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Abstract. Here we present a new image registration algorithm for the align-
ment of histological sections that combines the ideas of B-spline based elastic 
registration and consistent image registration, to allow simultaneous registra-
tion of images in two directions (direct and inverse). In principle, deformations 
based on B-splines are not invertible. The consistency term overcomes this 
limitation and allows registration of two images in a completely symmetric 
way. This extension of the elastic registration method simplifies the search for 
the optimum deformation and allows registering with no information about 
landmarks or deformation regularization. This approach can also be used as the 
first step to solve the problem of group-wise registration. 

1   Introduction 

Studying the three-dimensional organization of complex histological structures re-
quires imaging, analyzing and registering large sets of images taken from serially 
sectioned tissue blocks. We have developed an integrated microscopy system that 
automates or greatly reduces the amount of interaction required for these tasks [1, 2] 
and provides volumetric renderings of the structures in the tissue.  

Proper section alignment is the first step towards an accurate 3D tissue reconstruc-
tion, as it is in other imaging modalities [3, 4]. In our case we perform a coarse align-



ment of the sections using an automatic rigid-body registration method [5]. This 
method can not correct some non-linear distorting effects (e.g. tissue folding, stretch-
ing, tearing, etc.) caused by the manual sectioning process. Moreover, the distance 
between sections causes significant differences between the same structures of inter-
est in consecutive sections, which could be misinterpreted by a complete linear regis-
tration process. Therefore, a non-linear or local method is strongly needed in order to 
refine the first registration step.  

In this paper we present a new method for elastic and consistent registration of his-
tological sections. All the examples described in the paper used mammary gland 
tissue samples; however, the same algorithm could be equally applied to other tissue 
sources and image modalities. 

2   Methodology 

In this work we combine the idea of elastic registration using vector-spline regulari-
zation [6] with that of a consistent registration [7]. We combine both ideas and extend 
them in order to overcome their limitations. The standard registration method pre-
sented in [6] propose the calculation of the elastic deformation field trough the mini-
mization of an energy functional composed by three terms: the energy of the similar-
ity error between both images (represented by the pixelwise mean-square distance), 
the error of the mapping of soft landmarks, and a regularization term based on the 
divergence and the curl of the deformation to ensure its smoothness. This minimiza-
tion is optimized by a variant of the robust Levenberg-Marquardt method. 

We transform the energy functional presented in [6] into a new functional that in-
corporates a factor of the deformation field consistency. Unlike in [6], we are now 
looking for two transformations at the same time (direct and inverse). Therefore, the 
vectors passed to the Levenberg-Marquardt optimizer are now twice as long. Besides 
the measurement of dissimilarity between the source and target images (now in both 
directions) Eimg, the optional landmark constraint Eµ and the regularization term (Ediv 
+ Erot), we add a new energy term Econs that expresses the geometrical consistency 
between the elastic deformation in one direction (from source to target) and the other 
direction (from target to source). Therefore, the energy function present now four 
terms and is given by 

( )i img d div r rot c consE w E w E w E w E w Eµ µ= + + + +  . (1) 

Where wc is the specific weight given to the new consistency term. 

2.1   Consistency Term  

The consistency energy represents the geometrical distances between the pixel coor-
dinates after applying both transformations (direct-inverse or inverse-direct), i.e. the 
amount by which the composed transformation differs from identity. The standard 
approach [6] for this type of registration is to find a deformation function 



2 2( ) :g x+ →  . (2) 

This function transforms the source image Is into an image as similar as possible to 
the target image It. This transformation g+ maps coordinates in Is into coordinates in 
It. Here, following [7], we will also simultaneously look for its corresponding inverse 
function  

2 2( ) :g x− →  . (3) 

This function maps the coordinates in It into coordinates in Is. 
Following this notation, our consistency energy term is given by 
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If we approximate the integrals by discrete sums and restrict the integration do-
main, we obtain 
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Where +Ω , −Ω  define sets of relevant pixels common to the target and source im-
ages: 

{ }2 2: ( )s tx g x+ +Ω = ∈Ω ∩ ∈Ω ∩  . (7) 

{ }2 2: ( )t sx g x− −Ω = ∈Ω ∩ ∈Ω ∩  . (8) 

And where # +Ω  and # −Ω  are the number of pixels in the masks. 

2.2   Deformation Representation 

Following [6] we represent the deformation fields as a linear combination of B-
splines. For instance, g+: 
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Where sx and sy are scalars (sampling steps) controlling the degree of detail of the 
representation of the deformation field. 



2.3   Explicit Derivatives 

The chosen optimizer uses gradient information. We will now calculate the deriva-
tives of the energy function with respect to all the parameters, starting with Econs. It 
can be easily shown that the derivative of E+

cons with respect to any of the deforma-
tion coefficients defining the first component (x in our case) of the direct deformation 
field g+, is given by 
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And where  

( ),x x y=  . (12) 

And  

( )', ' ( , )x y g x y+=  . (13) 

Again, following the definition of the transformation function we express its de-
rivative with respect to the coefficients of the first component as 
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This derivative is the same in the case of the second component. 
The derivative of E+

cons with respect to any of the deformation coefficients of the 
second component of the direct deformation field is calculated in an analogous way. 

