
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

R
E
S
E
A
R
C
H
R
E
P
O
R
T

IS
S
N

1
2
1
3
-2
3
6
5

Building Streetview Datasets for

Place Recognition and City

Reconstruction

Petr Gronát1, Michal Havlena1, Josef Šivic2,
Tomáš Pajdla1

1{gronapet, havlem1, pajdla}@cmp.felk.cvut.cz
2josef.sivic@ens.fr

1Center for Machine Perception, FEE, CTU in Prague, Czech Republic
2INRIA, WILLOW, Laboratoire d’Informatique de l’Ecole Normale

Superieure

CTU–CMP–2011–01

January 26, 2011

Available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/gronat/Gronat-TR-2011-01.pdf

The work was supported by the SGS grant.

Research Reports of CMP, Czech Technical University in Prague, No. 1, 2011

Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +4202 2435 7385, phone +4202 2435 7637, www: http://cmp.felk.cvut.cz





Building Streetview Datasets for Place

Recognition and City Reconstruction

Petr Gronát1, Michal Havlena1, Josef Šivic2, Tomáš Pajdla1

January 26, 2011

Abstract

Google Maps API combined with Street View images can serve
as a powerful tool for place recognition or city reconstruction tasks.
In this paper, we present a way how to build geotagged datasets of
perspective views from Google Maps. Given the initial GPS coordi-
nates, the algorithm can build a list of panoramas in a certain area,
download corresponding panoramas, and generate perspective views.
In more detail, each panorama on Google Maps Street View contains
meta data from which the GPS location and the direction of the view
can be extracted. Moreover, the information about the neighbouring
panoramas can be obtained as well, hence, a list of panoramas cov-
ering a certain area can be built. Downloading panoramas from the
list and combining it with the meta data, each downloaded panorama
is cut into a set of overlaping perspective views and stored while the
camera GPS location, yaw, and pitch are coded in the filename of the
perspective view. The geotagged database is subsequently used for
place recognition and structure from motion 3D reconstruction.

1 Introduction

Google Maps API is an interface allowing to integrate Google Maps services
into external websites. In 2007, Google Maps Street View was released and
new features appeared in Google Maps API that provide panoramic views of
cities at ground level. We utilize the API and its Google Maps Street View
JavaScript panorama objects to build a geotagged database of perspective im-
ages in a defined area of the city. For each panorama, this database contains
seven overlaping perspective views per 360◦ in two different pitches, hence,
totally fourteen perspective views are generated per panorama. Moreover,

1



Inicial GPS
Location

images

database of
geotagged

perspective view

filename
list

Downloading
Panoramas

Stop
Condition

HTML
+

Obtaining
Panorama List

and Filelist

Generating
Cutouts

panoramic
view img.

JavaScript

MATLAB

panorama ID
list

Figure 1: Flowchart of building the geotagged image database.

the information about the GPS location and the geographic North orien-
tation are extracted from JavaScript panorama objects and are coded into
the filenames of the database of the perspective views. For developers, both
JavaScript and Adobe Flash API are available, in our work we use HTML
and JavaScript API combined with a MATLAB script for downloading.

The geotagged database is later used for place recognition [3] or for 3D
scene reconstruction respectively using CMP Structure-From-Motion Web
Service as demonstrated below.

2 Building the Database

As mentioned above, we utilize the Google Maps Street View to build our
database. The actual process which is captured in Figure 1 consists of three
consecutive steps: (i) obtaining panorama list, (ii) downloading panoramas,
and (iii) generating cutouts. The panorama list building block utilizes the
HTML page with JavaScript whereas the panorama downloading and cutout
blocks are implemented in MATLAB.

2.1 Obtaining Panorama List and Filelist

We use a HTML page with JavaScript and Google Maps API to obtain
the IDs of the panoramas which should be downloaded. The panorama
IDs and other meta data are held in panoData JavaScript objects. First,

2



the panorama closest to the user-defined start position is searched for using
method panoClient.getNearestPanorama(), its ID is read from
panoData.location.panoId, and inserted into a queue. In the main loop,
the panorama ID from the head of the queue is used as a query for the
panoData object using panoClient.getPanoramaById() and added to the
panorama list. Then, the IDs of the neighboring panoramas are read from
panoData.links and inserted into the queue. Finally, the whole process is
repeated until the queue is empty. An additional hastable is used to pre-
vent inserting duplicate panorama IDs in the panorama list, so panorama
list generation proceeds in a wave from the start position and terminates
either when all the linked panoramas, i.e. the whole city segment, have been
processed or when the server rejects the query.

