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Abstract

In stereo literature, there is no standard method for eval-
uating algorithms for semi-dense stereo matching. More-
over, existing evaluations for dense methods require a fixed
parameter setting for the tested algorithms. In this paper,
we propose a method that overcomes these drawbacks and
still is able to compare algorithms based on a simple numer-
ical value, so that reporting results does not take up much
space in a paper. We propose evaluation of stereo algo-
rithms based on Receiver Operating Characteristics (ROC)
which captures both errors and sparsity. By comparing
ROC curves of all tested algorithms we obtain the Feasi-
bility Boundary, the best possible performance achieved by
a set of tested stereo algorithms, which allows stereo al-
gorithm users to select the proper method and parameter
setting for a required application.

1. Introduction
Dense stereopsis plays a very important role in the field

of computer vision, since its results are usable to many
(even very distinct) tasks. In recent years, stereo vision has
been re-investigated by many researches, leading to a huge
number of algorithms and the need for their comparison and
evaluation immediately rose up. Several performance stud-
ies [2, 9, 5, 16, 15] showed, that there is not a single winner
over the other methods, but some of the algorithms are bet-
ter in some of the errors and scenes than the others, while on
other errors and scenes it is vice versa. Thus, a study show-
ing algorithm potentials and drawbacks, allowing users to
select a proper method for their purposes, is desired.

There are two main properties characterising a matching
algorithm: its disparity map density and accuracy measured
with respect to the ground-truth matching.

One of the most important problems is the setting of
algorithm parameters. Typically, each algorithm has sev-
eral adjustable parameters and some of them basically de-
termine the quality of results. Standard evaluations, such
as [2, 15, 9, 5, 16], leave parameter setting on an author
and keep this setting fixed over the whole evaluation dataset

(which often consists of scenes with different and some-
times even very distinct character). In other words, it as-
sumes uniform behaviour with respect to scenes (i.e. insen-
sitivity to scene character) which not many algorithms fulfil.

In contrast, our goal is to evaluate the algorithms inde-
pendently on parameter settings. To this end, we propose
a kind of ROC analysis of stereo algorithm performance,
where we study how the result accuracy and density change
with respect to different parameter settings. An attempt to-
wards this goal has been published in [7], where, based on
errors defined in [15], ROC curves of the algorithm have
been presented. Unlike in [15], we define the errors to be
mutually independent and complete and base our decision
about the algorithm quality on a well-defined relation “is
better”. Furthermore, we propose quantitative characteris-
tics of algorithms for numerical comparison. As it is com-
mon, the test images are given and fixed. We are preparing
a web-site [11] for an automatic evaluation, so that other re-
searchers can easily use this method. Such a collection of
evaluation results is also useful for users, who can simply
select the most suitable algorithm for a desired application.

In the next section, we introduce our ROC analysis, in
Sec. 3, the feasibility boundary. In Sec. 4, we present the
experimental dataset. The algorithm evaluation itself is dis-
cussed in Sec. 5. Finally, in Sec. 6, we give conclusions.

2. ROC Analysis

To evaluate the stereo algorithm performance, we adopt
the Receiver Operating Characteristics (ROC) analysis. The
ROC study has been long used in signal theory to show the
tradeoff between hit rates and false alarm rates [4]. The
original approach has been extended to many distinct fields,
such as recognition, object detection, etc [6, 1, 18, 12].

2.1. Error Definitions

We are interested in studying the matching quality, thus
will measure two kinds of error statistics: how often an al-
gorithm makes an error and how often an algorithm does
not decide when it should. The Error rate is defined as the
percentage of incorrect (assigned) correspondences (thus,



we do not count a hole as an incorrect correspondence):

ER =
incorrect correspondences

all pixels
. (1)

The Sparsity rate is defined as the percentage of all miss-
ing correspondences which are not ruled out1 by any other
incorrect correspondence:

SR =
missing correspondences

all matchable pixels
. (2)

We base our evaluation on the error statistics which fulfil
the following four principles, adopted from [9]:

