
Charles University

Faculty of Mathematics and Physics

Mgr. Daniel Pr̊uša

Two-dimensional Languages

Doctoral Thesis

Supervisor: Martin Plátek, CSc.

Prague, 2004

Acknowledgements

The results presented in this thesis were achieved during the years 1998–2004.
Many of them were achieved within the framework of grant projects. They
include Grant-No. 201/02/1456 (The Grant Agency of the Czech Republic) and
Grant-No. 300/2002/A-INF/MFF (The Grant Agency of Charles University,
Prague).

I would like to gratefully thank my supervisor Martin Plátek, CSc. for his
valuable support he provided me during writing the thesis.

Prague, November 2004 Daniel Pr̊uša

Contents

1 Introduction 6
1.1 Studied Two-dimensional Formal Models 6
1.2 Goals . 9
1.3 Achieved Results . 10
1.4 Notation . 11

2 Theory of Picture Languages 12
2.1 Pictures, Picture Languages . 12
2.2 Two-dimensional Turing Machines 14
2.3 Notes on Computational Techniques 16

3 Two-dimensional Finite-state Automata 19
3.1 Finite-state Automaton . 19
3.2 Finite-state Automata over One-symbol Alphabet 20
3.3 Simulation of Finite-state Automata by Deterministic Turing Ma-

chines . 25

4 Time Complexity in Two Dimensions 37
4.1 NP2d-completeness . 37
4.2 Recognition of Palindromes . 42
4.3 Crossing Sequences . 45
4.4 Lower Bounds on Time Complexity 47

5 Two-dimensional On-line Tessellation Automata 49
5.1 Properties of OTA . 49
5.2 Simulation of Cellular Automata 51

6 Two-dimensional Forgetting Automata 59
6.1 Technique Allowing to Store Information in Blocks 59
6.2 Forgetting Automata and NP2d-completeness 63

7 Grammars with Productions in Context-free Form 67
7.1 Introduction into Two-dimensional Context-free Grammars . . . 67
7.2 CFP Grammars, Derivation Trees 71
7.3 L(CFPG) in Hierarchy of Classes 74
7.4 Restrictions on Size of Productions’ Right-hand Sides 84
7.5 Sentential Forms . 87
7.6 CFP Grammars over One-symbol Alphabet, Pumping Lemma . 91
7.7 Closure Properties . 96

4

7.8 Emptiness Problem . 101
7.9 Comparison to Other Generalizations of Context-free Languages 107

8 Conclusions 113

5

Chapter 1

Introduction

This thesis presents results on the theory of two-dimensional languages. The
theory studies generalizations of formal languages to two dimensions. These
generalizations can be done in many different ways. Automata working over a
two-dimensional tape were firstly introduced by M. Blum and C. Hewitt in 1967.
Since then, several formal models recognizing or generating two-dimensional
objects have been proposed in the literature. All these approaches were initially
motivated by problems arising in the framework of pattern recognition and
image processing. Two-dimensional patterns also appear in studies concerning
cellular automata and some other models of parallel computing.

The most common two-dimensional object is a picture which is a rectangular
array of symbols taken from a finite alphabet. We restrict ourselves to the
study of languages build from such objects. These languages are called picture
languages.

1.1 Studied Two-dimensional Formal Models

We give the informal description of the models studied in this thesis.

Two-dimensional Turing machine

A Turing machine provided by a two-dimensional tape (which is a two-
dimensional array of fields infinite in both directions) with the capability to
move the head in four directions – left, right, up and down – is called a two-
dimensional Turing machine. Such a machine can be used to recognize picture
languages. In the initial configuration, an input picture is stored in the tape.
The head scans typically the upper-left corner. The fields of the tape not con-
taining a symbol of the input are filled by the background symbol # (it is also
known as the blank symbol). The computation over the input is an analogy to
computations of the model with one-dimensional tape.

The two-dimensional Turing machine can be considered as the most general
two-dimensional recognizing device. The class of languages recognizable by
two-dimensional Turing machines is an analogy to 0 languages of the Chomsky
hierarchy (recursively enumerable languages). The origin of the model dates to
late sixties of the twentieth century, when the basics of the theory were formed.

6

Two-dimensional finite-state automaton

We say that a two-dimensional Turing machine is bounded if the machine does
not move the head outside the area of the input. To be more precise, the head
is allowed to leave the area in a step but whenever this situation occurs, it does
not rewrite the scanned background symbol and it has to be moved back in the
next step.

Each bounded two-dimensional Turing machine that never rewrites any sym-
bol of the tape is called a two-dimensional finite-state automaton. It is also
known as a four-way automaton. Similarly as in the case of two-dimensional
Turing machines, two-dimensional finite-state automata were proposed in be-
ginnings of the theory of two-dimensional languages and, since then, their prop-
erties have been widely studied. The different topology of pictures (compar-
ing to strings) has an impact on results that differ to results known from the
one-dimensional theory. It can be demonstrated even on the two-dimensional
finite-state automata, which, in fact, can be considered as one of the simplest
recognizing devices. For example, non-deterministic two-dimensional finite-state
automata are more powerful than deterministic two-dimensional finite-state au-
tomata.

Since two-dimensional finite-state automata are the natural extension of one-
dimensional two-way automata, the formed class of picture languages recogniz-
able by them is the natural candidate for the generalization of the class of regular
languages.

Two-dimensional forgetting automaton

The one-dimensional forgetting automaton is a bounded Turing machine that
uses a doubly linked list of fields rather than the usual tape. The automaton
can erase the content of a scanned field by the special erase symbol or it can
completely delete the scanned field from the list. Except these two operations,
no additional rewriting of symbols in fields are allowed. One-dimensional for-
getting automata were studied by P. Jancar, F. Mraz and M. Platek, e.g. in [7],
where the taxonomy of forgetting automata is given, or in [8], where forgetting
automata are used to characterize context-free languages.

The two-dimensional forgetting automaton is a bounded two-dimensional
Turing machine that can again erase the scanned field, but it cannot delete
it. It would be problematic to define this operation, since the deletion of a
field from an array breaks the two-dimensional topology. These automata were
studied by P. Foltyn [1] and P. Jiricka [9].

Two-dimensional on-line tessellation automaton

The two-dimensional on-line tessellation automaton was introduced by K. Inoue
and A. Nakamura [5] in 1977. It is a kind of bounded two-dimensional cellular
automaton. In comparison with the cellular automata, computations are per-
formed in a restricted way – cells do not make transitions at every time-step,
but rather a ”transition wave” passes once diagonally across them. Each cell
changes its state depending on two neighbors – the top one and the left one.
The result of a computation is determined by the state the bottom-right cell
finishes in.

7

D. Giammarresi and A. Restivo present the class of languages recognizable
by this model as the ground level class of the two-dimensional theory ([2]),
prior to languages recognizable by two-dimensional finite-state automata. They
argue that the class proposed by them fulfills more natural requirements on
such a generalization. Moreover, it is possible to use several formalisms to
define the class: except tessellation automata, they include tiling systems or
monadic second order logic, thus the definition is robust as in the case of regular
languages.

Two-dimensional grammars with productions in context-free form

The basic variant of two-dimensional grammars with productions in context-
free form was introduced by M. I. Schlesinger and V. Hlavac [22] and also by
O. Matz [13]. Schlesinger and Hlavac present the grammars as a tool that can
be used in the area of syntactic methods for pattern recognition. Productions
of these grammars are of the following types:

1) N → a 2) N → A 3) N → A B 4) N → A
B

where A, B, N are non-terminals and a is a terminal. Pictures generated by a
non-terminal are defined using recurrent rules:

• For each production of type 1), N generates a.

• For each production of type 2), if A generates P , then N generates P as
well.

• For each production of type 3) (resp. 4)), if A generates P1 and B gener-
ates P2, where the numbers of rows (resp. columns) of P1 and P2 equal,
then the concatenation of P1 and P2, where P2 is placed after (resp. bel-
low) P1, is generated by N .

In [9], P. Jiricka works with an extended form of productions. Right-hand sides
consist of a general matrix of terminals and non-terminals.

All the mentioned authors call the grammars two-dimensional context-free
grammars. We will see that many properties of the raised class are not
analogous to the properties of one-dimensional context-free languages. That is
the reason why we prefer the term grammars with productions in context-free
form.

The following table shows abbreviations we use for the models.

Abbreviation Recognizing device, resp. generative system
TM two-dimensional Turing machine
FSA two-dimensional finite-state automaton
OTA two-dimensional on-line tessellation automaton
FA two-dimensional forgetting automaton
CFPG grammar with productions in context-free form

Furthermore, for each listed computational model, to denote the determin-
istic variant of the model we use the correspondent abbreviation prefixed by D

8

(i.e., we write DTM , DFSA, DOTA and DFA). The class of languages recog-
nizable, resp. generated by a model M is denoted by L(M) (e.g. L(FSA)).

The chosen abbreviations do not reflect two-dimensionality of the models.
In fact, TM , FSA and FA match the commonly used abbreviation for one-
dimensional models. However, this fact should not lead to any confusions. We
will refer one-dimensional models rarely and whenever we do it, we will empha-
size it explicitly.

1.2 Goals

In the presented work, we focus mainly on two areas.

• Firstly, we study relationships among the two-dimensional formal models
listed before.

• Secondly, we also contribute to the question of possibilities to generalize
the Chomsky hierarchy to two dimensions.

As for the first goal, we are interested in the comparison of generative, resp.
recognitive power of models, mutual simulations among them, questions related
to time complexity. If possible, we would also like to develop general techniques
or ideas of proof (e.g. the technique allowing to prove that a language is not
included in L(CFPG)).

When speaking about a generalization, we have on mind the class of picture
languages that fulfills some natural expectations. Let us assume to look for
a generalization of regular languages. Then, as a primary requirement, we
expect that, in some sense, the generalization includes regular languages. To
be more precise, we mean if the two-dimensional generalization is restricted
to languages containing pictures formed only of one row (resp. column), we
get exactly the class of regular languages. Furthermore, we would like the
mechanism defining languages in the generalized class to resemble mechanisms
used to define regular languages (as finite state automata, regular grammars,
etc.). In addition, we expect that the generalization inherits as many as possible
properties (like closure properties) of the one-dimensional class. And finally,
time complexity of recognition of languages in the class should also be important.
In the case of regular languages we would expect that it is possible to decide the
question of membership in time linear in number of fields of an input picture.

We have already noted that the class of languages recognizable by two-
dimensional finite-state automata is the natural candidate for the generaliza-
tion of regular languages. There are also some proposals of classes of picture
languages generated by mechanisms resembling context-free grammars, however
the properties of these classes do not fulfill the natural expectations.

We study the question whether the class of languages generated by grammars
with productions in context-free form is a good generalization of one-dimensional
context-free languages or not. In the mentioned literature regarding the gram-
mars, there are only a few basic results on properties of the class. We would like
to extend these results to have basis to make a conclusion. We will investigate
the following topics:

• The comparison of L(CFPG) and L(FSA).

9

• The comparison of L(CFPG) to the class of languages generated by the
basic variant of the grammars.

• Closure properties of L(CFPG).

• Searching for a recognizing device equivalent to the grammars. We would
like to propose a device based on the idea of forgetting.

• The comparison to other proposals of the generalization of context-free
languages.

1.3 Achieved Results

The main results that have been achieved categorized by models are as follows:

FSA: We give a characterization of two-dimensional finite-state automata work-
ing on inputs over one-symbol alphabets. We show that L(FSA) is not closed
under projection into such alphabets.

We also investigate possibilities how to simulate the automata by determin-
istic bounded two-dimensional Turing machines. This result is connected to
work in [10], where the simulation of FSA by a deterministic FA is described.
The main goal is to prove the existence of such a simulation there. In our case,
we rather focus on time complexity of the simulation.