Another list containing future filenames of the perspective views and the
orientation of geographic North direction is created in parallel as shown in
Figure 1. This list is subsequently used by a MATLAB script for generating
cutouts as described below. We wish to store perspective images in the
latitude_longitude_yaw_pitch.JPG format in our database, yaw being
the angle between the view direction and the geographic North. We generate
seven overlapping perspective views with yaw being uniformly distributed
per 360◦ starting with yaw := 0◦. For each yaw, we generate two perspective
views with two different pitch angles, namely −4◦ and −28◦ to capture both
the street level and high buildings.

However, the panorama center on GoogleMaps is oriented towards the di-
rection of the motion of Google car, i.e. direction 0◦ points down the street.
We recover the information about the absolute direction of the motion of
the car which is stored in panoData.Projection.pano_yaw.deg to obtain
panorama orientation w.r.t. the geographic North. Having this information
for each panorama, the desired geographic yaw can be converted to the rel-
ative direction of view w.r.t. panorama center. This angle is also stored in
the list for each filename and is subsequently used by our MATLAB cutout
script, see Section 2.3.

The script for panorama list and filelist building is described in Algo-
rithm 1 in deeper detail.

2.2 Downloading Panoramas

The 360◦ × 180◦ panorama in the equirectangular projection model is stored
on Google server at different zoom levels. We download panoramas at zoom
level 4 which are represented by 6, 656× 3, 328 pixels large images stored in
13× 7 tiles, 512× 512 pixels large each. In the case that a certain panorama
is not available at zoom level 4 we download panorama at zoom level 3 which

3



Algorithm 1 Obtaining Panorama List and Filelist

Input Wave seed location startLatLng.
Output Panorama list idF ile and filelist cutF ile.

1: open idF ile and cutF ile
2: create empty queue process, empty hashtable visited, set numId := 0
3: set panoData := panoClient.getNearestPanorama(startLatLng)
4: enqueue panoData.location.panoId into process
5: insert panoData.location.panoId into visited
6: repeat

7: dequeue nextPanoId from process
8: set panoData := panoClient.getPanoramaById(nextPanoId)
9: if panoData.code 6= 200 then {server rejected connection}
10: return

11: end if

12: add line [panoData.location.panoId panoData.location.latlng]

in idF ile
13: for selected yaw angles do {0◦, 1/7∗360◦, 2/7∗360◦, 3/7∗360◦, 4/7∗

360◦, 5/7 ∗ 360◦, 6/7 ∗ 360◦}
14: set shiftY aw := (360−panoData.Projection.pano yaw deg+yaw)

mod 360
15: for selected pitch angles do {−4◦, −28◦}
16: add line [numId shiftYaw pitch

panoData.location.lat_panoData.location.lng_yaw_pitch.JPG]

in cutF ile
17: end for

18: end for

19: for all linkedPanoId in panoData.links[].panoId do

20: if linkedPanoId is not in visited then

21: enqueue linkedPanoId into process
22: insert linkedPanoId into visited
23: end if

24: end for

25: increase numId
26: until process is empty
27: close idF ile and cutF ile

size is 3, 328×1, 664 pixels and which consist of 6.5×3.5 tiles each having the
resolution of 512 × 512 pixels. Such panorama is subesequently resampled
using bilinear interpolation to have the same resolution as other panoramas

4



downloaded at zoom level 4.
The downloaded tiles are simply stacked together to obtain the panora-

matic view using a MATLAB script and the list of panorama IDs described
in section 2.1. The actual download link is http://cbk1.google.com/cbk?
output=tile&zoom=4&x=X&y=Y&cb_client=maps_sv&fover=2&onerr=3&

panoid=ID where X, Y, and ID are set according to our needs.
The result of tile stacking is demonstrated in Figure 2(a) where the con-

sequent panorama can be seen. The center of the stacked panorama corre-
sponds to the direction of the motion of Google car and the North direction
in panorama can be recovered from the built filelist.

