
Two-dimensional Context-free Grammars

Daniel Pr̊uša?

Charles University, Department of Computer Science, Malostranské nám. 25, 118 00
PRAHA 1, Czech Republic, e-mail: prusa@barbora.ms.mff.cuni.cz

Abstract. We present a generalization of context-free grammars to two-
dimensions and define picture languages generated by these grammars.
We examine some properties of the formed class and we describe how
these languages can be recognized by two-dimensional forgetting au-
tomata.

1 Introduction

The goal of this paper is to present one of possible generalizations of
concepts of context-free grammars and languages to two dimensions. In-
formally, a two-dimensional string (called a picture) is defined as a rec-
tangular array of symbols from a finite alphabet. A picture language is a
set of pictures.

Some proposals of two-dimensional context-free languages already ex-
ist ([4], [2]), however a complete theory has not been formed yet. It is a
difficult task. The situation is rather complicated even in case of regular
languages. We emphasize that our ambitions are not to claim what two-
dimensional context-free languages should be. We generalize concepts of
context-free grammars in a natural way only and study the formed class of
picture languages. However, in the text, we use terms like two-dimensional
context-free grammar, resp. language to refer to them.

Our generalized grammars have productions whose left sides are non-
terminals and the right sides are matrixes of terminals and non-terminals.
This idea is not original. It can be found for example in [7], where produc-
tions with the rigth side restricted to one row or column are considered
only. The other example is in [8]. Some basic facts, that we extend, are
mentioned there.

Our results on the class of context-free languages include the facts that
not all languages recognized by (two-dimensional) finite state automata
are context-free and that the restricted grammars from [7] are weaker then

? Supported by the Grant Agency of the Czech Republic, Grant-No. 157/1999/A
INF/MFF

the presented grammars. In addition, we describe how context-free lan-
guages can be recognized by two-dimensional forgetting automata. This
construction is based on results in [8] and [1].

2 Picture Languages

We assume that the reader is familiar with the theory of one-dimensional
languages as can be found for example in [3]. We extend some basic
definitions from the one-dimensional theory now. More details can be
found in [4].

Definition 1. A picture over a finite alphabet Σ is a two-dimensional
rectangular array (matrix) of elements of Σ. Σ∗∗ denotes the set of all
pictures over Σ. A picture language over Σ is a subset of Σ∗∗.

Let O ∈ Σ∗∗ be a picture. rows(O), resp. cols(O) denotes the number
of rows, resp. columns of O. The pair rows(O) × cols(O) is called the
size of O. We say that O is a square picture of the size n if rows(O) =
cols(O) = n. The empty picture Λ is the only picture of the size 0 × 0.
For integers i, j such that 1 ≤ i ≤ rows(O), 1 ≤ j ≤ cols(O), O(i, j)
denotes the symbol in O at the coordinate (i, j). A sub-picture of O is a
sub-matrix of it.

We use [aij]m,n to denote the matrix

a11 . . . a1n
...

. . .
...

am1 . . . amn

We define two binary operations – the row and the column concate-
nation. Let A = [aij]k,l and B = [bij]m,n be non-empty pictures over Σ.
The column concatenation A dB is defined iff k = m and the row con-
catenation A dB iff l = n. The results of the operations are given by the
following schemes:

A dB =
a11 . . . a1l b11 . . . b1n
...

. . .
...

...
. . .

...
ak1 . . . akl bm1 . . . bmn

A dB =

a11 . . . a1k
...

. . .
...

ak1 . . . akl

b11 . . . b1n
...

. . .
...

bm1 . . . bmn

Moreover, the column and the row concatenation of A and Λ is always
defined and Λ is the neutral element for both operations.

The unary operation
⊕

is defined on a set of matrixes whose elements
are pictures over an alphabet. Let Pij , i = 1, . . . , m, j = 1, . . . , n be
pictures over Σ such that ∀i ∈ {1, . . . ,m} rows(Pi1) = rows(Pi2) = . . . =
rows(Pin) and ∀j ∈ {1, . . . , n} cols(P1j) = cols(P2j) = . . . = cols(Pmj).⊕

[Pij]m,n is defined as P1
dP2

d. . . dPm, where Pk = Pk1
dPk2

d. . . dPkn.
In our descriptions we use the system of coordinates in a picture de-

picted in Fig. 1. Speaking about a position of a specific field, we use
words like up, down, right, left, first row, last row etc. with respect to
this scheme.