OTA: We show a connection between the automata and one-dimensional cellu-
lar automata. Under some circumstances, tessellation automata can simulate
cellular automata. As a consequence, it gives us a generic way how to design
tessellation automata recognizing NP -complete problems that are recognizable
by one-dimensional cellular automata. This possibility speaks against the sug-
gestion to take the class as the ground level of the two-dimensional hierarchy.
Results regarding the simulation were published in [17].

FA: In [9], the technique allowing to store some information on the tape pre-
serving the possibility to reconstruct the original content has been described.
Using the technique, we show that forgetting automata can simulate tessellation
automata as well as grammars with productions in context-free form (for every
CFPG G, there is a FA accepting the language generated by G).

TM: Questions related to time complexity of the recognition of pictures are
studied in general. For convenience, we define the class of picture languages
recognizable by two-dimensional non-deterministic Turing machines in polyno-
mial time and show a relationship to the known one-dimensional variant of the
class.

We also deal with lower bounds on time complexity in two dimensions. Our
results are based on the generalization of so called crossing sequences and the
technique related to them. It comes from [4]. Moreover, we show that a
two-dimensional tape is an advantage – some one-dimensional languages can
be recognized substantially faster by a Turing machine, when using the two-
dimensional tape instead of the one-dimensional tape. These results have roots

10

in author’s diploma thesis ([19]), where models of parallel Turing machines work-
ing over the two-dimensional tape are studied. Related results were published
in [14] and [15].

CFPG: We show that L(CFPG) has many properties that do not conform
the natural requirements on a generalization of context-free languages. These
properties include:

• L(CFPG) is incomparable with L(FSA).

• There is no analogy to the Chomsky normal form of productions. The
generative power of the grammars is dependent on size of right-hand sides
of productions.

• The emptiness problem is not decidable even for languages over a one-
symbol alphabet.

Next results on the class include closure properties, a kind of pumping lemma or
comparisons to other proposals of the generalization of context-free languages.
We have already mentioned the result regarding a relationship between gram-
mars in context-free form and two-dimensional forgetting automata – each lan-
guage generated by a grammar with productions in context-free form can be
recognized by a two-dimensional forgetting automaton. On the other hand,
the two-dimensional forgetting automata are stronger, since they can simulate
two-dimensional finite-state automata. We did not succeed in finding a suitable
restriction on FA’s to get a recognizing device for the class L(CFGP). At-
tempts based on automata provided with a pushdown store were not successful
too.

Some of the results we have listed above were published in [16] and [18].

1.4 Notation

In the thesis, we denote the set of natural numbers by N, the set of integers by
Z. Next, N+ = N \ {0}.

lin : N→ N is a function such that ∀n ∈ N : lin(n) = n.

For two functions f, g : N→ N, we write

• f = O(g) iff there are n0, k ∈ N such that ∀n ∈ N n ≥ n0 ⇒ f(n) ≤ k·g(n)

• f = Ω(g) iff there are n0, k ∈ N such that ∀n ∈ N n ≥ n0 ⇒ k ·f(n) ≥ g(n)

• f = o(g) iff for any k ∈ N there is n0 ∈ N such that f(n0) ≥ k · g(n0)

We will also use the first notation for functions f, g : N × N → N. In this
case, f = O(g) iff there are n0, m0, k ∈ N such that

∀n,m ∈ N n ≥ n0 ∧m ≥ m0 ⇒ f(m,n) ≤ k · g(m,n)

As for the theory of (one-dimensional) automata and formal languages, we
use the standard notation and notions that can be found in [4].

11

Chapter 2

Theory of Picture
Languages

2.1 Pictures, Picture Languages

In this section we extend some basic definitions from the one-dimensional theory
of formal languages. More details can be found in [20].

Definition 1 A picture over a finite alphabet Σ is a two-dimensional rectangu-
lar array (matrix) of elements of Σ, moreover, Λ is a special picture called the
empty picture. Σ∗∗ denotes the set of all pictures over Σ. A picture language
over Σ is a subset of Σ∗∗.

Let P ∈ Σ∗∗ be a picture. Then, rows(P), resp. cols(P) denotes the number
of rows, resp. columns of P (we also call it the height, resp. width of P). The
pair rows(P)× cols(P) is called the size of P . We say that P is a square picture
of size n if rows(P) = cols(P) = n. The empty picture Λ is the only picture of
size 0× 0. Note that there are no pictures of sizes 0× k or k× 0 for any k > 0.
For integers i, j such that 1 ≤ i ≤ rows(P), 1 ≤ j ≤ cols(P), P (i, j) denotes the
symbol in P at coordinate (i, j).

Example 1 To give an example of a picture language, let Σ1 = {a, b}, L be
the set consisting exactly of all square pictures P ∈ Σ1

∗∗, where

P (i, j) =
{

a if i + j is an even number
b otherwise

Pictures in L of sizes 1, 2, 3 and 4 follow.

a
a b
b a

a b a
b a b
a b a

a b a b
b a b a
a b a b
b a b a

Let P1 be another picture over Σ of size m1×n1. We say P1 is a sub-picture
of P iff there are positive integers cx,cy, such that

12

• cx + m1 − 1 ≤ m and cy + n1 − 1 ≤ n

• for all i = 1, . . . ,m1; j = 1, . . . , n1 it holds P1(i, j) = P (cx+i−1, cy+j−1)

Let [aij]m,n denote the matrix

a1,1 . . . a1,n

...
. . .

...
am,1 . . . am,n

We define two binary operations – the row and column concatenation. Let
A = [aij]k,l and B = [bij]m,n be non-empty pictures over Σ. The column
concatenation A dB is defined iff k = m and the row concatenation A dB iff
l = n. The products of these operations are given by the following schemes:

A dB =

a11 . . . a1l b11 . . . b1n

...
. . .

...
...

. . .
...

ak1 . . . akl bm1 . . . bmn

A dB =

a11 . . . a1l

...
. . .

...
ak1 . . . akl

b11 . . . b1n

...
. . .

...
bm1 . . . bmn

It means A dB = [cij]k,l+n, where

cij =
{

aij if j ≤ l
bi,j−l otherwise

and similarly, A dB = [dij]k+m,l, where

dij =
{

aij if i ≤ k
bi−k,j otherwise

Furthermore, the column and row concatenation of A and Λ is always defined
and Λ is the neutral element for both operations.

For languages L1, L2 over Σ, the column concatenation of L1 and L2 (de-
noted by L1

dL2) is defined in the following way

L1
dL2 = {P |P = P1

dP2 ∧ P1 ∈ L1 ∧ P2 ∈ L2}

similarly, the row concatenation (denoted by L1
dL2):

L1
dL2 = {P |P = P1

dP2 ∧ P1 ∈ L1 ∧ P2 ∈ L2}

The generalized concatenation is an unary operation
⊕

defined on a set of
matrixes of elements that are pictures over some alphabet: For i = 1, . . . , m;
j = 1, . . . , n, let Pij be pictures over Σ.

⊕
[Pij]m,n is defined iff

∀i ∈ {1, . . . , m} rows(Pi1) = rows(Pi2) = . . . = rows(Pin)
∀j ∈ {1, . . . , n} cols(P1j) = cols(P2j) = . . . = cols(Pmj)

The result of the operation is P1
dP2

d. . . dPm, where each Pk =
Pk1

dPk2
d. . . dPkn. See Figure 2.1 for an illustrative example.

13

P2,1 P2,2 P2,3

P1,1 P1,2 P1,3

Figure 2.1: Scheme demonstrating the result of
⊕

[Pij]2,3 operation.

?

-x

y

1 2 3 4 5 6
1
2
3

Figure 2.2: The system of coordinates used in our picture descriptions.

For m,n ∈ N, Σm,n is the subset of Σ∗∗ containing exactly all pictures of
size m× n.

Σm,n = {P |P ∈ Σ∗∗ ∧ rows(P) = m ∧ cols(P) = n}

A projection is every function π : Σ → Γ, where Σ and Γ are alphabets. We
extend π on pictures and languages. Let P be a picture of size m×n over Σ, L
be a picture language over Σ. Then

π(P) = [π (P (i, j))]m,n

π(L) = {π(P) |P ∈ L}
In our descriptions, we use the system of coordinates in a picture depicted

in Figure 2.2. Speaking about the position of a specific field, we use words like
up, down, right, left, first row, last row etc. with respect to this scheme.

2.2 Two-dimensional Turing Machines

The two-dimensional Turing machine is the most general two-dimensional au-
tomaton. It is a straightforward generalization of the classical one-dimensional
Turing machine – the tape consisting of a chain of fields storing symbols from
a working alphabet is replaced by a two-dimensional array of fields, infinite in
both directions. The additional movements of the head, up and down, are al-
lowed, preserving the possibility to move right and left. We emphasize, in our
text, we consider the single-tape model only. However, it is possible to define
multi-tape variants as well. A formal definition follows.

Definition 2 A two-dimensional Turing machine is a tuple (Q, Σ, Γ, q0, δ,QF),
where

• Q is a finite set of states

14

?

-x

y

1 2 3 4 5 6
1
2
3
4

#
#
#
#
#
#

#
#
#
#

Figure 2.3: Initial configuration – the figure on the left shows coordinates on
the tape, where an input picture of size 4 × 6 is positioned. The figure on the
right is the input bordered by #’s, which fill the remaining fields of the tape.
The head scans the highlighted field (the top-left corner).

• Σ ⊂ Γ is an input alphabet

• Γ is a working alphabet

• q0 ∈ Q is the initial state

• QF ⊆ Q is a set of final states

• δ : Σ×Q → 2Σ×Q×M is a transition function – M = {L, R, U,D, N} de-
notes the set of the head movements (left, right, up, down, no movement)

We assume there is always a distinguished symbol # ∈ Γ\Σ called the background
symbol.

Comparing to the formal definition of the one-dimensional Turing machine,
there is only one difference – the set of the head movements contains two addi-
tional elements.

Let T = (Q, Σ,Γ, q0, δ,QF) be a two-dimensional Turing machine, P ∈ Σ∗∗

be an input picture.
A configuration of T is each triple (q, (xh, yh), τ), where

• q ∈ Q is the current state

• (xh, yh) is the coordinate of the head’s position

• τ is a mapping Z×Z→ Γ assigning a symbol to each field of the tape (the
field at coordinate (x, y) stores τ(x, y)). It is required that the subset of
all fields storing a symbol different to # is always finite.

The computation of T is defined in the natural way, analogously to
computations of Turing machines from the one-dimensional theory. Figure 2.3
shows the initial configuration of T . The head scans the field of coordinate
(1, 1). This field stores the top-left corner of the input (assuming P 6= Λ).
During a computation, if T is in a state q and scans a symbol a, the set of all
possible transitions is determined by δ(a, q). If (a′, q′,m) ∈ δ(a, q), then T can
rewrite a by a′, enter the state q′ and move the head in the direction given by
m. A computational branch of T halts whenever the control unit reaches some
state in QF or whenever there is no instruction in δ applicable on the cur-
rent configuration. The input is accepted if and only if T can reach a state in QF .

15

T is deterministic iff |δ(a, q)| ≤ 1 for each pair a ∈ Γ, q ∈ Q meaning that
at most one instruction can be applied at any given computational step.

T is #-preserving iff it does not rewrite any # by another symbol and does
not rewrite any symbol different to # by #.

T is bounded iff it behaves as follows: Whenever T encounters #, it moves
the head back in the next step and does not rewrite the symbol. When the
input is Λ, T is bounded iff it does not move the head and rewrite at all.

T is finite iff it does not rewrite any symbol.

For an input P , assuming each computational branch of T halts on P , let
t(P) be the maximal number of steps T has done among all branches (time
complexity for P).

