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Abstract. This paper describes a simple learning algorithm for maximal
margin classifiers. The algorithm is based on the Schlesinger-Kozinec’s
algorithm (S-K-Algorithm) which finds maximal margin hyperplane with
a given precision for separable data. We propose (i) a generalization of
the S-K-Algorithm to the non-linear algorithm using kernel functions
and (ii) a method which allows the use of the S-K-Algorithm for non-
separable data. The proposed algorithm is simple to implement and, as
the experiments showed, competitive to the state-of-the-art algortihms.

1 Introduction, related work and notation

Maximal margin classifiers find a decision strategy which separates the training
data with the maximal margin. This leads to minimization of the structural
risk and to good generalization capabilities of the classifier. This is justified
by both experimental evidence and theoretical studies [11,9,10]. The Support
Vector Machines (SVMs) [10] transform the learning process of the maximal
margin classifier to the Quadratic Programming (QP). Although the QP task
is well explored it requires complicated optimization algorithms and, moreover,
processing of large amounts of data is computationally demanding.

We propose a simple, on-line learning algorithm which finds non-linear max-
imal margin classifier with the given precision. The approach is based on an
veps-solution algorithm which yields linear decision rule which have margin dif-
ferent from the optimal one at most by a constant €. The veps-solution algorithm
was proposed by M.I. Schlesinger et al. [7] and its more recent analysis is avail-
able in the monograph [6]. This iterative algorithm uses an update rule that was
proposed by B.N. Kozinec [4]. We will call the algorithm the Schlesinger-Kozinec
algorithm and abbreviate it as S-K-Algorithm.

The advantages of the S-K-Algorithm are its simplicity for programming, fast
convergence to the solution and its on-line processing of data. The disadvantages



of the S-K-Algorithm are that it finds only linear classifiers and requires linearly
separable data.

Our contribution lies in the generalization of the S-K-Algorithm to the non-
linear one using kernel functions [1]. We also propose the generalization to the
non-separable case where the generalized optimal hyperplane [10] with quadratic
cost function is searched for. Experiments conducted have shown that the pro-
posed algorithm is competitive to the SVMs while its programming is consider-
ably simpler.

The rest of the paper is structured as follows. Section 2 defines the optimal
and the e-optimal hyperplane. Section 3 describes the original S-K-Algorithm for
linear and separable cases. In Section 4, the kernel version of the S-K-Algorithm
is proposed and Section 5 provides generalization to the non-separable case.
Experiments are given in Section 6. Section 7 concludes the paper.

2 Optimal and e-optimal separating hyperplane

The sets Xy = {z;:i € [} and Xy = {z;:0 € I} denote training patterns for
the first and the second class, where I = I; U I, are the sets of indices. The
numbers y; = +1,4 € I and y; = —1, i € I, denote pattern labels.

The classes, i.e vector sets X1 and X5, are linearly separable if there exist a
vector w and a threshold # such that the set of inequalities

(w,z;y >0, iel, (wyzi) <0, i€l (1)

holds. The vector w and threshold 6 determine a separating hyperplane (w, z) =
6. Let us introduce function

m(w,6) = min <M) :

i€l [|w]]

Its value is the shortest distance from the hyperplane (w, z) = 6 to vector sets X
and X5. If the inequalities (1) have a solution then there is an optimal separating
hyperplane [10], which is the solution of

{w*,0*} = argmaxm(w,9) . (2)

w,f

The real positive number m* = m(w*,6*) is the maximal margin between the
sets X1 and Xs. Let us define so called e-optimal separating hyperplane [6] now,
which is determined by the vector w and 6 satisfying the following condition

m* —m(w,0) <e, (3)

where ¢ is an arbitrary positive constant. In other words, the margin defined by
the (3) differs from the optimal margin by & at most.



3 S-K-Algorithm

In this section, we will describe the S-K-Algorithm, which finds the e-optimal
separating hyperplane (3). We will introduce the S-K-Algorithm without detailed
analysis and proof of convergence, which can be found in [6].