?

-x

y

1 2 3 4 5

1

2

3

Fig. 1. The system of coordinates used in our picture descriptions.

3 Two-dimensional Automata

The two-dimensional Turing machine works on a two-dimensional tape.
It can move its head left, right, up and down. We give its formal defin-
ition only. Terms like configuration, computation, accepting, recognized
language, etc. are defined in a natural way. Details can be found in [4].

Definition 2. Two-dimensional Turing machine is a tuple
(Q,Σ,Σ0, q0, δ,QF), where Q is a finite set of states, Σ is a tape
alphabet, Σ0 ⊂ Σ is an input alphabet, q0 ∈ Q is the initial state,
QF ⊆ Q is a set of final states and δ : Σ ×Q → 2Σ×Q×M is a transition
relation. M = {L,R, U,D, N} is the set of automaton movements (left,
rigth, up, down, no movement). We always assume that there is a
distinguished symbol # ∈ Σ \Σ0 called the background symbol.

A two-dimesional Turing machine is bounded iff the head does not
leave an input during the computation (when it encounteres # it returns

in the next step and does not rewrite this symbol). We consider bounded
machines in the following text only. A two-dimensional finite state au-
tomaton is a two-dimensional Turing machine that does not rewrite any
symbol during its computation. We abbreviate it as FSA, deterministic
FSA as DFSA.

4 Two-dimensional Context-free Grammars

Definition 3. Two-dimensional context-free grammar G is a tuple
(VN , VT , S0,P), where VN is a finite set of non-terminals, VT is a fi-
nite set of terminals, S0 ∈ VN is the initial non-terminal and P is
a finite set of productions of the form N → W , where N ∈ VN and
W ∈ (VN ∪ VT)∗∗ \ {Λ}. In addition, P can contain S0 → Λ. In such a
case, S0 is not a part of any right side of productions.

Definition 4. Let G = (VN , VT , S0,P) be a planar context-free grammar.
We define a picture language L(G,N) over VT for every N ∈ VN . The
definition is given by the following recursive description:

A) If N → W is a production in P and W ∈ VT
∗∗, then W is in L(G,N).

B) Let N → [Aij]m,n be a production in P (not S0 → Λ) and Pij (i =
1, . . . , n j = 1, . . . , m) pictures such that: For every pair of indexes
i,j, if Aij is a terminal then Pij is the picture of the size 1× 1 whose
the only field contains the symbol Aij. If Aij is non-terminal then
Pij ∈ L(G,Aij). In addition,

⊕
[Pij]m,n is defined. Then

⊕
[Pij]m,n is

an element of L(G,N).

The set L(G,N) contains just all pictures that can be obtained by ap-
plying a finite sequence of rules A) and B). The language L(G) generated
by the grammar G is defined as the language L(G,S0).

We abbreviate a two-dimensional context-free grammar as CFG.
L(CFG) is the class of all two-dimensional context-free languages. CF
stands for context-free. An equivalent definition of a language generated
by a context-free grammar is based on a generalization of derivation trees.

Definition 5. Let G = (VN , VT , S0,P) be a CFG. A derivation tree for
G is every tree T satisfying:

– T has at least two vertices.
– Each vertice v of T is labeled by a pair (a, k × l). If v is a leaf then

a ∈ VT , k = l = 1 else a ∈ VN , k, l ≥ 1 are integers.

– Edges are labeled by pairs (i, j). Let us denote the set of labels of all
edges connecting v with its descendant as I(v). It holds that I(v) =
{1, . . . ,m} × {1, . . . , n} and m.n is the number of descendants of v.

– Let v be a vertice of T labeled (N, k × l), where I(v) = {1, . . . ,m} ×
{1, . . . , n}. Let the edge labeled (i, j) connect v and its descendant vij

labeled (Aij , ki× lj). Then
∑m

i=1 ki = k,
∑n

j=1 lj = l and N → [Aij]m,n

is a production in P.

If S0 → Λ ∈ P then the tree TΛ with two vertices – the root labeled
(S0, 0× 0) and the leaf labeled (Λ, 0× 0) is a derivation tree for G too.