Definition 3 Let T = (Q, Σ,Γ, q0, δ,QF) be a two-dimensional Turing machine
and t(P) be defined for all P ∈ Σ∗∗. Then, T is of time complexity

t1(m,n) = max
P∈Σm,n

t(P)

In the literature, time complexity of a non-deterministic Turing machine
is sometimes defined even in cases when the machine accepts, but there are
also non-halting branches. However, for our purposes, the definition we have
presented is sufficient, we will not work with such computations.

Let T be of time complexity t1 : N×N→ N. When we are not interested in
the dependency of time on picture size, we also define time complexity t2 : N→
N simply as follows

t2(k) = max
m·n=k

t1(m,n)

In this case, time complexity depends on the number of input fields only.

2.3 Notes on Computational Techniques

In this section we present two computational techniques and terms related to
them. They will allow us to simplify descriptions of algorithms for Turing
machines that we will design. The first term is the marker, the second term is
the block.

Working with markers is a commonly used technique. By a marker we
mean a special symbol marking a field during some parts of a computation. To
be more precise, let T = (Q, Σ,Γ, q0, δ,QF) be a Turing machine. T can be
extended to have possibility to mark any field of the tape by the marker M in
the following way: The working alphabet Γ is replaced by Σ ∪ (Γ× {0, 1}) (we
assume Σ ∩ (Γ × {0, 1}) = ∅). Now, if a field stores (a, b), where a ∈ Γ and
b ∈ {0, 1}, then b of value 1 indicates the presence of M in the field. A field
storing a symbol from the input alphabet Σ is considered not to be marked. It
is possible to extend T to support any constant number of different, mutually
independent markers, let us say M1, . . . , Mk. The working alphabet needs to be
extended to Σ ∪ Γ× {0, 1}k in this case.

It is quite often suitable to organize the content of a working tape into blocks
that are rectangular areas of tape fields. Formally, let T = (Q, Σ, Γ, q0, δ,QF)

16

b b b b bl, b b, r

t t t t tl, t t, r

l r

Figure 2.4: A block represented using markers t, l, b and r that are placed in
the top, left, bottom, resp. right part of the perimeter.

be a two-dimensional Turing machine and let fx,y denote the tape field at co-
ordinate (x, y). Then, for any tuple of integers (c1, c2, s1, s2), where s1, s2 > 0,
the set

B = {fx,y | c1 ≤ x < c1 + s1 ∧ c2 ≤ y < c2 + s2}
is a block. We say, B is given by (c1, c2, s1, s2).

Note that (c1, c2) is the coordinate of the top-left corner of B, s1, resp. s2

the number of columns, resp. rows. We can treat blocks like pictures and write
rows(B) = s2, cols(B) = s1. We can also assign a content to a block, but,
comparing to pictures, this assignment is a function of T ’s configuration. For
i = 1, . . . s1; j = 1, . . . , s2, let B(i, j) be the field in B of coordinate (c1 + i −
1, c2 + j − 1) (i.e. (i, j) is a relative coordinate within the block). Furthermore,
let sT (f, c) be the symbol of Γ stored in the field f in the configuration c. Then,
the picture assigned to B in c is P , where P (i, j) = sT (Bi,j , c).

The perimeter (or border), denoted here by B′, of B is the subset of its fields
given as follows:

B′ = {B(i, j) | i = 1 ∨ j = 1 ∨ i = cols(B) ∨ j = rows(B)}

When working with blocks during a computation, it is usually useful and
sufficient to represent a block by markers placed in the border fields (i.e. fields
of B′) as it is shown in Figure 2.4.

Let B1, B2 be two blocks, B1 given by (x1, y1, s, t), B2 by (x1 + d, y1, s, t),
where d ≥ t. It means B2 is located right to B1 and both blocks have the same
number of rows and columns. Let us assume the borders of both blocks are
marked. By these circumstances, let us solve the task how to copy the content
of B1 into B2.

An appropriate Turing machine T can work as follows: It starts having the
head placed on the top-left field of B1 (we assume T is able to locate this field).
The block is copied row by row, each row field by field. Two markers are used
to mark the current source and destination. T records the scanned symbol a in
states, marks the scanned field f as ’read’, moves rightwards until it encounters
the top-left field of B2 (it can be found thanks to border markers), writes a
to the detected field, marks the field as ’written’, moves back (leftwards) to f ,
clears the ’read’ marker, moves to the right neighbor of f (which is the second
field in the scanned row of B1), marks it ’read’, stores the correspondent symbol
in states again, moves rightwards until the field marked ’written’ is detected,
clears the marker, moves right by one field, copies the symbol recorded in states,
places the marker ’written’, returns back to the field marked ’read’ and so on.
When T reaches the end of the first row of B1 (at the moment the last field of

17

the row has been copied), it goes to the last field of the second row and starts
to copy fields of this row in the reversed order (from right to left). In addition,
it does not mark by ’written’ the field copied as the last one in the currently
processed row of B2, since this marker is not needed for the next iteration. The
procedure is repeated until all rows have been copied. The order in which fields
are being copied is changed each time T finishes a row.

As for the time complexity of the algorithm, one iteration (to copy a field)
requires 2d + 3 computational steps – two steps to check if the current source
field is the last one to be copied in the current row, d − 1 movements right to
detect the field marked ’written’, one movement from this field to go to the
proper destination field, d movements back to the source field and one movent
to the source field of the next iteration. When the algorithm ends, the head is
placed on the bottom-right corner of B1 (T need not to move the head to the
next source field, when it returns back from B2 to B1 and the bottom-right field
is the source field). Summing steps over all iterations, we see that the number
of steps of the algorithm is not greater than s · t · (2d + 3).

B1 can be copied into B2 also if B2 is given by (x1+d, y1, s, t). The procedure
is analogous, time complexity remains the same. Even a general case, when B2

is given by (x2, y2, s, t), can be handled similarly. For T , it is only necessary to
be able to locate the i-th row of B2 when scanning the i-th row of B1 and vice
versa. It can be achieved by placing suitable markers before the procedure is
launched. Moreover, if B1 and B2 overlap, the working alphabet is required to
code content of two block’s fields. Nevertheless, assuming the number of fields
of the blocks is fixed, time complexity of the procedure is linear in the distance
(measured in fields) between the top-left corners of B1 and B2 - the distance is
|x1 − x2|+ |y1 − y2|.

We will refer to the described technique using the term copying a block field
by field.

18

Chapter 3

Two-dimensional
Finite-state Automata

3.1 Finite-state Automaton

Definition 4 A two-dimensional finite-state automaton is every tuple
(Q, Σ, q0, δ,QF), where (Q, Σ,Σ ∪ {#}, q0, δ,QF) is a two-dimensional finite
bounded Turing machine.

As we have already mentioned in section 1.1, we abbreviate a two-
dimensional finite-state automaton by FSA, a deterministic FSA by DFSA (we
follow the notation in [20]). We use these abbreviations prior to one-dimensional
finite-state automata. If we need to refer them, we will emphasize it explicitly.

Since a FSA does not perform any rewriting, its working alphabet consists
of elements in the input alphabet and the background symbol, thus it is fully
given by a tuple of the form (Q, Σ, q0, δ,QF).

Finite-state automata have been studied by many authors. FSA’s working
over pictures consisting of one row behave like two-way one-dimensional finite-
state automata that are of the same power as one-way one-dimensional finite-
state automata. It means, FSA’s can be considered as a generalization of
one-dimensional finite-state automata. The question that arises is what are the
properties of the class L(FSA). Is this class a good candidate for the base
class of the theory of two-dimensional languages, analogously to the class of
regular languages? We list some of the most important properties of L(FSA)
and FSA’s (as they are given in [20]).

• L(FSA) is not closed under concatenation (neither row or column)

• L(FSA) in not closed under complement

• L(DFSA) 6= L(FSA)

• The emptiness problem is not decidable for FSA’s.

Comparing to the class of regular languages, all these properties are different.

19

Example 2 To demonstrate capabilities of FSA’s, let us define the following
language over Σ = {a, b}.
L = {A dB |A ∈ {a}∗∗ ∧B ∈ {b}∗∗ ∧ rows(A) = cols(A) = rows(B) = cols(B)}
L contains exactly each picture of size n × 2n (n ∈ N) consisting of two parts
- the left part is a square of a’s, while the right part a square of b’s. We show
that L is in L(DFSA). Let P be an input, A be a DFSA we construct. It can
easily perform these verifications:

• Checks if all rows are of the form aibj for some global constants i, j. To
do it, A scans row by row, in a row, it verifies if there is a sequence of a’s
followed by a sequence of b’s and, starting by the second row, whenever
it detects the end of the sequence of a’s, it checks if the correspondent
sequence of a’s in the row above ends at the same position - this can be
tested locally.

• Moves the head to the top-left corner, then, moves it diagonally (one field
right and one field down repeatedly) until the last row is reached. In the
field reached in the last row, A checks whether it contains a.

• Moves the head right by one field, checks if the field contains b, moves
diagonally right and up until the first row is reached. Finally, A checks if
the movement has ended in the top-right corner of P .

3.2 Finite-state Automata over One-symbol Al-
phabet

In this section we will study FSA’s working over one-symbol alphabets. We
prove a theorem allowing to show that some specific picture languages over one-
symbol alphabet cannot be recognized by a FSA. As a consequence, we prove
that L(FSA) is not closed under projection. As the properties we have listed
in the previous section, this result is also different comparing to the class of
regular languages.

For a one-symbol alphabet Σ (where |Σ| = 1), we use [m,n]Σ to denote the
only picture over Σ of size m × n. When it is clear from the context which
alphabet Σ is referred, we simply write [m,n].

We can prove a kind of pumping lemma for picture languages from L(FSA)
over one-symbol alphabets.

Proposition 1 Let A be a FSA working over a one-symbol alphabet Σ. Let A
have k states. If A accepts a picture P such that m = rows(P), n = cols(P) ≥
1 + k ·m, then, for all i ∈ N, A accepts [m,n + i · (m · k)!] too.

Proof. Let C = {Ci}t
i=0 be an accepting computational branch of A. A configu-

ration of A is fully determined by the head position, the current state and size
m×n. Since m, n are fixed during the whole computation, we consider elements
of C to be triples (i, j, q), where i ∈ {0, . . . ,m + 1}, resp. j ∈ {0, . . . , n + 1} is a
horizontal, resp. vertical position of the head and q ∈ Q. Note that A can move
the head one symbol out of the area of P , thus i, resp. j can be 0 or m + 1,
resp. n + 1.

20

Let C ′ = (r′, n, q′) be the configuration in C in which the head of A reaches
the last column of P first time. (If the head never reaches the last column it
is evident that A accepts every picture [m,n + l] for any integer l, so the proof
can be easily finished here in this case.) Next, let C1 be the only contiguous
subsequence of C satisfying

• the first element is a configuration, in which the head scans a field of the
first column of P

• no other element in C1 (except the first one) is a configuration, where the
head scans a field of the first column

• the last element of C1 is C ′

Finally, we define C2 to be a subsequence of C1 (not necessary contiguous) of
length m ·k+1, where each i-th element (i = 1, . . . , m ·k+1) is the configuration
among elements of C1, in which the head of A reaches the i-th column first time.
Since |C2| = k·m+1, there are at least two configurations in C2 such that the head
is placed in the same row and A is in the same state. Let these configurations
be Ct1 = (r, c1, q) and Ct2 = (r, c2, q), where t1 < t2 and thus c1 < c2. We
emphasize C2 ⊆ C1 guaranteers that, during the part of the computation starting
by the t1-th step and ending by the t2-th step, the head of A can never scan the
symbol # located in the column left to P .