The algorithm is based on the idea that two point sets X, X> can be opti-
mally separated by the hyperplane which is perpendicular to the vector w} — w3
and passes through the center of the abscissa joining the points w} and wj. The
points w} and w3 belong into the convex hulls X1 and X2, and they are the
points which determine the shortest distance between these convex hulls, i.e.

fwhui} =  argmin_ [lwr — wsl]. @)
UJ1€Y1,’LU2€Y2

The vector w* = wi — w} and the threshold § = L (||w}||* — ||w3|[*) determine
the hyperplane which coincide to the optimal hyperplane defined by (2).

The idea mentioned above is implemented into the algorithm as follows.
At the beginning, wy, wy is set to an arbitrary point from the set X, Xs,
respectively. Then the point ws is fixed and w; is moved toward w2 as much as
possible. Similarly, the point w; found is fixed and the point ws is moved toward
wy. This process is repeated until the e-optimality condition is satisfied. The
adaptation rule used in the algorithm ensures that the vector w;, we does not
leave the convex hull X1,X2 respectively. A modification of (3) is used as the
stopping condition. The the first term m* is unknown since it is a width of the
optimal margin. The value m* can be replaced by its upper bound. It is obvious
that the norm of the vector w = w; —ws, w; € X1, wy € X2 is the closest upper
bound we have. The algorithm outlined is described below.

1. The vector w; is set to an arbitrary vector from the set X; and ws to an
arbitrary vector from the set Xs.
2. A vector x; € X satisfying condition

w; — W2 €
—wy, — 2N < |wy — ws| — = 5
<xt w2,||w1_w2||>_||w1 ws] 5 (5)

is searched for. If such vector z; is found then go to Step 3. Otherwise a
vector x; € Xo which satisfies condition

Wwo — W1 g

(2 =00, 2T ) < o =l = 5 ©)
is searched for. If such vector z; is found then go to Step 4. If neither (5) nor
(6) is satisfied for any vector then the vectors wy and ws define the e-optimal
hyperplane (w, z) = 6, where w = w1 — w» and 6 = L (||wy|*> — ||w2]|?). The
margin of found hyperplane is equal to ||w]|.

3. If the point z; which satisfies the condition (5) exists then w5*" = wy and

the new vector wi*" is computed as

w =1 —-k) w +k-z,



where

k = min (1,

(w1 — W, w1 — ﬂft>>
llw — 2|2

The algorithm continues with Step 2.

4. If the point z; which satisfies the condition (6) exists then w** = w; and

the new vector wf°" is computed as

wy =1 —-k) ws+k-x,

where

k = min (1, (wz — w1, 0 —m))

[|ws — 2| |?

The algorithm continues to Step 2.

This algorithm builds a sequence of vectors w = w; — we, which converges to
the optimal solution w* when the input data are linearly separable. If the data
are not linearly separable then the algorithm converges to zero vector. In each
algorithm step, the norm ||w|| decreases to ||w"?|| = K -||w||, 0 < K < 1, which
means that for € > 0 the algorithm stops after finite number steps. The proof as
well as an estimate of K is given in [6].

Let us note, that a speed of the algorithm convergence can be estimated from
the upper and lower bound of the optimal solution m*. The upper bound is the
norm of vector ||w|| and the lower bound is the term in the left side of condition
(5) and (6), respectively. We will show a plot of these bounds in experiments
Section 6.

4 Kernel S-K-algorithm

This section describes the way how to generalize S-K-Algorithm to learn non-
linear discriminant functions. The underlying idea is to express the S-K-Algorithm
in terms of dot products and use the kernel trick [1-3].

Let us mention the idea of the kernel trick at the beginning. The input data
from the original space X are non-linearly mapped into a new high (possible
infinite) dimensional space ). The mapping is defined by a function ¢: X — Y.
Let k: X x X — R be a function, a value of which corresponds to the dot product
of the non-linearly mapped vectors ¢(z;) and ¢(x;), i.e.

k(l‘i,l‘j) = <¢)(1‘l),¢(1'3)>7 V:vi,xj cX.

