, 25:821{837, 1964.2. E. Boser, B., M. Guyon, I., and N. Vapnik, V. A training algorithm for optimalmargin lassi�ers. In Pro. 5th Annual Workshop on Comput. Learning Theory,pages 144{152. ACM Press, New York, NY, 1992.3. Corinna Cortes and Vladimir Vapnik. Support-vetor networks. Mahine Learning,20:273, 1995.4. B.N. Kozine. Rekurentnyj algoritm razdelenia vypuklyh obolohek dvuh mnozh-estv, in Russian (Reurrent algorithm separating onvex hulls of two sets). In V.N.Vapnik, editor, Algoritmy obuhenia raspoznavania (Learning algorithms in patternreognition), pages 43{50. Sovetskoje radio, Moskva, 1973.5. B.D. Riplay. Neural networks and related methods for lassi�ation (with disu-sion). J. Royal Statistial So. Series B, 56:409{456, 1994.6. M. I. Shlesinger and V. Hlav�a�. Deset p�redn�a�sek z teorie statistik�eho a struk-turn��ho rozpozn�av�an��, in Czeh (Ten letures on statistial and strutural patternreognition). Czeh Tehnial University Publishing House, Praha, Czeh Republi,1999. English version is supposed to be published by Kluwer Aademi Publishersin 2001.
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Fig. 1. Convergene of the Kernel S-K-Algorithm to the solution for linear, RBF andpolynomial kernels (see Table 1).
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