1. Orthogonality: one error must not influence (or imply)
any other error.

2. Symmetry: the errors have to be invariant to the selec-
tion of the reference image.

3. Completeness: the errors are well-defined in all types
of scene structure.

4. Algorithm independence: the errors do not require
completely dense results or one-to-one matchings.

Assuming rectified images, the errors are defined by
means of various events in the matching table, which is the
set of all possible matches P (per image row), P = X×X ′,
where X, X ′ are pixels in the left, and right image rows,
respectively. Every ground-truth disparity map (as well as
resulting matching or disparity map of a tested algorithm) is
directly transformable to matching tables, and thus this def-
inition holds for every scene. This representation has been
selected since all errors are easily visible there.

In Fig. 1, we show matching tables of two prototypes
of scenes having different kinds of occlusions to demon-
strate the error definitions: The table is covered by four re-
gions [9]: the ground-truth G (blue), the jointly or mutually
occluded region C (red), the occlusion boundary neighbour-
hood O (yellow), and the complement T = P \G \ C \ O
(white). The size of the ground truth matching, |G \ O|, is
its length in pixels in the respective image row. The size
of the matching table, D(P ), is its diagonal length, i.e. the
number of pixels in each row.

In the ROC evaluation, we use three kinds of errors
(computed for each image row independently) defined as
follows: Let Q ⊂ P be a matching obtained from a tested
algorithm, then

Mismatches: are the assigned correspondences with in-
correct disparity. Correspondences with disparity differing
from the ground-truth disparity by more than one are con-
sidered as mismatches:

MI = |Q ∩ T |. (3)

The allowed difference of ±1 in disparity is included in G.

1A correspondence is ruled out if uniqueness constraint is violated
given all other correspondences.
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Figure 1. Matching table error definitions–two prototypes of
scenes with different occlusions: half-occlusion (left), mutual-
occlusion (right).

False negatives: are the unassigned correspondences at
positions where the correct match exists. I.e. they are miss-
ing correspondences (holes). For the sake of error orthogo-
nality we define it as a set of unmatched ground-truth cor-
respondences which are not induced by a mismatch:

FN = |{p ∈ (G \Q \O), X(p) ∩Q = ∅}|, (4)

where X(p) represents the occlusion model: For p = (i, j),
X(p)={(k, l) | (k= i) or (l=j), (k, l) 6= (i, j)}.

False positives: are the assigned correspondences in oc-
cluded areas, i.e. areas where no correspondences exist, thus
they are incorrect. Due to error symmetry, it is in fact only
within the region C, where no ground-truth matching exists:

FP = |Q ∩ C|. (5)

Now we can define the ROC statistics precisely: The Er-
ror rate of a matching is the percentage of the sum of all
false positives and mismatches:

ER =
1

N ·D(P )

N∑
r=1

(
MI(r) + FP (r)

)
, (6)

where r = 1, ..., N represents rectified image rows and
D(P ) is the same for all the rows. The Sparsity rate of a
matching is defined as the percentage of all false negatives:

SR =
∑N

r=1 FN(r)∑N
r=1 |G(r) \O(r)|

. (7)

In our analysis, we study the dependence between ER
and SR. On the ROC plots, the ER is plotted on the ver-
tical axis, while the SR on the horizontal axis. Let us now
discuss the ROC space: The lower left corner, point (0, 0),
corresponds to an ideal algorithm, which is fully-dense and
100% correct. Point (1, 1) represents the situation that in
the matching, all the pairs are wrong and jointly it is com-
pletely empty, which cannot happen and thus this point is
unreachable. Point (0, 1) corresponds to fully-dense re-
sults which are totally incorrect, while point (1, 0) to com-
pletely empty results and thus of no errors. The diagonal
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Figure 2. (a) ROC space with two ROC curves of algorithms A and
B. Dashed black line represents reachable boundary. The green
curve is SFB of algorithms A and B (Sec. 3). (b) ROC curve
construction from all ROC points produced by a single algorithm.
Blue circled points are selected to represent the ROC curve (blue).

line y = 1 − x (dashed black line in Fig. 2) represents the
worst-case boundary, which we call zero-algorithm.