It implies that any linear algorithm in which data appear in the term of the
dot product can be non-linearized by substituting kernel functions for these dot
products. The rest of this section shows how to rewrite the S-K-Algorithm to
the form of dot products.

The idea is to express the iterated vectors w; and ws as the convex com-
bination of point sets X; and Xs. We introduce multipliers «;,7 € I which



corresponds to the training data x;,¢ € I. The relation of the multipliers a; and
the vectors w; and ws is expressed as

w1:Zai-xi, uu:Zai-xi, Zaizl, Zaizl. (7)

i€l €15 i€l i€l

We will show that the adaptation step of the S-K-Algorithm can be carried out
as the change of the coefficient vectors a;, as. Let us suppose that the algorithm
arrived to Step 3 and the coefficient k& and vector xz; € X; have been already
computed. The adaptation of the vector w; is computed as

w =1 —k)-w + k-2 (8)

Substituting (7) to (8) we get

Za?ew-aziz(l—k)-Zai-azi—l—k-azt=Z[(1—k)+k-ait]-ai-mi,

i€l i€l i€l

where we used the Kronecker delta o;; = 0 for i # ¢t and 05 = 1 for i = ¢. It
means that the adaptation step for a;,7 € I; can be carried out as

new_{(l—k)-ai, for i=t,

Y (1—-k) «a; +k, otherwise

and similarly for the case when «;,i € I are adapted. Also the rest of the
algorithm, i.e. equations in Step 2 and computation of the number k in Step 3, 4
can be expressed using the multipliers a;. It turns out that after this expression
the data appear in terms of the dot product only and the kernel functions can
be used.

We will derive this expression only for the condition (5) which is evaluated
in Step 2. The other relations we will introduce without derivation as they are
similar. The evaluation of the condition (5) requires values of the terms (x; —
wa,w; —ws) and ||w; — wz||?. Substituting (7) to the first term yields

(l‘t — w2, w1 — w2> =

= (g, w1) — (w1, w2) — (Tt wa) + (wa, w2)

= > aize,zi) — Y Y (T, mp) — Yo il i) + Y Y (T, Tj) -

i€l i€l jelz i€l i€ls jEI2

Similarly for the second term we get

lJwy —ws]* =

= > > aiai(mi,my) —2 ), > aiag(mi,xg) + Y0 Y aieg{Ti, ;)
i€l jely i€l jels i€lz jEls

= > > aiogyy(wi, Tj) -
icl jer

It is obvious that the data appear in terms of the dot product only. It allows
us to substitute the kernel functions k(z;,2;) for the dot products (z;, ;). The
result of the S-K-Algorithm, after the transformation mentioned above, are the



multipliers «; and the threshold #. The recognition of unknown pattern z is
carried out according to the sign of the function

flo) = (p(w), () =0 = Y aik(wi, x) =Y aik(wi,w)—0 =Y cuyik(wi, v)—6.

i€l i€l el
The Kernel version of the S-K-Algorithm is introduced bellow.

1. Initialization. The coefficients «a;,7 € I are set to

= 1, if ’i=7:1 or izig,
70, otherwise,

where 77 is an arbitrary index from I; and i- is an arbitrary index from Is.
2. Awxiliary variables computation. The following numbers are computed

a= Z Z a;ak(x;, xj), b= Z Z aoik(zi, ),

i€l jeh i€ly jEI»

c= Z Z a;oik(z;, x;),

il jel2

d; = Z ajk(a:i,:nj), e; =d; — Z ajk(mi,mj), for i€,

j€nh JEl2
fi=> ajk(xixy),  gi=fi— Y ajk(zi,z;), for i€l.
JE€I> Jj€

3. Multipliers a;,i € Iy update. The index ¢ = argmin e; is found. If the condi-
i€l

et +b—c €
Tt <Va—2e+b—< 9
va—2c+b "~ “m e 2 )

holds then a}" = a;,i € I» and update a}°",i € I; as

i

tion

new __

a;(1—k)+k,for i=t,
YT L a1 — k), otherwise,

where
b= a—€g—C
\/a — th + k(l‘t,l‘t)

and go to Step 2. If the condition (9) does not hold then go to Step 4.