Let T be a derivation tree for a CF grammar G = (VN , VT , S,P), V
set of its vertices. We assign a picture to each vertice of T by defining a
function p : V → VT

∗∗: if v ∈ V is a leaf labeled (a, 1× 1) then p(v) = a
else p(v) =

⊕
[Pij]m,n, where I(v) = {1, . . . , m}×{1, . . . , n}, Pij = p(vij),

vij is a descendant of v connected by the edge labeled (i, j). p(T) is defined
as p(r), where r is the root of T . p(TΛ) = Λ. Observation: if v ∈ V is
labeled (N, k × l) then rows(p(v)) = k, cols(p(v)) = l.

Lemma 1. Let G = (VN , VT , S,P) be a CF grammar and N ∈ VN .

1. Let T be a derivation tree for G having its root labeled (N, k× l). Then
p(T) ∈ L(G,N).

2. Let O be a picture in L(G,N). There exists a derivation tree for G
with root labeled (N, k × l) such that rows(O) = k, cols(O) = l and
p(T) = O.

Proof. The lemma follows directly from the previous definitions. ut
Example 1. Let us define the picture language L over Σ = {a, b}.
L = {O | O ∈ {a, b}∗∗ ∧ ∃i, j ∈ N : 1 < i < rows(O) ∧ 1 < j < cols(O) ∧
∀x ∈ {1, . . . , rows(O)}, y ∈ {1, . . . , cols(O)} : O(x, y) = a ⇔ x 6= i ∧ y 6= j}

L is context-free. It is generated by the CF grammar G =
(VN , Σ, S,P, S), where VN = {S, A, V,H, M} and the set P consists of
the following productions:

S →
A V A
H b H
A V A

A → M A → A M M → a M → a
M

V → b V → b
V

H → b H → b H

The non-terminal A generates the language {a}∗∗ \ {Λ}, M generates
one-column pictures of a’s, V generates one-column pictures of b’s and
finally H generates one-row pictures of b’s.

Let us consider CF grammars with productions of the form N → a,
N → [A1j]1,2 and N → [Ai1]2,1, where a is a terminal and Aij are non-
terminals. These grammars are presented in [7]. Let us denote them as
CFG2. We proof that their generative power is less than the generative
power of CFG’s.

Theorem 1. L(CFG2) is a proper subset of L(CFG).

Proof. By a contradiction. Let G = (VN , VT , S,P) be a CFG2 generating
the language L from the Example 1. Let us consider an integer n ≥ 3.
We denote the set of all square pictures of the size n in L as L1. n can
be chosen sufficiently large so that no picture in L1 equals to the right
side of anyone production in P. L1 consists of (n− 2)2 pictures. At least
d (n−2)2

|P| e pictures are derived in the last step using the same production.
Without loss of generality, let it be the production S → AB. If n is
sufficiently large there exist two pictures with different indexes of the row
of b’s (maximally n−2 pictures in L1 can have the same index of the row
of b’s). Let us denote these pictures as O and O. It holds O = O1

dO2,
O = O1

dO2, where O1, O1 ∈ L(G,A) and O2, O2 ∈ L(G,B). It implies
O = O1

dO2 ∈ L(G). It is a contradiction, O contains b in the first and in
the last column, but these b’s are not in the same row. ut
Example 2. Let us define the language L over the alphabet Σ = {0, 1, x}
consisting just of all pictures O ∈ Σ∗∗ satisfying: 1) O is a square picture
of an odd size, 2) O(i, j) = x ⇔ i, j are odd indexes, 3) if O(i, j) = 1 then
the i-th row or the j-th column (at least one of them) consists of 1’s

Lemma 2. L can be recognized by a DFSA.

Proof. DFSA automaton T recognizing L can be constructed as follows.
T checks if an input picture is a square picture of an odd size. It can be
done moving the head diagonally. The computation continues by scanning
row by row and checking if symbols x are just in all fields with both
indexes odd, in case of other fields containing and for the other positions
the symbol 1 if the field and its four neighbours form one of the possible
configurations as follows:

1
x 1 x

1

x
1 1 1

x

1
0 1 0

1

0
1 1 1

0

1
1 1 1

1

x
1 1

x

#
x 1 x

1

x
1 1 #

x

1
x 1 x

#

ut
Theorem 2. L(DFSA) is not a subset of L(CFG).