2.3 Generating Cutouts

Subsequently, perspective views are cutout from the downloaded panoramic
images. A given panorama can be mapped onto a surface of a unit sphere
using the transformation from image points to unit vectors of their rays
which can be formulated as follows. For the equirectangular image having
the dimensions IW and IH , a point u = (ui, uj)

⊤ in the image coordinates is
transformed into a unit vector p = (px, py, pz)

⊤ in spherical coordinates such
that:

px = cosφ sin(θ − θ0), py = sinφ, pz = cosφ cos(θ − θ0), . (1)

where angles θ and φ are computed as:

θ − θ0 =

(

ui −
IW
2

)

2π

IW
, (2)

φ =

(

uj −
IH
2

)

π

IH
. (3)

We generate 936 × 537 pixels large perspective images with focal length
502.36 pixels corresponding to HFOV 86◦ by projecting the surface of the
unit sphere to its tangent planes in 14 different directions. Technically, we
do bilinear interpolation in source image coordinates.

The inputs for script are panorama ID, 14 filenames, and relative an-
gles from the previously built filename list corresponding to the particular
panorama. Given the panorama ID, the appropriate panoramatic view for
cutout is loaded. Angle θ0 = 0◦ in Figure 3 corresponds to the center of the
stacked panorama. Relevant angles θ0 for generating cutouts are read from
the filelist and perspectiove views are generated according to equations (2)
and (3) and stored under appropriate filenames. An example of the cutouts
together with the downloaded panoramic image can be seen in Figure 2.

5



(a)

(b) (c) (d) (e)

(f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 2: Panorama (a) and fourteen perspective cutouts with pitch -4◦ (b)–
(h) and -28◦ (i)–(o).

6



O x

y

z

I

i

j

p u

θ − θ0

φ

Figure 3: Transformation between a unit vector p on a unit sphere and a pixel
u of the equirectangular image. The coordinates px, py, and pz of the unit
vector p are transformed into angles θ and φ. Column index ui is computed
from the angle θ and row index uj from the angle φ.

3 Our Datasets

Three geotagged databases were downloaded using the downloading package
described above. Namely, we built databases for Prague where the inicial
position was set to GPS (50.081644, 14.416367), Paris with start position at
Notre-Dame GPS (48.854466, 2.347617) and finally Pittsburgh with inicial
point at GPS (40.44146, -79.995369).

The sizes of the datasets are summarized in Table 3 whereas locations of
the downloaded panoramas are shown in Figure 3.

4 Place Recognition

Our goal is to recognize and to localize the visual content in a query image
using the built geotagged database [3]. This task is challenging due to changes
in scale, viewpoint, and lightening conditions between database images and

Table 1: Downloaded datasets and their sizes.
Dataset No. of Locations No. of Views [·103] Size [GB]

Prague 60, 354 845 86
Paris 86, 166 1, 206 140
Pittsburgh 38, 111 533 48

7



14.36 14.38 14.4 14.42 14.44 14.46

50.04

50.05

50.06

50.07

50.08

50.09

50.1

50.11

50.12

(a)

2.3 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.4

48.82

48.83

48.84

48.85

48.86

48.87

48.88

48.89

(b)

Figure 4: Maps of the downloaded panorama locations, Prague (a) and Paris
(b). The color represents the distance “in the wave” from the inicial point.

the query image. Given the query image of a particular part of the city, i.e.
a building or a street, our objective is to recognize one or more images in our
databese having the same visual content, i.e. there should be a significant
scene overlap in the images.

Being short, the procedure is as follows [5]. SURF features [1] are com-
puted for each image in the database. We build a visual vocabulary using all
features over some random subset of the databaset. Using this vocabulary,
each SURF feature is mapped into a particular word, hence, each image in
the database is represented by some amount of visual words. Visual words
are assigned to each document in the database, thus, for each document the
tf-idf vector can be computed. That means that having the visual vocabulary
and thre computed SURF features, the image can be represented by a single
tf-idf vector. Given the query image, SURF features are computed, mapped
into a dictionary, and the tf-idf vector is evaluated. This vector is compared
with those corresponding to the database images, highly correlated vectors
represent couples of images having high probability of visual overlap.

In more detail, first, SURF features are computed for every image in
the database which produces 64-dimensional feature space of data. Using
the approximative k-means algorithm [4], a user-defined number of clusters
is assigned to data. Each cluster center represents a so called visual word.
Now, each SURF descriptor is assigned to the closest cluster i.e. a visual word
is assigned to each SURF descriptor. Since now, each image is represented
by its visual words. Analogicaly to the text retrieval tasks, the tf-idf vector
tdi is computed for the i-th image in the database.