4. Multipliers a;,i € Iy update. The index ¢ = argmin g; is found. If the condi-
i€ls

gt +a—c €
——<Va—-2c+b— = 10
va—2c+b~ 2 (10)

tion



holds then a*" = «;,¢ € I} and update a}*",i € I» as

new {ai(l—k)+k, for i=t,
o =

¢ a;(1—k), otherwise,

where
b—gi —c

k=
Vb= 2fi + (e, z2)
and go to Step 2. If the condition (10) does not hold then go to Step 5.
5. Threshold computation. The threshold is computed as § = %(a —b) and the

margin is m = 1va — 2c +b.

If the input data are linearly separable in the non-linear feature space then
the algorithm exits after finite number of iterations. For non-separable data the
algorithm converges to the zero vector.

5 Non-separable case

In this section, we will describe the way how to cope with the non-separable
case. To this end, we will first introduce another formulation of the problem of
finding optimal hyperplane which is

1
{10,6} = avgmin g ] (1)
w,

subject to
yi((w,z) =) >1, iel.

This problem formulation is used in the Support Vector Machines and the
found hyperplane (w,z) = 6 is called to be in the canonical form since the
mel}l yi((w,z;) — ) = 1. The hyperplane (w',z) = 0’ defined by (4) which the
(3

S-K-Algorithm returns coincide to the hyperplane (w, z) = 8 but it has not the
canonical form since mi}l yi((w',z;) — 0") = ||w||?/2. Tt is obvious that
1€

w=s-w, f=s-0",

where s € R and can be computed as

2
§= >

[lwl]>

The normalization of the solution returned by the Kernel S-K-Algorithm to the
canonical form lies in a change of the Step 5 to

(a —b) , 2a;

- — ) =" __ qel. 12
b (a—2c+0b)’ % (a—2c+b)’ re (12)



Then the function f(z) = > atk(z;,z) + 6’ defines canonical hyperplane in
iel

the non-linear feature space ienduced by the given kernel. Let us note, that the
multipliers o} computed by the Kernel S-K-Algorithm coincide to the Lagrangian
multipliers of the dual form of (11) (see [10]), which SVMs compute.

When the data are not-linearly separable then there is no hyperplane without
classification error on the training data. The generalized optimal hyperplane [10]
which is defined as a solution of

1
{w,0,¢,iel} = aﬂ‘gmin§||w||2 + CZ(&)” ) (13)
w,b icl

subject to
yl((w,x2>—9)21—£z, ZEI: 52207

can be found instead. The prescribed constant C' € R determines trade-off be-
tween a width of the margin and the training error. The training error is ap-
proximated by the cost function ), ;(&)P. The variables §; relax the set of
inequalities and they are called slack variables. The SVMs use a linear cost func-
tion p = 1 for which the problem leads to the quadratic programming. Further
on, we will be interested in the quadratic cost function p = 2.

In [8], a transformation is proposed, which modifies the task (13) with quadratic
cost function to the task (11) where no cost function is presented. To this end,
the input n-dimensional space X is transformed to a new n +[-dimensional space
X', where the non-separable data become separable. The input vector z; € X is
mapped to a new z; € X’ as

. a:z, for j=1,...,n,
z) = J=, for j=n+i, (14)
0, otherwise ,

where the upper index denotes coordinate number. Next, we introduce a new
normal vector

I

for j=1,..,n,

i Jwo
we = {\/Qij_n , otherwise . (15)

If we substitute w’ and z} to (11) then it turns to the problem (13) with quadratic
cost function p = 2.