Proof. Let G = (VN , VT , S,P) be a CFG such that L(G) = L, where L is
the language from the Example 2. Without loss of generality, P does not
contain any production of the form A → B, where A, B are non-terminals.
We take an odd integer n = 2.k + 1. Let L1 be the set of all pictures in L
of the size n. n is chosen sufficiently large so that no picture in L1 equals
to the right side of anyone production. We have |L1| = 2k.2k = 2n−1

(there is k columns and k rows, for each we can choose if the row, resp.
colunm cosists of 1’s or not). There is at least 2n−1

|P | pictures in L1 that
are derived in the last step using the same production. Let it be the
production S → [Aij]p,q. Let the set of the given pictures be L2. Without
loss of generality, we assume that p ≥ q. In addition, p ≥ 2 (otherwise
the production is of the form A → B).

The goal is to show that there are two pictures U, V ∈ L2 such that
U =

⊕
[Uij]p,q, V =

⊕
[Vij]p,q, Uij , Vij ∈ L(G,Aij) (property (1)) and next

that the first row of U does not equals to the first row of V (property (2)
– in other words, it means U and V differs in one of columns with respect
to the symbols 1). The number of all possible sequences

cols(U1,1), cols(U1,2), . . . , cols(U1q), rows(U1,1), rows(U2,1), . . . , rows(Up1)

is bounded by np+q. There exists a set L3 ⊆ L2, |L3| ≥ 2n−1

|P|.np+q and
each pair of pictures in L3 has the property (1). L2 contains a subset
of 2k = 2

n−1
2 pictures, where each pair does not satisfy the property

(2). It implies that the pair U, V exists in L3 for some sufficiently large
n. If we replace the sub-pictures U1,1, . . . , U1q in U by the sub-pictures
V1,1, . . . , V1q (U1i replaced by V1i) we get the picture O that is in L again.
But it is a contradiction, because O does not have all properties of pictures
in L. ut

5 Two-dimensional Forgetting Automata

Forgetting automata are bounded Turing machines that can rewrite the
content of a field by the special symbol @ only (we say, they erase it). It
is possible to characterize (one-dimensional) context-free languages using
forgetting automata as it is shown in [5]. We extend some of these ideas
– we show that two-dimensional context-free languages can be recognized
by two-dimensional forgetting automata. The proof is strongly based on

a technique of storing information in blocks that has been presented in
[1], where relations between two-dimensional NFSA and two-dimensional
forgetting automata are studied.

Definition 6. Two-dimensional forgetting automaton (NFA) is a two-
dimensional bounded Turing machine (Q,Σ, Σ0, q0, δ,QF), where Σ =
Σ0 ∪ {#, @}. @ /∈ Σ0 is a special symbol called the erase symbol. In
addition, if (a, q) → (a, q, d) is an element of transition relation given by
δ, then a = a or a = @.

First of all, we sketch an idea of how a deterministic forgetting au-
tomaton (DFA) can store and retrieve information by erasing some sym-
bols on the tape so that the entry picture can be still reconstructed (we
follow the description presented in [1]).

Let A = (Q,Σ,Σ0, q0, δ,QF) be a DFA. Let Σ0 = Σ \ {@, #}. A
performs a computation on a picture O. Let M be the set of tape fields
containing O. Let O(f) denote a symbol contained in the field f ∈ M .
Then for each G ⊆ M there is s ∈ Σ0 such that |{f ∈ G,O(f) = s}| ≥
|G|
|Σ0| . Let the automaton A erase fields of G containing the symbol s only.
Each such field can therefore store 1 bit of information: the field is either
erased or not erased. It is thus ensured that G can hold at least |G|

|Σ0| bits
of information. Furthermore, the original symbol of all erased fields in G
is known – it is s.

Let us consider M to be splitted into rectangular blocks of the size
k × l, where n ≤ k < 2n, n ≤ l < 2n for some n. The minimum value
for n will be determined in the following paragraphs. (In the case of just
one dimension of the picture being lower than n, the blocks will be only
as high – or wide – as the picture. In the case of both dimensions of the
picture being lower than n, an automaton processing such a picture can
decide whether to accept it or reject it on the basis of enumeration of
finitely many cases.)