An important property of ROC plots is that they measure
the matching accuracy with respect to the matching density,
which are in contradiction. Hence, it gives the possibility to
a user to select the most suitable algorithm: E.g. View pre-
diction requires low sparsity rate, while a few local errors
do not affect result quality, while 3D scene reconstruction
requires low error rate, while lower density is acceptable.

2.2. ROC curve

One parameter setting of an algorithm gives a pair
(SR, ER), hence, a single point in the ROC space, a
ROC point. A different setting gives (generally) different
(SR, ER) pair. Since the parameters are given discretely,
one in fact only samples the ROC space. It is the respon-
sibility of an author to select parameter quantisation which
gives results as close to the best ROC results as possible.

All output pairs under the varying parameter settings
determine the ROC curve of an algorithm (two exem-
plary ROC curves are shown in Fig. 2(a)): we define it
as the lower hull of all its ROC points.2 First, we de-
fine relation between them: We say that ROC point u =
(SR(u), ER(u)) is better than point v = (SR(v), ER(v)),
which we write u < v, if it is more accurate and denser:

u<v⇔{u6=v &SR(u)≤SR(v) &ER(u)≤ER(v)}. (8)

For the ROC curve, points for which there is no better point
are selected. Hence, the ROC curve is formed by the fol-
lowing set of points:

R = {u ∈ P : @ v ∈ P, v < u}, (9)

where P is a set of all ROC points. Points which are not in
R are worse (in ER or SR, or even in both statistics), and

2More precisely, it is the lower hull of the ROC points of the algorithm
unified with the ROC points for the zero-algorithm.

thus they are in fact redundant. The ROC curve constructed
from the ROC points is shown in Fig. 2(b): red crosses rep-
resent all ROC points, those marked by blue circles have
been selected to R, dotted black lines originating in each of
these points show regions of ROC points dominated by the
ROC curve points.

Points R defined in (9) form the ROC curve. Only in
these points we know the exact position of the curve. Thus,
we define the ROC curve as a curve connecting points R by
a piecewise constant line, alternately with respect to SR and
ER (shown as blue solid line in Fig. 2(b)). Above this curve
all points are worse than those in R (i.e. it is a worst case
boundary between ROC curve points). Since the ROC curve
is directly determined by points R, we write it as C(R).

2.3. Algorithm Characteristics

For quantitative comparison, we define two numerical
characteristics, derived from algorithm’s ROC curve. The
definition requires the ROC curve representation as a func-
tion: only piecewise constant parts of the ROC curve with
respect to one of the axes are selected for ROC function.

Efficiency The efficiency is an integral characteristic
which expresses the algorithm qualities along the entire
ROC space. The efficiency E is defined as

E(A) = 2
∫ 1

0

(
Z(x)−A(x)

)
dx, (10)

where Z(x) = 1 − x represents the ROC function of zero-
algorithm (shown in Fig. 3 as a diagonal line). The A(x) is
the ROC function of the measured algorithm, Fig. 3(a). The
meaning of this characteristic is the measure of improve-
ment compared to the worst case. The range of the effi-
ciency is E ∈ [0, 1], where E = 0 is for the zero-algorithm
which produces the worst possible results, and E = 1 is for
the ideal algorithm which is error free and fully dense, i.e.
has a single point (0, 0) forming the ROC curve.

The efficiency characterises over-all behaviour of the al-
gorithm. But, it does not mean that if the efficiency of al-
gorithm A is higher than that of algorithm B, the algorithm
A is better. The reason is that in some region of ROC space
algorithm B can be better than A, i.e. the B(x) < A(x) for
some x ∈ [0, 1].

