
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

R
E
S
E
A
R
C
H

R
E
P
O

R
T

IS
S
N

1
2
1
3
-2

3
6
5

Towards Robot Localization and

Obstacle Avoidance from Nao

Camera

Michal Havlena, Šimon Fojt̊u, Daniel Pr̊uša,
Tomáš Pajdla

{havlem1, fojtusim, prusapa1, pajdla}@cmp.felk.cvut.cz

CTU–CMP–2010–18

November 5, 2010

Available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/havlena/Havlena-TR-2010-18.pdf

The work was supported by the EC project FP7-ICT-247525 HU-
MAVIPS. Any opinions expressed in this paper do not necessarily
reflect the views of the European Community. The Community is
not liable for any use that may be made of the information contained
herein.

Research Reports of CMP, Czech Technical University in Prague, No. 18, 2010

Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +4202 2435 7385, phone +4202 2435 7637, www: http://cmp.felk.cvut.cz





Towards Robot Localization and Obstacle

Avoidance from Nao Camera

Michal Havlena, Šimon Fojt̊u, Daniel Pr̊uša, Tomáš Pajdla

November 5, 2010

Abstract

Nao is equipped with a bunch of sensors which help it to navigate
inside a room without hitting the obstacles, namely the two cameras.
We show the performance of the state-of-the-art structure from motion
methods on the image sequences acquired by Nao’s cameras, identify
the major issues arising from the specifics of the data, and propose vi-
able workarounds and method extensions in order to provide for future
visual guidance of the robot. The actual robot control application is
described in the appendix of the report.

1 Motivation

During Nao-to-human social interaction, the ultimate goal of HUMAVIPS
project, Nao needs to move inside a room facing expected and unexpected
obstacles while solving the assigned tasks. The computer vision methods
that we want to deliver to Nao will make its movement easier by providing
the following functionalities: (i) ability to reach the target even if it gets
occluded for a while, (ii) ability to return to “home” position, and (iii) visual
obstacle detection and avoidance.

Our aim is to use a state-of-the-art structure from motion method [13]
(SfM) both for camera pose estimation and sparse 3D point cloud recon-
struction. Having camera poses and knowing the rotation of the head, Nao’s
position and orientation can be computed using the transformation between
the head and the torso of the robot. The obtained 3D point cloud may be
used for visual obstacle detection because the position of the groundplane
can be determined having the estimated robot trajectory.

1



Figure 1: The configuration of the two CMOS cameras located on Nao’s head
does not allow stereo vision as their viewfields do not overlap. (Courtesy
of [14]).

2 Towards SfM from Nao Camera

Next, we shall describe the specifics of Nao’s cameras, the procedure of their
calibration, and the first SfM experiments.

2.1 Nao camera properties

Two CMOS cameras having VGA, i.e. 640× 480, resolution, which can cap-
ture up to 30 images per second, are located on Nao’s head, see Figure 1.
The configuration of the cameras does not allow stereo vision as their view-
fields do not overlap – the first camera is heading forward and the other one
downward in order to see directly in front of Nao [14].

Full camera framerate is achievable for the lowest resolution only, it is
possible to capture at most 3 images per second using VGA resolution. As
camera sensors are CMOS and have no shutter, images taken while the robot
is moving have very low quality because different rows of the image come
from different time points. As such images are not usable for geometric
scene reconstruction, we decided to take images only when the robot is static
and perform the shooting in a stop-and-go fashion.

2



(a) (b) (c)

Figure 2: Three images of a known calibration grid which were used to
calibrate Nao’s top camera. Pixel correspondence can be easily obtained due
to the specific layout of white and black dots.

Due to the fact that both camera lens and sensor are tiny, the result-
ing images are rather noisy in the indoor environment because the camera
auto-gain feature boosts the sensitivity of the sensor. This can be partially
avoided by providing strong artificial room lighting mimicking outdoor light
conditions.