If both width and height of M are at least n, all blocks contain n×n
fields, except for the blocks neighbouring with the lower boundary of M ,
which can be higher, and the blocks neighbouring with the right boundary
of M , which can be wider. Nevertheless, both dimensions of each block
are at most 2n− 1.

Each block Bi ⊆ M is divided into two parts – Fi and Gi. Fi con-
sists of the first |Σ0| fields of Bi. We can choose the size of the blocks
arbitrarily, so a block will always contain at least |Σ0| fields. Gi con-
tains the remaining fields of Bi. Let sr ∈ Σ0 be a symbol for which
|{f ∈ Gi, O(f) = sr}| ≥ |Gi|

|Σ0| . The role of Fi is to store sr: if sr is the

r-th symbol of Σ0 then A stores it by erasing the r-th field of Fi. Now A
is able to determine sr, but it needs to store somewhere the information
about the symbol originally stored in the erased fields in Fi. A uses the
first |Σ0| bits of information that can be stored in Gi. If the erased sym-
bol in Fi was the q-th symbol of Σ0 then the q-th occurrence of sr in Gi

is erased, allowing A to determine the erased symbol in Fi. This way a
maximum of |Σ0| bits of available information storable in Gi will be lost.
For any block Bi containing m fields this method allows A to store at
least m−|Σ0|

|Σ0| − |Σ0| bits of information in Bi.
In the following text, a region is every rectangular sub-array of tape

fields. We can consider such a region to be the picture as well.
⊕

[Rij]m,n

(if defined) is used to denote the region that is the union of Rij ’s, where
indexes of rows, resp. columns in Rij are less than indexes of rows in
Ri+1,j , resp. columns in Ri,j+1.

Theorem 3. L(CFG) ⊂ L(NFA)

Proof. Let us consider a context-free grammar G = (VN , VT , S0,P),
L(G) = L. We describe how to construct a forgetting automaton A that
recognizes L. We define Σ as VT ∪ {#, @}. Let O be an input picture.
The idea of the computation of A is to try to construct a derivation
tree T for G such that its root is labeled (S0, rows(O) × cols(O)) and
p(T) = O. During the computation, O (more precisely, the region con-
taining the input) will be splitted into disjunct regions, each labeled by
an element of VT ∪VN . We distinguish two kinds of regions: Regions con-
sisting of one field (t-regions) – each labeled by a terminal given by the
original content of the field, and regions consisting of more than one field
(N -regions) – labeled by a non-terminal. Some of possible regions are de-
rived. A derived region is represented if there is information determining
its position, size and label stored on the tape. We explain later how A
derives and represents regions. We consider a bijection between derived
regions and vertices of T . Let m(R) denote the vertice corresponding to
a region R and m−1(v) the region corresponding to a vertice v.

At the beginning statge, we consider O to be splitted into
rows(O).cols(O) t-regions. Each region is derived, represented and cor-
responds to a leaf of T . These regions are the only derived regions at
the beginning. A works in cycles. A cycle includes steps. In a step,
A derives a new region. Roughly said, it non-deterministically chooses
a (not derived yet) region R =

⊕
[Rij]s,t, where Rij are represented

regions or regions derived in the current cycle, Rij labeled Aij , and
a production N → [Aij]s,t ∈ P (if such a production does not ex-

ists, the computational branch does no accept). R is derived and la-
beled N . As for the tree T , m(R) is labeled (N, cols(R)× rows(R)) and
p(v(R)) = R, m(Rij) is a descendant of m(R), the edge connecting the
vertices is labeled (i, j). A uses the technique of storing information in
blocks. We consider O to be divided into rectangular blocks Bi such that
n ≤ rows(Bi), cols(Bi) < 2n, where n is a constant that we derive later.
We assume rows(O), cols(O) ≥ n. The other inputs will be discussed as a
special case. Let us describe how to represent regions during the compu-
tation. A does not represent any N -region that is a subset of a block – we
denote this requirement as (1). We distinguish two types of the remain-
ing N -regions. Let us consider a block B of the size k× l and a N -region
R. Let us denote the four fields neighbouring with the corners of B as
the C-fields of B (see Fig. 2). We say that B is a border block of R iff
R ∩ B 6= ∅ and R does not contain all 4 C-fields of B. A represents a
region in its border blocks.