Improvement The improvement is a comparative char-
acteristic which measures how much one algorithm is better
than the other in areas where it is better. We define the im-
provement I(A|B) of algorithm A over B, as:

I(A|B) = 2
∫
{x:A(x)<B(x)}

(
B(x)−A(x)

)
dx, (11)

where A(x) is the ROC curve of the measured algorithm,
B(x) is the ROC curve of a reference algorithm, Fig. 3(b).
The set, where the algorithm is better than the other, we call
algorithm’s dominant interval. Dominant intervals of each
algorithm are marked on the axes by their respective colour
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Figure 3. Definitions of: (a) E(A), and (b) I(A|B).

in Fig. 3(b). If the measured algorithm is nowhere better,
the dominant interval is empty, and its improvement is zero.
Note that I(A|B) ∈ [0, 1], I(A|Z) = E(A), and in general,
I(A|B) 6= I(B|A).

3. Stereo Feasibility Boundary
Each algorithm produces its own ROC curve. For algo-

rithm’s developers, the ROC curve shape and its comparison
with other algorithm curves is very significant and useful.
However, for stereo users it is important to know what can
be done by existing algorithms. This we call the Stereo Fea-
sibility Boundary and define it as the ROC curve of all ROC
points of all the (already examined) algorithms altogether:

SFB = {u ∈
n⋃

i=1

Ri : @ v ∈
n⋃

i=1

Ri, v < u}, (12)

where Ri are ROC curve points of all n examined algo-
rithms. In Fig. 2(a), we show the C(SFB) as a green curve.

Some of the algorithms need not have any representative
point in SFB. It is the situation when those algorithms are
better neither in density nor in accuracy comparing to other
approaches. Each of the SFB points is associated with the
algorithm name, and jointly with its parameter setting as
well as the corresponding disparity map.

The defined numerical characteristics of Sec. 2.3 can be
evaluated also for the stereo feasibility boundary. The ef-
ficiency describes how far the nowadays stereo methods
are, which will be true when state-of-the-art algorithms are
tested. Therefore, we are preparing an on-line evaluation
tool. Improvement is however even more interesting: An
evaluated algorithm can measure its improvement over the
current SFB. This is an important characteristic of the algo-
rithm, since it measures how much the algorithm improves
over the best algorithms. The dominant interval then deter-
mines where this occurs in ROC space.

3.1. Worst, Best, and Mean SFBs

The ROC curve and also Stereo Feasibility Boundary are
defined over results on one scene (which guarantees a fair
comparison). However, it is interesting to study the algo-
rithm’s performance, over all the scenes. To this end, we
define three more SFBs:

The Worst SFB is defined as the worst case over SFBs of
all m scenes:

W = {u ∈
m⋃

s=1

SFBs : @ v ∈
m⋃

s=1

SFBs, u < v}. (13)

The W then represents a kind of (min,max) (pessimistic)
strategy, where over the best for each scene (SFB) we select
those minimising the risk (the worst), i.e. it is very unlikely
we get worse results than these.

The Best SFB, on contrary, is defined as the best case
over SFBs of all m scenes:

B = {u ∈
m⋃

s=1

SFBs : @ v ∈
m⋃

s=1

SFBs, v < u}. (14)

The B represents the (optimistic) strategy with maximal
risk, i.e. it is almost sure, the results we will get will be
of worse performance.

Since it is not possible to evaluate algorithms on all
scenes which may exist, we define Mean SFB to measure
algorithm’s expected performance, based on the following
points:

P̄ (θ) =
m∑

s=1

ws · Ps(θ),
m∑

s=1

ws = 1, (15)

where Ps(θ) is ROC point for parameter setting θ on scene
s, and ws is the weight (probability) of scene s, giving the
scene representativity. Points P̄ are used in the same way
as in (9) to obtain ROC curve C(R̄i) for each algorithm i.
Hence, the Mean SFB is:

M = {u ∈
n⋃

i=1

R̄i : @ v ∈
n⋃

i=1

R̄i, v < u}. (16)

We believe that this statistic is useful mainly for applying
stereo algorithms on new unknown scenes since it gives the
expectation of algorithm’s behaviour.