Let Ct3 = C ′ and p = c2 − c1. Now, let us consider what happens if P is
extended to P ′ = [m,n+p] and A computes on P ′. There exists a computational
branch that reaches the last column of P ′ first time after t3 + t2 − t1 steps
entering the configuration (r′, n + p, q′). A can compute as follows. It performs
exactly the same steps that are determined by the sequence C0, C1, . . . , Ct2 .
After that it repeats steps done during the Ct1 , . . . , Ct2 part, so it ends after
t2− t1 additional steps in the configuration (r, c2 +p, q). Next, it continues with
Ct2 , . . . , Ct3 , reaching finally the desired configuration.

Instead of P ′, it is possible to consider any extension of P of the form
[m, n + b · p] for any positive integer b. A can reach the last column in the
state q′ having its head placed in the r′-th row again. It requires to repeat the
Ct1 , . . . , Ct2 part b times exactly.

Furthermore, we can apply the given observation on next computational
steps of A repeatedly. For A computing over P , we can find an analogy to C2

for steps following after the t3-th step. This time A starts scanning the last
column of P and the destination is the first column. We can conclude again
that, for some period p′, A can reach the first column in the same row and state
for all pictures of the form [m,n + b · p′], b ∈ N. Then, there follows a part,
when A starts in the first column and ends in the last column again, etc. Since
a period is always less than m · k + 1, (m · k)! is surely divisible by all periods.
Hence, if a picture [m,n+ i · (m · k)!] is chosen as an extension of P , then, there
is a computation of A fulfilling: whenever A reaches the first or the last column,
it is always in the same state and scans the same row in both cases (meaning P
and the extended picture). Finally, during some movement of the head between
the border columns of P , if A accepts before it reaches the other end, then it
accepts the extended picture as well. ut

Note that it is possible to swap words ”row” and ”column” in the lemma and
make the proof analogously for pictures P fulfilling rows(P) ≥ 1 + k · cols(P).

21

We have found later that Proposition 1 has been already proved ([11]), thus
this result is not original.

A stronger variant of Proposition 1 can be proved for two-dimensional de-
terministic finite-state automata.

Proposition 2 Let A be a DFSA working over a one-symbol alphabet Σ. Let
A have k states. If A accepts a picture P such that m = rows(P), n = cols(P) ≥
1 + k · m, then, there is an integer s, 0 < s ≤ k! · (mk)2k such that, for any
i ∈ N, [m,n + i · s] is accepted by A too.

Proof. The main idea of the proof remains the same as it was presented in the
proof of Proposition 1. The only different part is the estimate of the number of
all possible periods. We show that in the case of DFSA we can encounter at
most 3k different periods. Moreover, k of these possible periods are less then or
equal to k (the remaining periods are bounded by m · k again).

Let us consider a part of the computation of A that starts and ends in
the same row and state, that never reaches left or right border column of #’s
and that is the minimal possible with respect to the period, i.e. it cannot
be shortened to a consecutive subsequence to obtain a shorter period. Let
the steps of the considered part of the computation be given by a sequence of
configurations C = {Ci}t2

i=t1
, where Ci = (ri, ci, qi). We have rt1 = rt2 , qt1 = qt2 .

We investigate two situations:

1) The head of A does not reach the first or last row of P during C

2) The head of A reaches the first or last row of P

Ad 1). We show that the period cannot be longer than k. By contradiction, let
t2 − t1 > k. Then, there is a pair Ci, Cj ∈ C, i < j < t2, such that the states
of A related to these configurations are not the same (qi 6= qj). Now, if ri = rj ,
it contradicts to the minimality of the period of C. Otherwise, if ri 6= rj , let
us say ri < rj (the second case is similar), then after performing j − i steps,
the vertical coordinate of the head’s position is increased by rj − ri and A is
again in the same state. It means, the vertical coordinate is being incremented
in cycles of length j− i till the bottom of P is reached, which is a contradiction.

Ad 2). Since A is deterministic, the length of the period, i.e. t2 − t1, is
uniquely determined by the state A is in when it reaches the top, resp. bottom
row of P . It means there are at most 2k such periods.

All periods of the first type divide k!. Each period of the second type is
bounded by m · k, thus all these periods divide a positive integer b less than
(mk)2k. It means, for each i ∈ N, [m,n + i · k! · b] is accepted by A.

ut

Definition 5 Let Σ be a one-symbol alphabet, f : N+ → N+ be a function. We
say that a language L over Σ represents f if and only if

1. ∀m,n ∈ N+ [m,n]Σ ∈ L ⇔ n = f(m)

2. Λ /∈ L

22

b b b b b b b b b
b b b b b a a a a

a a a ab b a a b

Figure 3.1: Picture P3.

For a fixed Σ such that |Σ| = 1, we denote the language representing f by
Lf , i.e.

Lf = {[n, f(n)]Σ |n ∈ N+}
We also say f is represented by Lf .

Theorem 1 Let f : N+ → N+ be a function such that f = o(lin). Then, Lf is
not in L(FSA).

Proof. By contradiction. Let A be a FSA recognizing Lf and let k be the
number of states of A. Since f = o(lin), there is an integer n0 such that f(n0) ≥
(k + 1) · n0 ≥ k · n0 + 1. By Proposition 1, it holds [n0, f(n0) + (k · n0)!] ∈ Lf .
It is a contradiction. ut

Example 3 Let L be a language consisting exactly of all pictures over Σ =
{a} having the number of columns equal to the square of the number of rows.
Formally, L = {[n, n2] |n ∈ N+}. Theorem 1 implies L /∈ L(FSA).

We shall note again that the result given in Example 3 can be found in the
literature ([6]).

Example 4 We define a recurrent sequence of pictures {Pi}∞i=1 over the al-
phabet Σ = {a, b}.

1. P1 = b

2. For all n ≥ 1,
Pn+1 = (Pn

dVn
dSn) dHn+1

where Sn the rectangle over {a} of size n× 2n, Vn is the column of b’s of
length n and Hn+1 is the row of b’s of length (n + 1)2.

Note that for every picture Pn it holds rows(Pn) = n, cols(Pn) = n2 (this result
can be easily obtained by induction on n). We define L = {Pn |n ∈ N+}. Figure
3.1 shows an example of a picture in L.

Lemma 1 The language L in Example 4 can be recognized by a DFSA.

Proof. We describe how to construct a DFSA A recognizing L. The computa-
tion is based on gradual reductions of an input P to sub-pictures. If P = Pn+1

for some positive integer n, then the sequence of sub-pictures produced by the
process is Pn, Pn−1, . . . , P1. Moreover, the produced sequence is always finite
and P1 is its last element if and only if P ∈ L.

Let us take a closer look at the procedure performing one reduction. We
consider the content of the tape to be as it is shown in Figure 3.2. The input

23

H

P ′ V S

D
G

C
E

F

#

...
b · · · · · · b

...

· · · #
b...

· · ·
...

Figure 3.2: Division of P into sub-pictures. If P should be in L, S is required
to be a rectangle of size k× 2k, V a column of b’s and H a row of b’s. P ′ is the
product of the procedure. C,D,E,F and G are important fields of P referred in
our description.

to the procedure is the picture P . The head scans the bottom-right corner of P
(denoted by C). P is bounded by the background symbol # on the left and top
side, the right and bottom borders are formed of b’s. The goal of the procedure
is to divide P into sub-pictures P ′, S, V and H.

A computes as follows (note that A halts immediately and rejects the input
if it founds that one of the listed conditions is not satisfied). First of all, A
moves the head left until the end of H is reached. During this movement, it
verifies if all symbols of H are b’s. Moreover, it checks if the row above H is of
the form biaj , i, j ≥ 1. (It means A does not perform pure movement to the
left – it goes up and down, before it moves left by one field.) The last row of
P ′ must contain b’s only, otherwise P ′ cannot be equal to some Pi. When A
finishes the verification, it is able to find the field D, since it is the leftmost
field of H having the top-right neighboring field that contains a. A continues
by moving the head to D and then goes trough all fields of V to ensure all of
them contain b. After that, A moves its head to the top-right neighbor of D
and starts to verify if all fields of S contain a. It is done column by column.
A moves up until # is scanned. Then, the head is moved vertically back to
H followed by one movement to the right. A continues by checking the second
column, etc. Now, to complete the verification of S requires to check whether
it is a rectangle of size k× 2k (k ∈ N+). A places the head over E, then, moves
it diagonally to F (it performs three movements repeatedly – left, left and up).
Reaching the border exactly in F indicates that S is of the required size.

Finally, A moves the head to G. At this moment, the whole procedure is
finished and A is ready to perform it again (on P ′).

Before the process of reductions can be launched, A must move the head to
the bottom-right corner of the input. The process ends if A detects that some
picture P cannot be divided correctly into sub-pictures as it was described in
the previous paragraphs, or if P1 is the result of some reduction. A can detect
P1 when the head is placed over the field G. If G is the top-left corner of the
input and it contains b, then P1 has been obtained. One more remark – note
that when A performs the first reduction and the whole input to A is taken
as an input to the procedure, then it is bounded by #’s only, there are no b’s.
However, it should be obvious that this case can be distinguished and handled

24

easily. ut

It is a known fact that the class of one-dimensional regular languages is closed
under homomorphism and since a projection is a special case of homomorphism,
the class is closed under projection as well. We can show that the classes
L(FSA), L(DFSA) do not share this property.

Theorem 2 The classes L(FSA), L(DFSA) are not closed under projection.

Proof. Let L1 be the language in Example 3 and L2 the language in Example
4. Let us define a projection f : {a, b} → {a} such that f(a) = f(b) = a. We
shall see that f(L2) = L1. Since L2 can be recognized by a deterministic finite-
state automaton and L1 cannot be recognized by a non-deterministic finite-state
automaton, the theorem is proved. ut

3.3 Simulation of Finite-state Automata by De-
terministic Turing Machines

In this section we study how for a given two-dimensional non-deterministic
finite-state automaton to construct a two-dimensional deterministic bounded
Turing machine recognizing the same language. Our goal is to obtain machines
optimized with respect to time complexity.

Questions regarding a relation of FSA’s to determinism were also studied by
P. Jiricka and J. Kral in [10], where the simulation of FSA’s by two-dimensional
deterministic forgetting automata is presented. However, in this case, the aim
was to show the existence of such a simulation rather than to deal with time
complexity.

We start with a relatively simple and straightforward simulation of FSA’s.

Proposition 3 Let A be a FSA recognizing L in time t(m, n). There is a
bounded deterministic TM T such that T recognizes L in time O(t(m,n) ·m ·n).

Proof. We will construct a DTM T . Let A = (Q, Σ, q0, δ,QA) and let P be an
input picture of size m×n. We can assume P is non-empty, since T can decide
immediately if the empty picture should be accepted or not.

During the computation, T records a subset of Q in each field of the portion
of the tape containing P . For a field, the subset represents states in which A
can reach the field. At the beginning, all fields store empty subsets except the
top-left corner which stores {q0}. Subsets are updated in cycles. During one
cycle, T goes through all fields of P , e.g. row by row. When scanning a field
f , it reads the subset currently recorded in f (let it be Qf) and considers all
transitions that A can perform in one step when it is in a state in Qf having its
head placed over f . By these all possible steps, T updates Qf and the subsets
recorded in neighbors of f to which the head can be moved (in another words,
T adds new states detected to be reachable).

Whenever T encounters that a state in QA is reachable in some field, P is
accepted. During a cycle, T memorizes in its state, whether it has updated at
least one subset. If no update has been done, it indicates that all reachable

25

Mi

i︷ ︸︸ ︷
Ai

i︷ ︸︸ ︷
Mi+1

i︷ ︸︸ ︷
Ai+1 #

Figure 3.3: A portion of the tape containing markers Ai, Mi, Ai+1, Mi+1. The
distance between Ai and Ai+1 is 2 · i + 1.

pairs of state and position have been already detected, thus T halts and rejects
P .