We consider the bits available to store information in B to be orga-
nized into groups. Each group has an usage flag consisting of two bits
determining if the group is not used (information has not been stored
in the group yet), used (stored information is current) or deleted (stored
information is not relevant anymore). The first state is indicated by two
non-erased symbols, the second one by one symbol erased and finally the
third one by two erased symbols. One group of bits represents the inter-
section between a region and a block. Information in a group includes
coordinates in the block (one coordinate requires blog(2.n)c bits), labels
(a non-terminal is represented unary using |VN | bits) and various ”flags”
that we describe in the following paragraphs.

Let B be a border block of R. We say that the intersection between
R and B is of the first type if R contains one or two C-fields of B and
of the second type if R does not contain any C-field. It is obvious that if
R has the intersection of the first, resp. second type with a border block
then it has the intersection of the same type with all its border blocks. It
means we can denote every N -region having the intersection of the first,
resp. second type with its border blocks as N1-region, resp. N2-region.

There can be 8 (Fig. 2) different types of the intersection between
a N1-region R and a block B with respect to which C-fields of B are
included in R. It means the intersection can be represented using 3 bits
determining the type and one or two coordinates. Let us solve the question
how many different intersections with N1-regions A need to represent
during the computation in B. B can be a border block of 4 different
represented N1-regions after performing a sequence of cycles. The border

C1 C2

C4 C3

Fig. 2. A block and its C-cells; eight types of intersection between the block and a
N1-region; the horizontal and vertical types of N2-regions.

(coordinates in B) of one N1-region can be changed maximally k + l − 2
times (before it completly leaves B), because every change increases, resp.
decreases at least one of the coordinates. It means it is sufficient if B can
represent 8.n intersections. Note that more than 8.n N1-regions having
the non-empty intersection with the border block B can be represented,
however, some of them have the same intersection with B. In addition,
if A knows coordinates of R in B it can determine, which group of bits
represents R in neighbour blocks. The label of R is represented in one of
its border blocks – the correspondent usage flag is of the value ”used”. If
two labels are reserved in each group of bits then there is always at least
one not used label in a border block of a new represented region.

We consider N2-regions to be vertical or horizontal (Fig. 2). Let R
be a horizontal, reps. vertical N2-region. There are three types of inter-
section between R and B, thus A represents the intersection using tree
bits determining if the region is vertical or horizontal and the type of
the intersection, two coordinates of the first and the last row of R and,
in addition, twice two coordinates with the usage flag that are reserved
to represent positions of the leftmost and the rightmost column, resp.
the first and the last row of R in correspondent border blocks eventually
(the same idea of the representation as in the case of labels). It holds
that there is just one border block of R, where one pair of coordinates is
marked as used. Let the width of R be min(cols(R), rows(R)). We add
one more requirement, denoted (2), on the representation of regions: If R
is a represented N2-region then there is not any different represented N2-
region R′ of the same width having the same border blocks. Under this
assumption, A needs to represent maximally 2.4.2.n = 16.n intersections
of the second type in a block during the computation (the number of
N2-regions of the width 1 is bounded by 4.max(k, l) ≤ 4.2.n, a N2-region
of a greater width is created as the concatenation of several N2-regions
of less widths, every concatenation decreases the number of represented
N2-region at least by 1).

We complete and summarize what information should be stored in
a block during the computation. One bit determines if B is a subset of
some derived N -region or not – this information is changed during the
computation one time exactly. According to this bit, A determines if a
field of a block that is not a border block of any N -region is t-region or
not. 8.n groups of bits are reserved to represent intersections of the first
type. Each group consists of the usage flag, 3 bits determining the type
of intersection, two coordinates and two labels, each with the usage flag.
Similarly, 16.n groups of bits are reserved to represent intersections of the
second type. These groups contain one additional information – twice two
coordinates and the usage flag. It means we need O(n.log(n)) bits per a
block, while a block can store Ω(n2) bits. It implies that there exists a
suitable constant n.