4. Experimental Data
For our ROC analysis, we use a wide range of stereo

scenes with ground-truths (shown in Fig. 4): Tsukuba,
Venus, Teddy, Cones, Stripes, and Slits. Ground-truth dis-
parity maps are colour coded: warmer the colour higher the
disparity, gray is occluded, black excluded.

The first four scenes are from Middlebury dataset [15,
14] (courtesy of D. Scharstein), which is a well known
dataset and thus we show only the ground-truths. To en-
hance the set for more complex occlusions, we add Stripes
and Slits scenes [9]. Both of them are based on artificial
scenes with varying texture contrast over the scene. Stripes
scene consists of five thin textured stripes in front of a
slanted textured plane, with half-occlusions, Fig. 1(a). Slits
scene consists of two parallel textured planes, the front one
contains narrow slits, in which cameras see the background
plane. However, each of the cameras captures in these areas
different part of the background and thus the background
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Figure 4. Ground-truths of selected testing scenes. Top row: Mid-
dlebury dataset, bottom row: Stripes and Slits scenes. Dispari-
ties are colour coded: higher the disparity, warmer the colour (as
shows the rightmost bar), occlusions are gray, black is excluded.

is not binocularly visible. These regions we call mutually
occluded (shown in Fig. 1(b), as red area).

Each scene has prescribed (known and fixed) disparity
search range, which has been constructed from ground-truth
disparity range [d1, d2] as [d1− d2−d1

2 , d2+ d2−d1
2 ]. A wider

range is used intentionally, since in many applications it
need not be defined precisely or even to be known.

We have selected testing scenes to cover distinct types
of configurations: well-textured together with un-textured
regions, various planes, slanted as well as curved surfaces,
different types of occlusions, etc. Too simple scenes (e.g. a
constant disparity well-textured plane) or too tricky (unre-
alistic) scenes are excluded on purpose, since they are not
representative to contribute to (16).

5. Evaluation/Results
For our evaluation, we have chosen five algorithms, rep-

resentatives of different approaches, with available imple-
mentations. They can be roughly divided into two groups,
based on prior models: (1) a strong continuity model, (2) a
weak continuity model. The first group is represented by:
MAP matching via graph cuts (GC) [8], MAP matching via
dynamic programming (DP) [3], and MAP matching via be-
lief propagation (BP) [17]. The second group is represented
by: Confidently-Stable Matching (CSM) [13], and Strati-
fied Dense Matching (SDM) [10]. We have selected algo-
rithms whose implementations are publicly available, which
allows experimental reproducibility.

Each of the algorithms has its own adjustable parame-
ters, and we let an author to define himself/herself adequate
range for the parameters together with the step of parame-
ter change. For this study, the fundamental parameters for
the tested algorithms have been spanned in the following
intervals:

• GC: λ = 0:30:180, penalty0 = p = 0:20:140.
• BP: opt smoothness = s = 0:25:50, opt grad thresh

= t = 0:2:8, opt grad penalty = p = 0:4.
• CSM: α = {0:5:20,50:50:150},

β = {0,0.02,0.03,0.05,0.07,0.1,0.3,0.5,0.7}.

• SDM: α = {0:5:20,50:50:150},
β = {0,0.02,0.03,0.05,0.07,0.1,0.3,0.5,0.7}.

• DP: penalty = p = {0:20:140, 150:50:1000}.

For each algorithm, the errors are computed under all pa-
rameter combinations (e.g. BP under 75 different settings).

We present the results as plots (Figs. 5-6). All the plots
are shown in scales modified by log(x + c) function, where
c = 0.001, in both axes to allow a detailed study. The diag-
onal line y = 1 − x of reachable area is shown as a curve
(dashed black) due to this modification. For visual inspec-
tion, we show selected disparity maps in Fig. 8. They cor-
respond to ROC points which are the best of each algorithm
with respect to SFB of each scene, if there are more of them,
the middle one is reported.