It requires time O(m · n) to complete one cycle. We can see that if A can
reach some field f in state q in time t1, then T detects the pair (f, q) to be
reachable by the t1-th cycle has been finished. It implies t(m,n) + 1 cycles are
required to calculate subsets of reachable states maximally, thus P is correctly
accepted or rejected in time O(t(m,n) ·m · n). ut

Lemma 2 It is possible to construct a one-dimensional deterministic bounded
TM T that for any non-empty string w over an alphabet Σ computes the number
k = b

√
|w|c and represents it by a marker placed in the k-th field of w. Moreover,

T works in time t(n) = O(n
3
2).

Proof. Let w be an input of length n > 0. We construct T of the required type
computing bnc.

Let S = {ai}∞i=1 be a sequence, where ai = i2 for each i ∈ N+. The idea of
the computation is to successively place markers A1, A2, . . . , Ak on fields of w,
each Ai to be in the distance ai from # precessing the leftmost field of w. It is
evident that if k = b√nc, then Ak is the rightmost marker still positioned in w.

Except markers Ai, T will also use auxiliary markers Mi. For each Ai, the
marker Mi is placed in the distance ai − 1 to the left from Ai. Note that all
markers Ai are represented using the same symbol, Ai denotes just an occurrence
of the symbol on the tape (similarly for Mi’s).

The computation starts by placing A1 and M1 on the first field of w. Posi-
tions of next markers are determined inductively. Let us assume Ai and Mi are
correctly placed on the tape. Mi+1 should be in the distance

(i + 1)2 = i2 + 2 · i + 1 = ai + 2 · i + 1

It means, it is sufficient to copy the block starting by Mi and ending by Ai after
Ai two times. Ai+1 is putted after the second copy of the block, Mi+1 is placed
on the first field of the second copy. All is illustrated in Figure 3.3.

If T encounters the end of w, it immediately stops placing markers and starts
to count how many markers Ai there are on the tape. It means, T moves the
head to the first field of w, removes A1 and initializes by 1 an unary counter,
which will represent the desired value in the end. Then, T repeatedly moves
right until it detects some marker Ai, removes it, moves back and increments
the unary counter. When T encounters the end of w, all Ai’s have been counted,
so T halts.

It remains to estimate time complexity of the computation. Assuming T has
placed Ai, Mi and the head is scanning the field containing Ai, to place the next

26

pair of markers requires time c1 · i2 + c2, where c1 and c2 are suitable constants.
The first copy of the block is created copying field by field in time c1 · i2. The
second copy is created using the first copy, time is the same. Mi+1 is marked
after the the first copy is created, Ai+1 after the second copy is created. Both
require constant time c2. We derive

k+1∑

i=1

c1 · i2 + c2 ≤ c1 ·
k+1∑

i=1

(k + 1)2 + c2 = c1 · (k + 1)3 + c2 · (k + 1) = O
(
n

3
2

)

When T counts the number of markers Ai during the second phase, one marker is
processed in time at most n, thus the total time of this phase is O(n·k) = O(n

3
2)

again. ut

Lemma 3 It is possible to construct a two-dimensional deterministic bounded
TM T computing as follows. Let P be an input picture to T , next, let

m = min(cols(P), rows(P))
n = max(cols(P), rows(P))
k = b√nc

T checks whether k ≤ m. If so, it represents k in unary in the first row, resp.
column (depending on which of these two is of a greater length). Otherwise it
halts. Moreover, T is of time complexity O

(
min(m, k)3

)
.

Proof. First of all, T compares values cols(P) and rows(P). It starts scanning
the top-left corner. Then it moves the head diagonally, performing repeatedly
one movement right followed by one movement down. Depending on during
which of these two movements T reaches the background symbol first time, it
makes the comparison.

Without loss of generality, let m = rows(P) ≤ cols(P) = n. T marks the m-
th field of the first row. Again, this field is detected moving the head diagonally,
starting in the bottom-left field. After that T uses the procedure of Lemma 2
to compute k, but this time with a slight modification – whenever a field is
marked by some Ai, T increases the counter immediately (it does not wait till
the end to count all Ai’s – it should be clear that this modification does not
have an impact on time complexity). If the counter exceeds m, T stops the
computation.

To compare the number of rows and columns as well as to mark the distance
m requires time O(m). If k ≤ m, then T computes k in time O(n

3
2) = O(k3),

otherwise it takes time O(m3) to exceed the counter. It implies T is of time
complexity O

(
min(m, k)3

)
. ut

Proposition 4 Let A = (Q, Σ, q0, δ,QA) be a FSA recognizing L over Σ. It is
possible to construct a two-dimensional deterministic bounded Turing machine T
that for each picture P over Σ of size m×n, where min(m,n) ≥ bmax(m,n)

1
2 c,

decides whether P is in L in time t(m,n) = O(min(m,n) ·max(m,n)
3
2).

Proof. Let A = (Q, Σ, q0, δ,QA) be a FSA recognizing L, P be an input picture
over Σ. We denote m = rows(P) and n = cols(P). T detects in time O(m + n),

27

which of these numbers is greater (if any). It is again done by moving the head
diagonally in the right-down direction, starting at the top-left field. Without
loss of generality, let m ≤ n. By the assumption of the theorem, we have
m ≥ bn 1

2 c.
Comparing to the construction presented in the proof of Proposition 3, we

will use a different strategy now. We will work with blocks (parts of P) storing
a mapping. For a block B, the related mapping will provide the following
information (B′ denotes the perimeter of B).

• For each pair (f, q), where f ∈ B′ and q ∈ Q, the mapping says at which
fields and in which states A can leave B if it enters it at the field f , in
the state q (to be more precise, when we speak about leaving the block,
we mean, when A moves the head outside B first time, after it has been
moving it within the block).

• For each pair (f, q), the mapping also says if A can reach an accepting
state without leaving B, by the assumption it has entered it at the field
f , in the state q.

If the whole area of P is divided into a group of disjunct blocks, it is sufficient
to examine movements of the head across the blocks only to find out whether
A accepts P . We will need to solve what size of the blocks is optimal and how
to compute the mappings.

First of all, we will give details on how a mapping is stored in B. Let

max(rows(B), cols(B)) ≤ 2 ·min(rows(B), cols(B))− 1 (1)

For i = 1, . . . , rows(B), resp. j = 1, . . . , cols(B), let Ri, resp. Cj be the i-th
row, resp. j-th column of B. Three functions, we are going to define now,
form an equivalent to the mapping. They will also help to make the text more
readable.

• S : B′ × Q → 2B′×Q, where S(f, q) is the set containing exactly each
(f ′, q′) ∈ B′ ×Q such that A in q scanning f can reach f ′ in the state q′

without leaving the area of B.

• acc : B′ ×Q → {true, false}, where acc(f, q) = true iff A in q scanning f
can reach some state in QA without leaving B.

• s : B′ ×Q×B′ → 2Q, where

s(f, q, h) = {q′ | (h, q′) ∈ S(f, q)}
A mapping is fully determined by S and acc, since, if T knows states reachable in
a field of B′, it can easily compute in which states A can leave B from this field.
For each pair f ∈ B′, q ∈ Q, it could possibly hold that |S(f, q)| = |B′| · |Q|,
thus it is clear that S(f, q) cannot be stored in f directly. A space linear in |B′|
must be assigned to it. Figure 3.4 shows one possible solution of how to achieve
it.

Let us assume f is the s-th field of the first row of B as it shown in Figure
3.4. Moreover, let cols(B) ≤ 2 · rows(B)− 1. Then, Cs and Rr, where

r =
{

s if s ≤ rows(B)
2 · rows(B)− s otherwise

store values of S for f and each q ∈ Q as follows:

28

h

f ′ f
Cs

Rr

Figure 3.4: Assuming f is the s-th field in the first row, functional values related
to this field are stored in the row Rr and the column Cs. E.g., for f ′ and each
q ∈ Q, the field h stores s(f, q, f ′).

• Cs, resp. Rr is used to represent vectors of length |Cs|, resp. |Rr|. Each
component of these vectors is of a value which is a subset of Q. For
example, let us consider Rr. For fixed f and each q ∈ Q, |Q| pairs of
vectors are needed – within a pair, the first vector corresponds to the top
part of B′, while the second one to the bottom part of B′. Let f ′ be
the i-th field in the first row, V be the first vector of the pair related to
f , and q. Then, the i-th component of V is of value s(f, q, f ′) and it is
represented in the i-th field of Rr (see Figure 3.4).

• For each q ∈ Q, acc(f, q) can be stored directly in f .

The remaining three variants (fields in the right, resp. left, resp. bottom part of
B′) use analogous representations. Note that if T scans f , it can easily search
through fields of Cs and Rr. T reaches Rr if it moves the head diagonally in the
left-down direction until it encounters the left border of B – then Rr is found as
well – or the bottom border – in this case T moves left-up until the left border is
reached which occurs in the row Rr (T enters definitely the right border during
the second movement, since cols(B) ≤ 2 · rows(B)−1). The detection of Cs and
Rr is done in time linear in |Cs|+ |Rr|.

We need to verify that the presented usage of space in B requires each field
of B to store a constant number of bits only. Let h be a field in B belonging to
the i-th row and j-th column. Let us discuss how many fields of R1 use h as a
part of their storage. These fields are at most three

• the j-th field of R1 uses h to store components of the vertical vectors

• the i-th field of R1 uses h to store components of the horizontal vectors

• if 1 ≤ 2 · rows(B)− i ≤ cols(B), then the field of R1 of index 2 · rows(B)− i
uses h also to store components of the horizontal vectors

Since the border is formed of four parts, it implies h cannot be shared by
more than 12 fields of B′ as a part of their storage.

Now, we show that it is possible to merge mappings stored in four neighbor-
ing blocks to obtain the mapping for the whole area. We consider the blocks
to be as they are depicted in Figure 3.5. We assume that the size of each block
as well as of B =

⊕
[Bij]2,2 fulfills condition (1). The mapping related to B

will be computed as a composition of partial mappings – for each pair f ∈ B′,

29

B1,2

B2,1B1,1

B2,2

Figure 3.5: Four neighboring blocks storing mappings to be merged.

q ∈ Q, we are looking for values S(f, q), acc(f, q). We are ready to describe
the computation performing this task. In the description, we index S, acc, s by
a block the functions are related to. For example, we write SB to denote the
function for the block B.

Let f1 be a field belonging to the perimeter of one of the blocks. During the
procedure, two sets are assigned to each of these fields. For f1, we denote them
by QP (f1) and QN (f1). Contents of these two sets are represented in f1 and
they are being updated consecutively during the procedure. After each update,
it always holds QP (f1) ∩ QN (f1) = ∅ and QP (f1) ∪QN (f1) contains all states
detected so far to be reachable in f1. States in QP (f1) have been processed
(we explain later what does it mean), while states in QN (f1) have not been
processed yet. T also stores in states a boolean flag F determining whether a
state in QA has been detected to be reachable (anywhere in B). The value of
F corresponds to accB(f, q) at the end.

At the beginning, all sets QN , QP are empty, except QN (f) which is initial-
ized by {q}. After that, T performs the following steps repeatedly:

1) Assuming the head of T scans the top-left field of B, T tries to find a
field g such that QN (g) 6= ∅. To do it, it scans fields belonging to the
perimeters of Bij ’s until a suitable field g in a block C is found. A state
q′ in QN (g) is chosen. If there is no such a field, T stops to repeat the
steps.

2) q′ is removed from QN (g) and added to QP (g) (q′ is considered to become
processed in g). After that, T searches for fields of the perimeter of C,
that are reachable from the configuration g, q′. To do it, it goes through
fields storing values related to SC(g, q′). Whenever T encounters, there is
a field h in the perimeter of C such that Q′ = sC(g, q′, h) 6= ∅, it performs
step 3).