To apply the mentioned transformation to the Kernel S-K-Algorithm, we
must only change the kernel function k(z;,z;) to a new k'(z;,;), which is

defined as K ) r A
P o Ti, Lj), or J L
k(‘r“x]) B {k(l’i,l‘j)+%, for i=3j. (16)

At the end, we will summarize mentioned extension of the Kernel S-K-
Algorithm. The Step 5 is replaced by the relations (12) and the kernel function
k(z;,x;) is replaced by the k'(x;,z;) defined by (16). After this modification the
solution returned by the S-K-Algorithm coincides to the solution of the task (13)
with cost quadratic cost function p = 2.



6 Experiments

We tested the proposed Kernel S-K-Algorithm on the synthetic Ripley’s [5] data
set. As a reference algorithm we used SVMs with quadratic cost function (see
Section 5). For the quadratic programming task of SVMs, we used Matlab Op-
timization Toolbox.

The Ripley’s data set constitutes a well-known synthetic problem of small
size and in a two-dimensional space. The set consists of 250 training and 1000
testing patterns belonging into two classes which are heavily overlapped. The
parameters of the Kernel S-K-Algorithm are: (i) kernel function, (ii) trade-off
constant C' and (iii) precision constant set to e = 0.01. The SVMs do not have the
precision parameter which is implicitly hidden in the used quadratic program-
ming algorithm. We learned classifiers with (i) linear kernel, (ii) RBF kernel
with ¢ = 1, (iii) polynomial kernel of degree d = 2. We used trade-off constant
ranging from C' = {1, 10,100, 1000,10000}. The best obtained classifier, having
the smallest classification error on test data, was enlisted to the comparative Ta-
ble 1. We also measured (i) training classification error, (ii) number of floating
point operations used for training, (iii) and the number of patterns determining
the classifier, i.e. Support Vectors.

Table 1. Comparison between Kernel S-K-Algorithm (KSK) and Support Vector Ma-
chines (SVM) on Ripley data set. Both algorithms use quadratic cost function.

Class. error|Class. error|Floating point| Number of
(test) [%] | (train) [%]| operations |Support Vectors

SVM (linear, C=1) 11.30 14.80 4590 -10° 165

KSK (linear, C=10) 11.40 14.40 385 -10° 149

SVM (RBF ¢ =1, C=10000) 9.40 14.80 5995 -10° 120

KSK (RBF o = 1, C=10) 9.00 13.20 242.10° 145

SVM (poly d=2, C=10) 9.90 14.80 5180 -10° 152

KSK (poly d=2, C=10) 10.50 14.00 1081 -10° 156

To demonstrate an effect of the constant € in the Kernel S-K-Algorithm we
visualized the upper and lower bounds on the optimal solution. By the optimal
solution, we mean the maximal margin in the high dimensional feature space,
where the data are non-linearly mapped and are separable. The bounds are
evaluated in each algorithm step (see Section 3) and determine its stop condition.
The algorithm exits when the difference between the upper and the lower bound,
denoted as e-precision, is less than given e. Figure 1 shows the plot of these
bounds with respect to iteration number. The plots correspond to the classifiers
listed in Table 1.



An implementation of the Kernel S-K-Algorithm can be found in the Statisti-
cal Pattern Recognition toolbox for Matlab. The toolbox is freely downloadable
from http://cmp.felk.cvut.cz/ xfrancv/stprtool.

7 Conclusion

We have proposed the method based on the S-K-Algorithm which learns lin-
ear maximal margin classifier with prescribed precision. The advantage of the
S-K-Algorithm is its simple programming, on-line processing of data and fast
convergence to the solution. A restricting property of the S-K-Algorithm is the
requirement on separable training sets. Our contribution lies in generalization
of the S-K-Algorithm to the non-linear case by the use of kernel functions. An
extension to the non-separable case is proposed as well. The proposed algorithm
finds the generalized optimal margin with quadratic cost function. The algo-
rithm is simple to implement and does not require any additional optimization
packages. The experiments conducted show that is competitive to the SVMs.
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