Given a query image, the procedure is as follows. SURF descriptors are
computed for the given query image and visual words are assigned. The tf-idf

8



vector tq for the query image is computed and subsequently compared with
the tf-idf vectors of the database images. We are looking for candidate images
i in the database such that i = argmaxi(t

T
di · tq) and the best candidates

are selected. Subsequently, we employ spatial verification of visual words via
homography and RANSAC for each candidate and select the best one. Since
every image in our database is geotagged, the GPS coordinates of the query
image visual content can be retrieved.

5 City Reconstruction

The goal is to reconstruct some part of the 3D structure of a city using
the geotagged database. However, our objective is not to reconstruct the
whole city at the same time from the whole database because that would be
inconceivably expensive or even impossible. Instead of it, we manually define
a certain area in the map which should be reconstructed. Having the GPS
locations of downloaded panoramas, we hand-label panoramas close to the
area that may have a visual overlap with it. We select only view directions
relevant to the defined area for each panorama. Appropriate perspective view
cutouts are subsequently parsed into the SFM pipeline and a part of the 3D
scene is reconstructed.

In more detail, we manually localize the visual content in the map for each
query image from the recognition task. The border of this visual content, the
scene, is highlighted by a polygon whose vertex coordinates are stored for each
query image. The situation is illustrated in Figure 5(a) in which the query
image and a map cutout with a white triangle bounding the visual content
region of the query image can be seen. Locations of available panoramas are
displayed by red circles in Figure 5(b).

A hand-labeled list of panorama locations having a great potential to
have visual overlap with the query image is built. We remove the perspec-
tive views not heading inside the polygon for each panorama location from
this list. The result of the selection is shown in Figure 5(b), where yellow
arrows represent directions of the selected perspective view cutouts from the
geotagged database.

Using this list, we are able to reconstruct the scene using a structure
from motion pipeline. We utilize Bundler [6] in the CMP SfM Web Service
[2] for 3D reconstruction. A detailed user guide can be found on the website.
The MATLAB script is being used to generate the XML files containing the
filelists of perspective views or the focal lengths respectively. These XML files
are passed to the SFM pipeline to proceed the reconstruction. The results
are displayed in Figure 5. Whereas the view in Figure 5(c) is approximately

9



(a) (b)

(c) (d)

(e) (f)

Figure 5: (a) Query image. (b) A map cutout and a hand-labeled white
polygon covering the visual region with the query image (a). Red circles show
the available panorama locations, yellow arrows represent perspective view
directions having visual overlap with the region inside the white polygon.
(c) SFM reconstruction – perspective view. Reconstructed camera positions
are shown in red. (d) SFM reconstruction – top view aligned with the map
cutout. (e),(f) Panorama perspective cutouts capturing the reconstructed
junction.

10



aligned to the perspective of the query image, in Figure 5(d) there is a top
view of the 3D reconstruction aligned with the map cutout there.

6 Conclusion

We presented a toolbox for building geotagged datasets of perspective view
images. The useage of these datasets for place recognition task was discuseed.
Moreover, the geotagged dataset was used for the city recnostruction task
such that subset of relevant views is selected and parsed to the SFM pipenline,
the results were shown in example.

References

[1] H. Bay, A. Ess, T. Tuytelaars, and L.J. Van Gool. Speeded-up robust
features (SURF). CVIU, 110(3):346–359, June 2008.

[2] Jan Heller, Michal Havlena, Akihiko Torii, and Tomáš Pajdla. CMP
SfM web service v1.0. Research Report CTU–CMP–2010–01, Center for
Machine Perception, K13133 FEE Czech Technical University, Prague,
Czech Republic, January 2010.

[3] J. Knopp, J. Sivic, and T. Pajdla. Avoding confusing features in place
recognition. In Proceedings of the European Conference on Computer
Vision, 2010.

[4] Marius Muja and David G. Lowe. Fast approximate nearest neighbors
with automatic algorithm configuration. In International Conference on
Computer Vision Theory and Application VISSAPP’09), pages 331–340.
INSTICC Press, 2009.

[5] J. Sivic and A. Zisserman. Video Google: Efficient visual search of videos.
In Toward Category-Level Object Recognition (CLOR), pages 127–144,
2006.

[6] N. Snavely, S. Seitz, and R. Szeliski. Modeling the world from internet
photo collections. IJCV, 80(2):189–210, 2008.

11