Let us see now the derivate of E+
cons with respect to the coefficients of the first 

component of the inverse transformation: 
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The derivative of E+
cons with respect to any of the deformation coefficients of the 

second component of the inverse deformation field can be calculated in an analogous 
way. The derivatives of E-

cons are easily inferred in a similar way. We refer to the 
original article [6] for the derivatives of Eimg, Eµ and (Ediv + Erot).  



2.4   Choice of wc 

All the energy terms of the functional represent different measurements over the im-
ages or the deformations, thus presenting different units. Therefore, the terms are not 
comparable and a weight term is needed. We determined the optimum value experi-
mentally.  While value of zero is useful to compare results with the previous algo-
rithm, weight values around 10.0-30.0 often showed the best compromise between 
the final similarity and the deformation consistency for our images. Higher values 
make the consistency constraint too rigid and consequently decrease the images simi-
larity. Lower values cause the lack of relevance between g+ and g- in the optimization 
process and thus do not achieve symmetric transformations.  Fig. 1 shows the evolu-
tion of the similarity error with respect to wc. The consistency error decreases with the 
weight but causes a significant increase in the similarity error when approaching to 
values close to 100. 
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Fig. 1. Evolution of the similarity and consistency error with increasing values of the consis-
tency weight 



For the rest of weight terms we refer to [6]. From our own experience we recommend 
to set wi to 1.0 and if necessary, wµ to 1.0 and wd and wr to 0.1. 

3   Results 

To evaluate our algorithm we tested its performance using synthetic images. We 
applied some known deformations to the images and then checked whether our 
method could correct the deformation. That also allowed us to compare our algorithm 
with the standard one [6]. For instance, in Fig. 2 we have registered a Lena picture 
with a deformed version of the same image. In this case, the standard method prop-
erly registers the deformed image with the original one, but is unable to find the in-
verse deformation field without using soft landmarks, regularization values and a 
specific image mask. In the same example, our algorithm finds simultaneously both 
deformation fields (direct and inverse) using only the similarity term and the consis-
tency term of the energy function. 
 

    
 

       
Fig. 2. From top to down, left to right: source image, target image, registered source image (by 
the standard method), registered source image (by our new method), registered target image 
(by our new method) 

Fig. 3, 4, and 5 contain a relevant example of the results obtained applying our al-
gorithm compared to the results obtained with the original method (lacking the con-
sistency term) using two consecutive histological sections from breast cancer tissue.  



     

Fig. 3. Two consecutive histological sections from a human biopsy presenting two big tumors 

     

     

Fig. 4. Comparison of the deformation fields obtained with the original method described in [6] 
and our new algorithm over the images in Figure 2. The first row shows the deformation when 
registering image 1 to 2 (left) and image 2 to 1 (right), applying the traditional energy func-
tional. The second row shows the same deformations when using the proposed improvement  

 



     

     

Fig. 5. The top row shows the subtractions of the deformed images and the target ones in both 
senses, using the traditional method. The bottom row shows the result when applying our 
method. The black arrow points the most relevant error committed by the standard method 

Fig. 4 shows the deformation fields calculated with both methods. It is easy to see 
how our method guarantees the consistency between the direct and the inverse trans-
formation while the traditional method does not.  

In Fig. 5 we show the result of subtracting the deformed source and target images. 
We can appreciate how for the inverse transformation our method achieves a much 
better result than the standard method, as we expected by observing the deformation 
fields on Fig. 4. These results were also evaluated numerically obtaining an average 
of similarity error 31.63 of and 32.68 for the deformations calculated with the original 
method (direct-inverse and inverse-direct) and an average of 31.48 and 31.66 for the 
deformations of our new method. The differences between the inverse-direct averages 
provoke visible changes on the registration as shown in the deformation fields’ repre-
sentations on Fig. 4. 

The grayscale sample images in Fig. 3 have respectively 325x325 pixels and 
300x312 pixels and it took 18 seconds to properly register them in an Intel Pentium 
M, 1.60 GHz, 589 MHz, 512MB of RAM memory, under a SuSE Linux system. 
  

 
 



   
 

   
 

   
Fig. 6. Example with two transversals cuts of a mammary duct. From top to down, left to right: 
source image, target image, registered target image, registered source image, difference source 
image, difference target image   

Fig. 6 is another example with breast tissue sample where the standard method is 
unable to approach any proper deformation between the source and target images 
based in the images similarity but where our new method achieves easily the right 
deformation thanks to the consistency term. 

As inferred from the experimental results using our bidirectional method, in most 
cases only the similarity and the consistency term are needed to achieve a proper 
registration. This involves a simplification of the energy functional to be minimized 
and therefore, a reduction in the computational time and complexity. At the same 
time, forgetting about placing soft landmarks in the images allows us reducing the 
human interaction in the registration process, which is another advantage of our algo-
rithm over the previous method. 



  

4   Conclusions and Future Work 

A new algorithm for consistent elastic registration has been presented. It combines 
the ideas of elastic image registration based on B-splines models and consistent image 
registration. The method improves the results obtained without the consistency factor 
in the energy function and accelerates the search for the optimum. 

This method can be extended increasing the number of images involved in the reg-
istration to do group-wise registration. For this case, the explicit derivatives must be 
recalculated and a method for composing the deformation fields needs to be pro-
posed. 
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