3) T checks transitions from h to neighboring blocks. The head is moved to
h and, for each state q1 ∈ Q′, it is checked whether A in state q1 scanning
h can move its head into other block (one of Bij ’s, but not C). If so, let
the entered field of the other block be h2. T updates QN (h2) by adding all
states in which A being in the state q1 can reach h2 from h performing one
step and that are not already in QP (h2) ∪ QN (h2). Moreover, T always
updates QP (h) by adding q1 and QN (h) by removing q1 if q1 is currently
present in QN (h).

After that, T changes the mapping represented in C. For all pairs (f2, q2),
where f2 is a field in the perimeter of C and q2 ∈ Q, such that (q1, h) ∈

30

S(f2, q2) (q1 ∈ Q′ – see step 2)), T deletes (q1, h) from S(f2, q2). An
explanation of this action is as follows. State q1 has been detected to be
reachable in h, when the head of A scans g and the control unit is state
q′. The pair (q1, h) can be possibly reachable from another fields of the
perimeter of C and states, however, this information is no longer relevant,
since the situation when A reaches q1 in h has been already detected,
thus (q1, h) can be removed from S(f2, q2). This action has an impact on
time complexity – T will not check the same transitions across the block
borders multiply. To remove (q1, h) from all related S(f2, q2) means to go
trough the row or column in which h is located (it depends on the fact
whether h is in vertical or horizontal part of the perimeter of C) and check
and modify represented values of the mapping. The deletion is done just
by adding auxiliary ”deleted” markers so that the original values can be
restored when the procedure is done.

4) If F is false, T retrieves accC(g, q′). If this value is true, the value of F is
changed to be true as well. Finally, T moves the head to the top-left field
of B, so that it is ready to go again through steps 1) – 4).

When all repetitions of steps 1), 2), 3) and 4) are finished, T traverses
fields of B′, reads states detected to be reachable, computes, in which states A
can leave B from the field, stores particular values of the mapping and deletes
auxiliary symbols used to represent contents of QN ’s and QP ’s. One field of B′ is
processed in time O(|B′|), the whole perimeter in time O(|B′|2). Markers related
to mappings in Bij ’s are also removed in time O(|B′|2). In f , a representation of
accB(f, q) is recorded in constant time. Let the presented procedure be denoted
by P.

For the input pair f , q to P, time complexity of P is O(|B′|2). To derive
it we should realize that the number of repetitions of steps 1), 2) and 4) is
bounded by the the number of pairs a state q′ reachable in a field h belonging
to the perimeter of one of Bij ’s, so it is O(|B′|) (here we exclude execution of
step 3) from step 2)). As for step 3), it is true that it can be repeated several
times for one execution of step 2), however, during P, T never performs the
step more than once for one pair q′, h – it is ensured by the deletion of values
from the mapping described in step 3). It means the step is repeated O(|B′|)
times during P.

Each of the four steps is performed in time O(|B′|). Since the whole com-
putation requires to execute the procedure for each f ∈ B′, q ∈ Q, i.e. |B′| · |Q|
times, it is of time complexity O(|B′|3).

It should be clear that we can generalize the presented merging process on
any constant number of neighboring blocks, i.e. if B =

⊕
[Bij]c1,c2 , where c1,

c2 are constants and Bij ’s are blocks storing mappings, then the mapping for
B can be computed in time O(|B′|3).

Now, let B be a block of size r × s, where max(r, s) ≤ 2 ·min(r, s) − 1 and
min(r, s) ≥ 2. The merges can be applied gradually in iterations – starting
with mappings for r · s blocks of size 1× 1, where each of them is computed in
constant time, merging them into mappings for larger and larger blocks, finally
obtaining the mapping for B. To describe the process of merges more precisely,
let Bij ’s be blocks storing mappings (produced by previous iterations) such that
B =

⊕
[Bij]c,d. Then, in the next iteration, Bij ’s are merged into Cij ’s, where

B =
⊕

[Cij]c1,d1 , c1 = bc/2c, d1 = bd/2c. Each Cp,q is of the form
⊕

[Dij]r1,s1 ,

31

k

u

k k k v

B2,1 B2,2 B2,3 B2,4

B1,1 B1,2 B1,3 B1,4

Figure 3.6: A picture divided into blocks Bi,j . The lengths u, v are between k
and 2k + 1 inclusively.

where Dij = B2p−2+i,2q−2+j , r1 = 3 if p = c1 and c is odd, otherwise r1 = 2,
and, similarly, s1 = 3 if q = d1 and d is odd, otherwise s1 = 2. In another words,
mappings in four neighboring blocks are being merged together. Whenever there
is a remaining odd row, resp. column of blocks, they are merged with blocks in
the previous two rows, resp. columns.

Without loss of generality, let r ≥ s. The input to the k-th iteration (k =
1, 2, . . .) consists of at most

(
r

2k−1

)2 blocks. Except the last row, resp. column
of blocks, each of them is a square of size 2k−1. By induction on k, we can show
that the number of rows, resp. columns of any of the remaining blocks is less
than or equal to 2k−1. It surely holds for k = 1 since all blocks are of size 1×1
in this case. Performing the k-th iteration, whenever some D =

⊕
[Dij]2,3 is

obtained from Dij ’s, then cols(D1,1) = cols(D1,2) = 2k−1, cols(D1,3) ≤ 2k − 1,
thus cols(D) ≤ 2k+1−1. An analogous conclusion can be made for rows as well.
Based on these observations, for a suitable constant c0, an upper bound on time
complexity of all iterations can be expressed as follows

blog2 rc∑

i=0

c0 ·
(r

2i

)2

·(2 · 2i
)3

= 8·c0 ·
blog2 rc∑

i=0

(r

2i

)2

·(2i
)3

= 8·c0 ·r2 ·
blog2 rc∑

i=0

2i = O(r3)

Now, when we have a procedure computing the mapping for a block, we can
proceed with the description of the whole computation of T . Let k = b√nc. T
divides P into m1 = bm

k c rows and n1 = bn
k c columns of blocks as it is shown

in Figure 3.6.
Blocks are denoted by Bij , each of them has the width, resp. height between

k and 2 · k + 1 inclusively. T computes k in time O(n
3
2) = O(m · n) using the

procedure given by Lemma 2 and represents it by a marker placed in the first
row in the distance k from the top-left field. The division can be done by copying
the distance k field by field several times so that the whole grid corresponding
to borders of blocks is created. To be more precise, it is sufficient to copy k in
the first row n1 − 1 times. The first copy is placed after already represented k
and, depending on n, the last copy need not be completed. Similarly, k is copied
m1 times into the first column. Then, all borders of blocks can be marked –
copies of k determine all coordinates of the grid. The creation of one copy of k
requires time k2, a row, resp. column of the grid is marked in time n, resp. m,

32

thus the total time of the division is

O
(
n

3
2 + m1 · (n1 − 1) · k2 + m1 · n + n1 ·m

)
=

O
(
m · n + m

k · n
k · k2 + 2 · m·n

k

)
= O (m · n) (2)

For each block Bij , T computes the correspondent mapping. It is done
in time O(k3) per a block. Since there are m1 · n1 blocks, all mappings are
computed in time

O(k3 ·m1 · n1) = O
(
k3 · m · n

k2

)
= O(k ·m · n) (3)

The final task is to find out whether there is an accepting state reachable
from the initial configuration. Let the top-left corner of P be denoted by f1,1.
To decide it T performs a procedure analogous to P. Note that it is sufficient
to perform the procedure only once now, taking f1,1 and q0 as the input, while,
in the case of merging blocks, P was run for each combination of a field of the
perimeter and a state in Q. It is not also necessary to represent computed values
of the mapping, the result depends only on acc(f1,1, q0).

There is a difference in number of blocks. This time, the number is not
bounded by a constant. To improve time complexity of finding a non-empty set
QN , T uses fields of the first row of P to record boolean flags indicating columns
of P that contain at least one field having assigned a non-empty QN . To be
more precise, if g is the i-th field of the first row, then the assigned flag is true
if and only if the i-th column has a field f belonging to the perimeter of a block
such that QN (f) 6= ∅. Assuming the head of T scans f1,1, T is able to find a
field with non-empty QN in time O(m + n) = O(n). It moves the head right
in the first row until it detects a flag of true value. Then it scans the marked
column.

At the beginning, the only non-empty QN is assigned to f1,1. Flags are
initialized accordingly. During the computation, whenever T removes the last
element in QN or adds an element to an empty QN , it must update the cor-
respondent flag. In the description of P, we had that the contribution to time
complexity from one pair formed of a state reachable in a field of a perimeter
is linear in the size of the perimeter. Now, the contribution must be increased
by time needed to handle boolean flags, thus it is O(n + k) = O(n). There are
m1 · n1 blocks, each of then with perimeter consisting of O(k) fields. It implies,
the total time complexity of the modified procedure P is

O (n ·m1 · n1 · k) = O(n · m

k
· n

k
· k) = O

(
m · n2

k

)
(4)

If we sum time complexities (2), (3) and (4), we get T computes in time

O

(
m · n + k ·m · n +

m · n2

k

)
= O

(
k ·m · n +

m · n2

k

)
=

(
m · n · √n

)

As the last remark on the proof, we show that the chosen value of k is
optimal. Expression (3) grows in k while expression (4) falls in k, furthermore,
(2) is always less than or equal to (3), thus to minimize time complexity means
to find k for which (3) equals to (4). We derive k as follows

k ·m · n =
m · n2

k

33

k2 = n

k =
√

n

Since k must an integer, we took k = b√nc. ut

Proposition 5 Let A = (Q, Σ, q0, δ,QA) be a FSA recognizing L over Σ.
Then, it is possible to construct a two-dimensional deterministic bounded
Turing machine T that for each picture P over Σ of size m × n, where
min(m,n) ≤ bmax(m,n)

1
2 c, decides whether P is in L in time t(m,n) =

O
(
min(m, n)2 ·max(m,n)

)
.

Proof. The construction of T we present shares ideas used in the proof of
Proposition 4. T starts by checking which of the numbers rows(P), cols(P) is
greater. Without loss of generality, let m ≤ n. Then, the following computation
consists of two phases. During the first phase, T divides P into blocks and
computes mappings for them. In the second phase, mappings in the blocks are
being merged. That servers to find out if some state in QA is reachable.

As for the first phase, P is divided into blocks B1, B2, . . . , Bk, where k =
b n

mc. Bk is of size m × (m + n mod m). The other blocks are squares of size
m. The division can be done in time O(n) as follows. T starts scanning the
top-left field of P . It marks fields of the first column as the left border of B1

ending with the head placed on the bottom-left field. Then, it moves the head
diagonally up-right, until it encounters the background symbol #. Now, it can
mark the right border of B1 and the left border of B2, etc. When the division is
done, for each block, T computes the mapping. Since A can cross between two
blocks in the horizontal direction only, it is sufficient to work with mappings
defined on fields of the first and last column of a block only, but this does not
brings any significant improvement of time complexity, since a mapping is still
computed in time O(m3) per one block, thus to compute all mappings requires
time

O(m3 · k) = O
(
m3 · n

m

)
= O(m2 · n)

For i = 1, . . . , k, let B′
i be the concatenation of the first i blocks Bi, i.e.

B′
i = B1

d. . . dBi. Moreover, for an arbitrary block B, let B(i) denote the i-th
column of B. The second phase of the computation consists of k− 1 iterations.
Each j-th iteration computes the mapping for B′

j+1. We summarize information
that a mapping should provide (this time, the possibility to restrict the definition
of a mapping on border columns only plays a significant role).

• If A enters B′
j+1 from right in some field f and state q, we want to know,

in which states and fields A can leave and, furthermore, if A can accept
without leaving B′

j+1. Note that this information is not relevant for the
last block B′

k, since A cannot enter it from right.