In Fig. 5, we show results on Stripes scene. Each algo-
rithm has a different colour and marker (for description see
legend). Fig. 5(a) shows all the ROC points (SR, ER) of
all tested algorithms resulting from all parameter settings.
Algorithms with a strong continuity prior model (DP, GC,
and BP) give results with higher ER, mainly due to that
they fail if the prior model overweights the data (cf. Fig. 8).
The density of GC and DP is varying (up to completely
empty results) because both the approaches have incorpo-
rated occlusion model, unlike BP. GC and DP perform com-
parably (and even more, the DP is slightly better) which
is mainly due to the fact that the planparalelity model of
GC is violated in this scene. Algorithms with only weak
model (CSM and SDM) give more accurate (about an order
of magnitude) results, which are sparse however. The im-
proved matching feature modelling in SDM decreased the
ER about 2× with the same density compared to CSM.

In Fig. 5(b), we show the ROC curves. Each algorithm
has its own, in BP it is only a single point since all its ROC
points have the same SR. In Fig. 5(c), the SFB is shown: It
shows that SDM is mostly better than CSM (as it has been
visible already in previous plots) and thus CSM has only
one point on the SFB, but with SR = 1. It also clearly
shows that DP is better than GC in most of the range.

In Fig. 6, we show results on the other scenes (the figure
is best viewed zoomed-in in the electronic version). The
Slits scene shows that although the GC and DP have occlu-
sion model incorporated, their model corresponds to half-
occlusion only and thus they are not able to identify mu-
tually occluded region (causing false positives), cf. Fig. 8.
Tsukuba is the only scene, where GC reached the SFB. On
this kind of scene, i.e. of narrow disparity range of only 10
pixels, nearly frontoparallel objects of almost constant dis-
parity, GC is very good (its model holds) and thus it is for
such scenes a suitable algorithm. Unlike in GC, for SDM
and CSM, this scene is the most difficult one among all the
tested. The last three scenes (Venus, Teddy, and Cones)
show a common behaviour: GC is about 5× worse than DP
on average and thus has no representative at any scene SFB.
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(b) ROC curves
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Figure 5. ROC statistics on Stripes scene. The plots are best viewed in the electronic version.
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Figure 6. ROC statistics on other tested scenes, and expected.

The SFBs are of the same character consisting of BP, DP,
SDM, and CSM points.

The rightmost column of Fig. 6 shows plots with ex-
pected performance, defined in (15), scene weights were
set equally (ws = 1

m ). They show interesting properties:
ROC points of DP are monotonous and do not exhibit any
worsening, unlike in individual scenes. GC has no point in
M which shows its sensitivity to both scene character (and
prior model) and parameter setting. SDM and CSM alter-
nate on M which shows their comparable performance.

For easier comparison, in Fig. 7, we show SFBs of all
scenes: each scene has its own colour, the algorithm mark-
ers are unchanged, and the W and B boundaries are plotted
as red solid lines, while the M boundary as a red dashed
line. Consequently, we can directly compare scene diffi-

culty with respect to the tested algorithms. The worst han-
dled scene is Stripes (for GC, DP, and BP), since thin ob-
jects at foreground together with low data regions make this
scene rather difficult for them. Second scene is Tsukuba (for
CSM and SDM) due to poor textured regions and repetitive
patterns. However, Tsukuba is also handled the best (for
GC) since it well fulfils its prior model. The Slits scene is
handled the best (for SDM), even in regions of poor texture,
cf. Fig. 8. To conclude: Stripes are handled the worst, Slits
the best and Tsukuba the worst and simultaneously the best.

In Tab. 1, we show algorithm’s efficiency E(A) on all
scenes: for each scene, the best is shown in bold, the worst
in italic. The last column shows expected E computed for
R̄ defined in Sec. 3.1. This could be considered as overall
algorithm ranking. The table confirms conclusions from the
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Figure 7. All scene SFBs together with B, W, M .

plots: SDM and CSM have the best efficiency on all scenes
except Tsukuba. GC has the best efficiency on Tsukuba.
DP is consistently better in all scenes than BP and except
Tsukuba also than GC.