2.2 Camera calibration

Internal camera calibration, which facilitates the transformation from image
pixel coordinates to unit direction vectors, was obtained off-line [8]. Three
images of a known calibration grid, see Figure 2, were used to compute
calibration matrix and two parameters of radial distortion according to the
polynomial model of degree two for both Nao’s cameras independently.

top camera:

749.1048 0 329.3791

K = 0 750.2743 227.1093

0 0 1.0000

bottom camera:

806.8948 0 282.0628

K = 0 807.4827 223.9356

0 0 1.0000

Images are radially undistorted before being used for further computation in
order to improve SfM results.

3



(a) (b) (c)

(d)

Figure 3: Robot trajectory estimation from the top camera. (a)-(c) Sam-
ple images from the 39 images long sequence. (d) Reconstructed camera
trajectory (red pyramids) and a sparse 3D point cloud (colored dots).

2.3 Robot trajectory estimation

We used a state-of-the-art sequential wide-baseline SfM method [13] to pro-
cess a sequence consisting of 39 VGA images captured by Nao’s top camera
in a stop-and-go fashion while walking towards a static person sitting on a
chair, see Figure 3(a)-(c). The total computation time was 11 minutes on a
standard desktop PC which is roughly the time which was needed to cap-
ture the data itself, so the computation can be considered as being real-time.
The estimated camera trajectory, see Figure 3(d), cannot be verified against
ground-truth as no ground-truth measurement is available but it seems to be
visually close to the true trajectory.

Our sequential SfM consists of several steps. First, MSER [9], SIFT [7],
and SURF [1] salient image features are detected and described in input im-
ages. Tentative feature matches are obtained by the approximate nearest
neighbour search in the descriptor space performed by FLANN [10] looking
for the mutually best matches between pairs of consecutive images in the
sequence. Next, pairwise matches are connected into tracks and only those

4



which form tracks longer than three images survive the filtering step. Robust
pairwise epipolar geometries are computed by a voting scheme similar to the
one used in [5] from ten runs of PROSAC [2] solving the 5-point minimal
relative pose problem for calibrated cameras [11]. Finally, camera poses in a
canonical coordinate system are recovered by chaining the epipolar geome-
tries of pairs of consecutive images in the sequence [4] and a sparse bundle
adjustment routine (SBA) [6] is applied to refine both the camera poses and
the positions of the triangulated 3D points.

The major issue encountered in this experiment was the fact that most
of the reconstructed 3D points were located on the person itself. This would
ruin the camera pose estimation w.r.t the coordinate system of the room
in a more realistic situation when the person was not completely static as
the resulting camera poses would be estimated w.r.t the coordinate system
connected with the person then.

2.4 Extending camera field of view

We propose to extend the narrow field of view of the cameras by taking
several images for different head rotations at each location where the robot
stops as this should bring more image features originated in the room itself
and overcome the aforementioned problem. We have implemented a routine
which captures images by both Nao’s cameras for three different head yaws
(33.5◦, 0◦, −33.5◦) while the pitch of the head is set to −30◦ in order to see
the top and the bottom of the scene equally well, see Figure 4.

Geometric transformations between the individual images need to be
known to be able to use the summation of the detected image features as the
input to the structure from motion pipeline estimating the pose of a virtual
camera looking straight forward. As the movement of the optical centers
of the cameras during the rotation of the head is very small w.r.t the dis-
tance of the scene, we decided to model these geometric transformations as
homographies, which assume fixed camera centers and pure rotation.

A homography between two images i and j is represented by a 3 × 3
matrix Hij and can be computed by solving a linear system of equations
built using four point correspondences between the given images [4]. Data
normalization, RANSAC [3] searching for the model with the highest number
of supporting tentative correspondences, and linear estimation from all the
verified correspondences are used to increase the accuracy and robustness of
the computation. It suffices to compute homographies between neighbouring
image pairs because homography is a transitive operator:

Hik = HjkHij. (1)

5



(a) (b) (c)

(d) (e) (f)

Figure 4: Six images captured using both Nao’s cameras for three different
head yaws at a fixed robot location. (a)-(c) Images taken by the top camera.
(d)-(f) Images taken by the bottom camera.