• If A starts in the initial configuration, we want to know, if A can accept
without leaving B′

j+1 and in which fields and states A can leave the block.

The mapping for B′
j+1 will be stored in the Bj+1 part only – the last column

is the only border where the head of A can leave Bj+1, thus a square of m×m
fields is a sufficient space. As for the field B′

j+1(1, 1), we use the space assigned

34

f1

H G R

︸ ︷︷ ︸
B′j

︸ ︷︷ ︸
Bj+1

Figure 3.7: Blocks B′
j , Bj+1 need to be merged to obtain B′

j+1. Field f1 is one
of the fields for which T performs the procedure – the result are states and fields
in which A can leave Bj+1 by the assumption it has entered it at the field f1,
being in state q1.

to Bj+1(1, 1) in Bj+1 to store values related to B′
j+1(1, 1) (see the proof of

Proposition 4 for a detailed description of how the storage is organized).
At the beginning, we can consider the mapping for B′

1 to be represented,
since B′

1 = B1. Let us assume the mapping has been computed for B′
j (j < k).

We would like to merge the mappings in B′
j and Bj+1 to compute the mapping

for B′
j+1. To do it, T works with sets QP and QN . Let H be the set consisting

of fields in the last column of B′
j and first column of Bj+1, G be the last column

of Bj+1, R the first column of Bj+2 (R is defined only if j < k + 1). See Figure
3.7 for a scheme related to these areas. For each pair (f1, q1), where q1 ∈ Q and
f1 ∈ G, T computes as follows

1) QN and QP are initialized for every f ∈ G ∪H ∪ {f1}, QN (f1) by {q1},
the other sets by ∅.

2) T repeats: It finds a field f ∈ H (not in R) such that QN (f) 6= ∅, chooses a
state q ∈ QN (f) and goes through all values of S(f, q). If (f ′, q′) ∈ S(f, q),
T moves the head to f ′ and checks in which states A (being in the state
q′) can leave the block, updates sets QN , QP accordingly and modifies
the mapping (see the proof of Proposition 4 for details on these actions).
Note that there are three possible combinations of a direction and border,
where the head of A can leave a block we are interested in: from Bj+1 to
Bj , from Bj to Bj+1 and from Bj+1 to Bj+2.

B′
k is handled in a special way. In this case acc has to be computed only.

The set R is not defined, since no movements to the right (outside Bk)
can occur.

This point is repeated until no suitable f ∈ H can be found.

3) By checking states in sets QN in R, T computes and represents the map-
ping. The value of acc(f1, q1) is recorded and updated in states of T . At
the end, all used auxiliary markers are removed and T is ready to run the
routine on the next pair (field, state).

The same process is applied for the computation of values related to B1(1, 1)
and q0. As we have already noted, the only difference is that B1(1, 1) is associ-
ated with Bj(1, 1), meaning that the initialization of QN takes place in Bj(1, 1)

35

and the computed values of the mapping are recorded into space which is re-
served for Bj+1(1, 1).

Values for one pair consisting of a field and state are computed in time
O(m2). There are |Q| ·m + 1 pairs to be processed, thus one merge is done in
time O(m3). T has to perform k − 1 merges to get B′

k which implies that all
these merges are done in time

O
(
m3 · k)

= O
(
m3 · n

m

)
= O

(
m2 · n)

Thus, the whole computation is of time complexity O(m2 · n). ut

We can put the two previous propositions together as follows.

Theorem 3 Let L ∈ L(FSA). There is a two-dimensional bounded determin-
istic Turing machine T accepting L in time t(m,n) = O (m · n · f(m,n)), where

f(m,n) =
{ √

max(m, n) if min(m,n) ≥
√

max(m, n)
min(m,n) otherwise

Proof. T can be constructed as follows. Let P an input to T of size m × n.
The procedure described in Lemma 3 is used to detect whether min(m,n) ≥
max(m,n)

1
2 . Depending on this, the simulation from Proposition 4 or Proposi-

tion 5 is applied. ut

36

Chapter 4

Time Complexity in Two
Dimensions

4.1 NP2d-completeness

The purpose of this section is to demonstrate a kind of a relationship between
computations over one-dimensional strings and two-dimensional pictures. We
show that pictures can be encoded by strings so that each Turing machine
working over pictures can be simulated with a polynomial slowdown by a one-
dimensional Turing machine working over the encoded values. We focus on
the question what is the order of the polynomial, since the pure result that a
simulation can be done is no surprise.

We also define classes of picture languages analogous to P , NP and NPC.
Applying the simulation, we show that a picture language is NP -complete if
and only if its encoded string variant is also NP -complete. It is again a simple
result that we would have expected, but it give us a formal justification to treat
NP -completeness in two dimensions like in one dimension.

Let Σ be a finite alphabet, $ /∈ Σ a special symbol. We define a function
γ : Σ∗∗ → (Σ ∪ {$})∗ encoding a picture over Σ by a string over Σ ∪ {$} as
follows:

γ(O) = $o1$o2$. . . om

where O ∈ Σ∗∗ \ {Λ}, m = rows(O) and oi is the i-th row of O. Moreover, we
put γ(Λ) = $$. Obviously, γ is an injective function.

Furthermore, we extend γ on L over Σ: γ(L) is a one-dimensional language
over Σ ∪ {$} such that

γ(L) = {γ(O) |O ∈ L}

Lemma 4 Let
∑k

i=1 xi = r, where each xi is a non-negative real number. Then,∑k
i=1 x2

i ≤ r2.

Proof. The lemma can be easily proved using the inequality
(

k∑

i=1

xi

)2

≥
k∑

i=1

x2
i

37

ut

Proposition 6 Let T1 be a two-dimensional TM recognizing a language L in
time t1. Then, there is a one-dimensional TM T2 recognizing γ(L) in time t2
such that

t2(n) =
{

O
(
t41(n)

)
if t1 = Ω(lin)

O
(
n3 · t1(n)

)
if t1 = O(lin)

Moreover, whenever T1 is deterministic, T2 is deterministic as well.

Proof. We describe the computation of T2. Let L be a language over some
alphabet Σ. Let us consider an input string v of the form $w1$. . . wk, where
each wi is a string over Σ. Note that T2 can easily check if v starts and ends with
$. If not, v is rejected immediately. Next, let |v| = n. The computation consists
of two phases. In the first phase, T2 checks if |w1| = |w2| = . . . = |wk| = l.
If not all lengths of wi’s are equal, wi’s cannot be rows of a picture over Σ,
thus such an input has to be rejected. After the verification, T2 continues by a
simulation of T1.

Let w1 = a1 . . . ar, w2 = b1 . . . bs, where ai, bi ∈ Σ. We denote by Ai, resp.
Bi the cell of the tape containing the i-th symbol of w1, resp. w2. T2 verifies
|w1| = |w2| using the procedure resembling the process of copying a block field
by field:

• The initialization consists of moving the head to A1.

• For i = 1, . . . , min(r, s), T2 repeats: Let the head scan Ai. T2 marks Ai

by ’counted’, keeps moving the head right until the first non-marked field
of w2 (i.e. Bi) is detected. T2 marks Bi by ’counted’ and returns back to
the leftmost non-marked field of w1, i.e. Ai+1.

• |w1| = |w2| iff both fields marked in the last step correspond to the last
symbol of w1, resp. w2.

When T2 finishes checking the pair w1, w2, it clears all used markers and contin-
ues with the next pair (i.e. w2, w3), etc. Time complexity of one |wi| = |wi+i|
check is bounded by c1 · |wi|2 + c2, where c1, c2 are suitable constants (indepen-
dent on inputs). It means the comparison of all lengths is done in time

k−1∑

i=1

c1 · |wi|2 + c2 = c1 ·
(

k−1∑

i=1

|wi|2
)

+ c2 ≤ c1 ·
(

k−1∑

i=1

|wi|
)2

+ c2 = O
(
n2

)

Note that we have used Lemma 4 to derive the estimation.
Let us assume now that |w1| = |w2| = . . . = |wk|. We show how T2 simulates

the computation of T1 on the input O =
⊕

[Pij]k,1, where Pi,1 = wi. During
the simulation, the content of the tape after finishing a step is of the form
$v1$v2$. . . vc, where |v1| = |v2| = . . . = |vc|, c ≥ k, vi ∈ Γ∗, where Γ is the
working alphabet of T1. The picture

⊕
[Pij]c,1, where Pi,1 = vi, represents a

rectangular area that is a part of the working tape of T2 that contains (in a given
configuration) all fields storing symbols different to #. Note that the mentioned
area need not be necessary the smallest one possible. In addition, the position
of the head of T2 corresponds to the position of the head of T1. It is placed

38

over the field currently representing the field scanned by T1. Also note that the
input $w1$. . . wk represents the simulated tape in the initial configuration.

A description of how one computational step of T1 is simulated follows: Let
the head of T1 scan the field in the i-th row, j-th column. The head of T2 is
placed over the j-th symbol of vi. The easiest situation is when T1 does not
move the head – T2 does not move its head too and just performs the same
rewriting as T1. Next, to proceed, let us consider a movement of the head of T1

during its t-th step 1) in a horizontal direction, 2) in a vertical direction. Let
r(t), s(t) denote the number of rows, resp. columns of the tape of T1 that are
represented in the tape of T2 when the simulation of the first t steps is done.

Ad 1) If T1 moves the head left, resp. right and 1 < j, resp. j < |vi|, then
T2 performs exactly the same rewriting and head movement as T1. If j = 1 and
T2 moves the head left, first of all, T1 appends one symbol # to the left end of
each vi, it means $v1$. . . vc is changed to $#v1$. . . $#vc$. T2 appends the
symbols one by one, starting with v1 – it moves all the remaining symbols on
the tape right by one position (time proportional to r(t) · s(t) is required to do
it). After that, T2 marks the end of v1 as ’processed’ and continues with v2,
etc. Choosing a suitable constant c3, we can derive an upper bound on time
complexity of the whole process as follows:

c3 · s(t) · r2(t)

The case when j = |w| and T1 moves the head right is handled analogously.
This time, $v1$. . . vc is changed to $v1#$. . . $vc#$.

Ad 2) If T1 moves the head down, resp. up and i < c, resp. i > 1, then
T2 needs to move its head to the j-th symbol of vi+1, resp. vi−1. It detects
the needed j-th symbol by counting one by one the symbols precessing the
j-th symbol in vi, marking them and marking correspondent symbols in vi+1

(resp. vi−1). After finding the desired position, T2 clears all used markers. The
position is found in time O(|vi|2). Next, if i = 1 and the head of T1 moves
up, T1 changes $v1$. . . vc to $#|v1|$v1$. . . vc, it means it inserts a new row
before the first one. The length of the inserted row is equal to the length of v1,
thus the row is created by counting the symbols of v1 one by one. It is done in
time at most

c3 · s2(t)

Note that we consider that c3 is chosen large enough to be applicable in this
estimate as well as in the previous one.

Finally, if i = c and T1 moves the head down, T2 expands $v1$. . . vc to
$v1$. . . vc#|vc|$. Time complexity is the same as in the previous case.

To make the derivations that appear in the rest of the proof more readable,
we omit the constant c3 – it is only a multiplicative factor. Its presence does
not influent the inequalities and upper bounds we will derive.