The improvement I(A|B) we demonstrate using Mean
ROC curves C(R̄) since it gives performance expectation.
Detailed results on each scene independently, together with
its dominant intervals are given in [11]. Tab. 2 shows the
results: all algorithms are somewhere better than the others
and elsewhere worse, confirming previous conclusions that
there is not a single winner.

6. Conclusions
In this paper, we have presented ROC-based evaluation

of stereo algorithm performance allowing to study algo-
rithms over a wide range of different parameter settings.
ROC curve of each algorithm shows its best performance,
Stereo feasibility boundary shows the best performance
over the tested algorithms. Consequently, it is easy to see
which algorithms are worth testing and under which param-
eter settings, which is useful also for stereo algorithm users.

For demonstration of our method, we have selected five
distinct algorithms which have available implementations:
GC, DP, BP, SDM, and CSM. The evaluation showed that
if high density is required, MAP methods (GC, DP, BP)
should be used; if, on contrary, low errors, methods based
on stability principle (SDM, CSM) should be applied. We
conclude that the main problem of MAP methods is in
prior model definition: if the scene slightly violates the
model, the performance is significantly decreased, thus a
prior model of higher order is required (as it has been re-
cently recognised in community).

It might seem that some of the tested algorithms (GC or
DP) do not have parameters controling disparity map den-
sity directly. But these algorithms do it indirectly by as-
signing the label “occluded” even if there is in fact no other
assigned correspondence that would imply such label at a
given position. This happens when the energy for this label

Table 1. Efficiency E(A).
Tsukuba Teddy Cones Venus Stripes Slits Expected

CSM 0.784 0.814 0.927 0.817 0.654 0.962 0.822
GC 0.789 0.236 0.510 0.687 0.243 0.412 0.445
DP 0.760 0.795 0.865 0.870 0.269 0.609 0.634
SDM 0.714 0.842 0.901 0.896 0.743 0.961 0.841
BP 0.712 0.253 0.519 0.772 0.090 0.575 0.437

Table 2. Expected Improvement I(A|B).

A
B CSM GC DP SDM BP

CSM – 0.454 0.266 0.002 0.467
GC 0.078 – 0.013 0.073 0.013
DP 0.078 0.201 – 0.073 0.211
SDM 0.022 0.470 0.280 – 0.483
BP 0.083 0.005 0.015 0.079 –

is lower than the energy for a disparity. Such mechanism
is a valid way to generate semi-dense maps. Therefore, we
consider these methods as semi-dense. If an algorithm is
truly a dense method (BP in our case) then its ROC curve
is induced by just a single point with the best achieved ER,
which gives correct conclusions using the proposed method
since the quality measures E, I works in this case as well.3

We are aware that one should not directly compare al-
gorithms that use a different occlusion model (uniqueness,
ordering). Instead, one should create a boundary for each
type of model. In our study, we did mix all algorithms to-
gether, not to overload the paper. The goal of computational
stereovision is to obtain algorithms that work under realistic
conditions, after all, and comparing all algorithms together
is important for studying where we are in stereovision.

There are open questions: We have selected a wide range
of test scenes having available ground-truths. Our selection
is biased towards scenes with planar objects, however, for
more complex objects it is difficult to compute the ground-
truth. It might be necessary to revise the selection and rep-
resentativity of scenes suitable for such analysis, which we
leave for open discussion. Algorithm running-time is also
an important characteristic, mainly for algorithm’s users.
Thus, time-based evaluation would be interesting enhance-
ment of performance evaluation.

We are preparing on-line test-bed for an automatic eval-
uation [11] and encourage other researchers to contribute
with their algorithms to create a wider study.
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3In case when an author wants to see a more complex ROC curve it
is not difficult to make a dense algorithm semi-dense by adding a post-
processing thresholding based on image similarity and/or contrast.
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Figure 8. Disparity maps of the best ROC points with respect to each scene SFB.
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