Due to the fact that the images taken by Nao’s cameras are of low quality
and do not contain enough image features for reliable homography compu-
tation, we decided to find the parameters of the homographies off-line using
a scene producing a sufficient number of features in the areas where the in-
dividual images overlap. Moreover, the images from the top camera have
no overlap with the images from the bottom one, so three additional images
located between the top and the bottom “row” of images have been acquired.

Homographies between six pairs of images have been computed and the
parameters of the remaining transformations were obtained from the transi-
tivity of homographies. The image created by stitching the six source images
using the obtained transformations can be seen in Figure 5. The middle and
bottom parts of the image were not contained in any of the source images
and were impainted to improve the visual quality of the result.

Unfortunately, first experiments with SfM from the summation of the
detected image features have shown that the homographies obtained off-line
do not always model the transformations between the individual images well.
This could be caused by (i) an incorrect assumption that the movement of
camera centers is negligible, or (ii) the fact that the head rotation is not
always exactly the same, or (iii) the combination of both. We will investigate
more in this direction in order to isolate and hopefully solve the problem.

6



Figure 5: The resulting wide field of view image stitched from the six narrow
field of view images shown in Figure 4. The middle and bottom parts of the
image were not contained in any of the source images and were impainted.

3 Depth Measurements from Nao Camera

When only the scene depth information for a single position of the robot is
needed, it would be too computationally expensive and too slow to walk with
the robot and to run the whole sequential structure from motion pipeline in
order to retrieve the depths of the reconstructed 3D points. We can use a
simpler SfM method, e.g. Bundler [12], to make a fast reconstruction from
two images only in this case.

As the two Nao’s cameras have no image overlap, we have implemented
a routine which captures an image by the top camera when Nao is standing,
lets Nao crouch, and takes another image by the top camera again. After
inputting these images into Bundler, we get the resulting relative camera pose
and a sparse 3D point cloud in 10 seconds. The reconstructed 3D points can
be projected back to the images and their depths relative to the length of
the baseline between the two camera centers can be evaluated, see Figure 6.
Knowing the real length of the baseline, which is approximately 11 cm in this
case, it is possible to compute the depths of the 3D points also in centimeters.

7



(a) (b)

Figure 6: Depth estimation from a pair of images. The color of each dot
corresponds to the depth of the 3D point relative to the length of the baseline
between the two camera centers (black numbers). (a) “Standing” image.
(b) “Crouching” image.

4 Conclusion

We have performed the first step towards robot localization and obstacle
avoidance from Nao camera. In our experiments, we have shown successful
camera trajectory estimation from an image sequence captured by Nao’s top
camera and discussed the major issue encountered - the narrow field of view
of the camera. We have proposed a method for extending the field of view via
taking multiple images at each fixed robot location and summing the detected
image features using homographies. Our future work will focus on improving
structure from motion from the summed features and on the integration of
the results of SfM into the robot control application which would provide for
visual guidance of the robot.

We have also shown a fast yet reliable way of taking visual depth measure-
ments from two images which could be extended into a detector of obstacles.
This will be also a part of our future work.

References

[1] H. Bay, A. Ess, T. Tuytelaars, and L.J. Van Gool. Speeded-up robust
features (SURF). CVIU, 110(3):346–359, June 2008.

[2] O. Chum and J. Matas. Matching with PROSAC: Progressive sample
consensus. In CVPR05, pages I: 220–226, 2005.

8



[3] M. Fischler and R. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography. Comm. ACM, 24(6):381–395, June 1981.

[4] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, second edition, 2003.

[5] H. Li and R. Hartley. A non-iterative method for correcting lens distor-
tion from nine point correspondences. In OMNIVIS 2005, 2005.

[6] M.I.A. Lourakis and A.A. Argyros. The design and implementation
of a generic sparse bundle adjustment software package based on the
levenberg-marquardt algorithm. Tech. Report 340, Institute of Com-
puter Science – FORTH, August 2004.

[7] D.G. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60(2):91–110, November 2004.