We can describe cycles and steps in more details now. Let d be the
maximal number of elemets of the right side of productions in P. In a
cycle, A non-determistically chooses a non-represented region R consisting
of the set of regionsR = R1, . . . Rs that are all represented, and a sequence
of productions P1, . . . Pt, where s, t ≤ d.4n2 + 2.4n2. A chooses R as
follows. It starts with its head placed in the upper left corner of O. It
scans row by row from left to right, proceeding from top to bottom and
non-deterministically chooses the upper left corner of R (it have to be
the upper left corner of an already represented region). Once the corner
is chosen, T moves its head to the right and chooses the upper right corner.
While moving, when T detects a region Ri first time, it scans its borders
and remembers in states the neighbour regions of Ri including their order
and the label of Ri as well. When the upper right corner is ”claimed”, A
continues by scanning next rows of R until it chooses the last one. Every
time T enters a new represented region (not visited yet), it detects its
neighbours. Thanks to mapping of neighbouring relation among Ri’s, A
is able to move its head from one region to any other desired ”mapped”
region.

A continues by deriving regions. The first region is derived according
to P1. A chooses S1 =

⊕
[Sij]s1,t1 , where each Sij is one one of Rij ’s and

checks if S1 can be derived. Let us consider all Sij ’s to be deleted from
R and S1 to be added. A performs the second step on the modified set
R using P2, etc. In the last step A derives R. All these derivations are
performed in states of A only. After that, A records changes on the tape.
If the region corresponding to O labeled S0 is derived then T has been
constructed and O ∈ L. On the other hand, let T be a derivation tree for
G having its root labeled (S0, rows(O) × cols(O)) and p(T) = O. A can

construct T despite the requirements (1) and (2). If R is a region derived
using some regions that are subsets of blocks, A derives such regions in
one cycle. It requires to choose d.4n2 regions maximally. If R and R′ are
N2-regions to be derived having the same border blocks and R ⊆ R′, A
derives both in one cycle and represents R′. Note that |R′ \ R| ≤ 2.4n2,
thus A can choose all needed regions to derive R′ as well.

Let us discuss the remaining special case when one of the sizes (e.g.
cols(O) = m) of O is less than n (if both sizes are less than n then A scans
all symbols and accept or reject O immediately). In this case, A needs to
represent horizontal N2-regions in a block only. In addition, maximally
4.m different intersections have to be represented in a block (estimated
similarly as in the previous case). O(m.log(n)) bits are required, while
Ω(m.n) bits can be stored, thus a suitable constant n exists again. ut

6 Conclusions

We proved that L(CFG) does not include all languages in L(DFSA).
It indicates that the presented class is not a suitable candidate for the
class of ”real” two-dimensional context-free languages. However, in our
opinion, this class deserves an attention, because it is based on a natural
generalization of CF grammars. We showed how forgetting automata
can recognize L(CFG). The arising question to be study now is whether
forgetting automata restricted in some way can characterize it exactly.

References

1. P.Jǐrička, V.Král: Deterministic Forgetting Planar Automata, in proceedings of the
4-th Int. Conference: Developments in Language Theory, Aachen, Germany, 1999.

2. D.Giammarresi, A.Restivo: Two-dimensional Languages, In A.Salomaa and
G.Rozenberg, editors, Handbook of Formal Languages, volume 3, Beyond Words,
pages 215–267. Springer-Verlag, Berlin, 1997.

3. J.Hopcroft, J.Ullman: Formal Languages and Their Relation to Automata, Addison-
Wesley, 1969.

4. A.Rosenfeld: Picture Languages - Formal Models of Picture Recognition, Academic
Press, New York, 1979.

5. P.Jančar, F.Mráz, M.Plátek: Characterization of Context-Free Languages by Eras-
ing Automata, Proceedings of MFCS’92, LNCS 629, Springer, 1992, pp. 305–314.

6. P.Jančar, F.Mráz, M.Plátek: Forgetting automata and context-free languages, Acta
Informatica 33, Springer-Verlag, 1996, pp. 409–420.

7. M.I.Schlesinger, V.Hlaváč: Deset Kapitol z Teorie Statistickeho a Strukturniho
Rozpoznavani, CVUT, Prague, 1999, (in Czech).

8. P.Jǐrička: Grammars and automata with two dimensional lists (grids). Master thesis,
Faculty of Mathematics and Physics, Charles U., Prague, 1997, (in Czech).