[8] P. Mareček. A camera calibration system. Master’s thesis, Center for
Machine Perception, K13133 FEE Czech Technical University, Prague,
Czech Republic, 2001.

[9] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline
stereo from maximally stable extremal regions. IVC, 22(10):761–767,
September 2004.

[10] M. Muja and D. Lowe. Fast approximate nearest neighbors with auto-
matic algorithm configuration. In VISAPP09, 2009.

[11] D. Nistér. An efficient solution to the five-point relative pose problem.
PAMI, 26(6):756–770, June 2004.

[12] N. Snavely, S. Seitz, and R. Szeliski. Modeling the world from internet
photo collections. IJCV, 80(2):189–210, 2008.

[13] A. Torii, M. Havlena, and T. Pajdla. Omnidirectional image stabiliza-
tion by computing camera trajectory. In PSIVT 2009, pages 71–82,
2009.

[14] Aldebaran Robotics – Nao Hardware Specification (Red Documentation
Website). http://academics.aldebaran-robotics.com/docs/site_

en/reddoc/hardware/hardware.html, 2010.

9



Appendix: Robot Control Application

The original purpose of the control application was to automatically guide the
robot in an office-like environment and to scan the scene regularly. During
implementation, we found out that the ultrasound sensors cannot be used to
guide the robot reliably and it was decided to use manual guidance to control
the robot. The application could be extended from a simple walk-and-scan
to an application that allows a more complex control of the robot.

Controls

The robot can be controlled by keyboard and mouse in a CounterStrikeR©-like
manner. The following list shows the keys and mouse moves used to control
the robot. We give a full list, including some commands serving mainly for
demo purposes, e.g. hail or talk.

• arrows go forward/backward, turn left/right

• alt + left/right arrow strafe left/right

• shift + arrows slow movement

• mouse left-click take screenshot from active camera

• mouse right-click + movement turning head

• middle-click align head to 0:0

• s stand up (blocking procedure; stable position)

• c crouch (blocking procedure; stable position)

• h hail with right arm

• g hail with left arm

• r release motors (all, except for head; use only in stable position!)

• e enslave motors (all, except for head)

• w release/enslave motors of head

• i toggle autorepaint of preview image

• o toggle bottom/top camera

10



• p toggle quality of preview image

• a acquire 6 screenshots (2 “rows” of 3 images; blocking procedure)

• q acquire 9 screenshots (3 “rows” of 3 images; blocking procedure; used
for homography estimation)

• t talk (prompts for a text to say on console)

• m measures approximate distance to an object in image

Some of the procedures are blocking (as specified in the list), which means
that the user cannot control the robot while such a procedure is being ex-
ecuted. The cause of this is that some of the procedures, e.g. acquiring
images, need the robot not to move in order to work properly. Other pro-
cedures, e.g. stand up or crouch, need to be finished before the user can
continue controlling the robot. On the other hand, some actions can be per-
formed simultaneously, e.g. greeting with arm while walking. It must be kept
in mind that the stability of the robot is greatly influenced by hand moves
and it is up to the operator to prevent the robot from falling.

Description

The program, implemented in C++, is a remote application, i.e. not running
on the robot. It is composed of three main parts. The first part handles the
initialization of all important proxies. A while loop in the second part reads
the inputs from keyboard and mouse and controls the robot appropriately.
Third part of the program ensures a stable position while releasing motors
and disconnects from the proxies. There is also a fail-safe mechanism to
safely shut down the robot, when a ctrl + c is pressed.

Usage

This application allows a simple teleoperation of the robot with visual feed-
back. It has a functionality to acquire images, which are needed for robot
trajectory estimation via SfM. This program is also useful for a quick and
simple control of the robot. It is quite a common need that the operator
needs the robot to perform a trivial operation, e.g. stand up or release mo-
tors. One way is to launch ChoregrapheR©, a multi-functional application
which takes some time to start and connect to the robot. On the other hand,
launching our control application is a matter of a few seconds and the robot
is operable and ready to use.

11