Now, we derive time complexity of the whole simulation. We start by an
observation. For some time-step t, let r0 = r(t), resp. s0 = s(t) be the number
of represented rows, resp. columns of T1’s tape. Let the next two steps of T1

(i.e. steps t+1 and t+2) be a movement in the vertical direction followed by a
movement in the horizontal direction. The simulation of the first step requires
time s2

0 and of the second step time s0 · (r0 + 1)2 maximally (the first step of
these two can increase the number of represented rows by one). Furthermore, let

39

us consider the reversed order of these simulated steps – a horizontal movement
let be done first, a vertical second. In this case the first step is simulated in time
s0 · r2

0, the second in time (s0 + 1)2 maximally. Let us examine the difference in
number of steps between these two estimates:

[s2
0 + s0 · (r0 + 1)2]− [s0 · r2

0 + (s0 + 1)2] =

s2
0 + s0 · r2

0 + s0 · 2 · r0 + s0 − s0 · r2
0 − s2

0 − 2 · s0 − 1 =

2s0r0 + s0 − 2s0 − 1 = 2s0r0 − s0 − 1 ≥ 2s0 − s0 − 1 ≥ 0

It means, the upper bound on time of the first variant is always greater than
or equal to the upper bound of the second variant. We can use this conclusion
to derive an upper bound on the total time of the simulation. It is sufficient
to consider computations of T1 that are sequences of steps, where no horizontal
step precedes a vertical step and where are not steps in which the head does not
move. In another words, the sequence consists of a group of vertical steps that
are followed by a group of horizontal steps (one of these groups can be possibly
empty). Let us say such a sequence is of type VH. The estimate cannot be
greater if a sequence of the same length of different type is considered. To
see it, we need to realize that to simulate a step in which the head does not
move cannot take more steps comparing to a step in which the head moves and,
furthermore, it also does not add a new row, resp. column to be represented
by T2. Secondly, if we have a sequence C in which a horizontal step precedes
a vertical step, we can change the order of these two steps to get a sequence
C′. The estimate derived for C′ cannot be greater than the estimate for C.
Furthermore, the swaps can be repeated until we get a sequence of type VH.

Let us assume the computation of T1 is of type VH and there are r vertical
steps followed by s horizontal steps. It holds r(0) = k and s(0) = l. Next, let us
consider the t + 1-st computational step of T2. If the head of T1 moves in this
step vertically, then s(t + 1) = s(t) and r(t + 1) ≤ r(t) + 1, if horizontally, then
s(t + 1) ≤ s(t) + 1 and r(t + 1) = r(t). Thus, we have s(i) = l for i = 1, . . . , r
and s(i) ≤ l+ i−r; r(i) ≤ k +r for i = r+1, . . . , r+s. Moreover, r+s ≤ t1(n).
An upper bound on time complexity can be derived as follows:

r∑

i=1

s2(i) +
r+s∑

i=r+1

s(i) · r2(i) ≤

l2 · r +
s∑

i=1

(l + i) · (k + r)2 =

l2 · r + (k + r)2 · (l · s +
s∑

i=1

i) ≤

l2 · r + (k + r)2 · (l · s + s2) =

l2r + k2ls + k2s2 + 2krls + 2krs2 + r2ls + r2s2 ≤
(l2 + k2l) · t1(n) + (k2 + 2kl) · t21(n) + (2k + l) · t31(n) + t41(n) ≤

n3t1(n) + n2t21(n) + (2n + 1)t31(n) + t41(n) (1)

40

If t1 = Ω(lin), the expression (1) is O(t41(n)), if t1 = O(lin), it is O(n3 ·t41(n)).
To complete the proof, it remains to remark that if T1 is deterministic, then the
constructed T2 is deterministic as well. ut

Definition 6 Let P2d, resp. NP2d denote the class of picture languages recog-
nizable by a deterministic, resp. non-deterministic two-dimensional Turing
machine in polynomial time. Furthermore, let NPC2d be the class of NP2d-
complete languages, i.e. L ∈ NPC2d iff L ∈ NP2d and, for each L′ ∈ NP2d,
there is a function f : L′ → L such that O ∈ L ⇔ f(O) ∈ L′ computable by a
deterministic two-dimensional TM in polynomial time.

As usual, we call f a polynomial transformation and write LfL′ to denote
that f transforms L to L′.

Theorem 4 P = NP ⇔ P2d = NP2d

Proof. (⇒) Let P = NP , L be an arbitrary language in NP2d. We want to
show L ∈ P2d. By Proposition 6, γ(L) ∈ NP , thus γ(L) ∈ P . P ⊂ P2d,
hence γ(L) ∈ P2d. The transformation γ can be computed deterministically in
polynomial time, thus L ∈ P2d.

(⇐) Let P2d = NP2d. NP ⊆ NP2d = P2d implies NP ⊆ P . ut

Theorem 5 For every picture language L over an alphabet Σ, L ∈ NPC2d ⇔
γ(L) ∈ NPC.

Proof. (⇒) Let L ∈ NPC2d. Then, by Proposition 6, γ(L) ∈ NP .
Let L1 be a language in NP . Since NP ⊆ NP2d, there is a polynomial

transformation L1αL computable by a two-dimensional DTM T . Let T ′ be
a one-dimensional DTM simulating T in polynomial time (Proposition 6). T ′

performs a polynomial transformation L1α
′γ(L).

(⇐) Let γ(L) ∈ NPC. There is a one-dimensional TM T recognizing γ(L) in
polynomial time. It is possible to construct a two-dimensional TM that encodes
an input picture P ∈ Σ∗∗ to γ(P) (in polynomial time) and then simulates T ,
thus L ∈ NP2d.

Let L1 be a language in NP2d. By Proposition 6, we have γ(L1) ∈ NP , thus
there is a transformation γ(L1)α1γ(L). It is possible to construct a function
α2 : (Σ∪{$})∗ → Σ∗∗ computable by a two-dimensional DTM T in polynomial
time as follows:

• T checks the input whether it encodes a picture over Σ. If so, T recon-
structs the encoded picture and halts, otherwise it halts immediately.

Now, a transformation L1αL can be built up on the top of α1 and α2: A picture
P ∈ Σ∗∗ is transformed to α2(α1(γ(P))). ut

Theorem 6 NPC ⊆ NPC2d.

41

Proof. Let L be an NP -complete language over Σ. Let us assume $ /∈ Σ. If we
define

L′ = {w |w ∈ L}
it is evident that L′ is NP -complete as well. It holds L′ = γ(L). By Theorem
5, γ(L) ∈ NPC implies L ∈ NPC2d. ut

4.2 Recognition of Palindromes

Hopcroft and Ulman present in [4] a useful tool called the crossing sequence. A
technique based on this tool can be developed and used to show that some one-
dimensional languages cannot be recognized in better than quadratic time on
single-tape Turing machines. The language of palindromes is one of them. It is
obvious that there is a one-dimensional (single-tape) Turing machine recognizing
this language in quadratic time by comparing pairs of correspondent symbols.
The existence of the mentioned lower bound implies that such an algorithm is
optimal.

In the following sections, we focus on two goals:

1. We would like to generalize the crossing sequence and the technique based
on it into two dimensions.

2. We study the question if the two-dimensional tape is an advantage with
respect to time complexity comparing to the one-dimensional tape.

As an answer to point two, we will show that the language of palindromes can
be recognized in time O(n2

log n) if the two-dimensional tape is used. Moreover,
the generalized technique will give us the result that an algorithm of this time
complexity is optimal in the case of two dimensions.

Let LP be the language over the alphabet Σ = {a, b, c} containing exactly
all the palindromes of the form wcwR, where w ∈ {a, b}∗.

Lemma 5 Let Σ1 be an alphabet. It is possible to construct a one-dimensional
deterministic Turing machine, which for a non-empty input string w over Σ1

computes the number k = blog4 |w|c+ 1 and writes it on the tape in unary (let
the required configuration be w#kqf , where qf is a final state of the machine)
in time O(n · log n).

Proof. Let the input string be w, |w| = n ≥ 1. We denote the machine we
construct by T .

T uses two special markers during its computation – ’checked’ and ’counter’.
’counter’ marker is used to denote a distance from the right end of the input
string to the right. We interpret the distance as an unary value. The value
equals k at the end of the computation. T initializes the unary counter to be
zero by placing the marker at the last symbol of w. Then, it works in cycles.
During one cycle T moves the head from the left end of w to the right end and
marks by ’checked’ all not yet marked fields except every fourth field. In the
initial configuration, no field is marked by ’checked’. After T reaches the right
end, it increases the unary counter by one, moves the head back to the leftmost
field of w and continues by the next cycle. If T detects that all fields of w have

42

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ C

∗ ∗ ∗ ∗ ∗ ∗ ∗ C

C

Figure 4.1: Positions of markers on the tape after finishing the initialization,
the first cycle and the second (final) cycle. The input string is of length 9. ∗
represents ’checked’ marker, C ’counter’ marker.

been already marked, the computation is finished – T removes all used ’checked’
markers, moves the head to the field containing ’counter’ marker, removes it and
halts. Figure 4.2 demonstrates an example of the computation over w of length
9.

It remains to prove that the number of cycles T has done equals the desired
value. The field which is marked first in the i-th cycle (i = 1, 2, . . .) is of index
4i−1. It means, the largest possible i satisfying 4i−1 ≤ n is the number of the last
cycle and it is equal to blog4 nc+ 1. Each cycle as well as the initialization part
and the removal of used markers requires linear time, so the whole computation
is done in time O(n · log4 n) = O(n · log n). ut

Let us define functions ord : {a, b} → {0, 1}, where ord(a) = 0, ord(b) = 1
and code : {a, b}+ → N, where for w ∈ {a, b}+, w = x1 . . . xn:

code(w) =
n∑

i=1

ord(xi) · 2i−1

The function code assigns a number (a code) to each string in {a, b}+, this
code corresponds to the binary value which a string over a two-symbol alphabet
represents (in the reversed order). It is evident that for two different strings w1,
w2 of the same length code(w1) and code(w2) are different values.

Theorem 7 There is a two-dimensional deterministic Turing machine which
recognizes the language LP in time O(n2/log n).

Proof. The basic idea of the computation is to divide the whole input string
into consecutive blocks of some suitable length k, code their content in unary by
a marker placed in the vertical direction and compare codes of correspondent
pairs (by the assumption contents of the second half of blocks is coded in the
reversed order). We put k to be equal to the value from Lemma 5. Our goal
will be to show that using this value it is possible to code and compare one pair
of blocks in linear time. Let T denote the machine we construct.

We will work with two types of blocks - horizontal and vertical. By a hori-
zontal block, we mean each block consisting of one column. Similarly, a vertical
block is a block consisting of one row. It is sufficient to represent such a block
by two different markers – the first one placed in the first field and the second
one placed in the last field of the block.

43

T starts the computation by a verification whether the input is a picture
consisting of one row (a string). If so, let w be the string and n = |w|. T checks
whether w contains exactly one symbol c. After that, T moves the head to the
first field of w and computes value k from Lemma 5. When this computation is
done, T marks the position where the head has ended. It continues by dividing
w into blocks. The first block is marked after copying the distance of the counter
from the end of w (value k) field by field. The second block is marked copying
the first block field by field, etc.

When T detects that the block it is currently marking contains the symbol
c, it finishes marking blocks in the direction from left to right, moves the head
back to the counter corresponding to value k and marks the last block of w
copying distance k field by field (now the direction of copying is reversed, i.e.
it is from right to left). After the last block of w is marked, T continues by
marking next blocks from right to left until the symbol c is detected again. As
a result of this process, w is divided into a sequence of blocks of length k except
one block containing c. Its length is less than or equal to 2·k−1. We denote this
block by D. If w is in LP , then D is the central block – the created sequence
of blocks can be written as B1, B2, . . . , Bm, D, Bm, . . . , B2, B1. If w is not a
palindrome, D need not to be the central element of the sequence. In this case,
this fact will be detected during next phases of the computation, which will lead
to a rejection of w, so, without loss of generality, we can assume in the following
text that D is really the central block.

To compute k requires time O(n · log n), to create blocks time O(n
k ·k2+k ·n)

– one block of length k is copied field by field to distance n and maximally n
k

blocks of length k are copied field by field to distance k – it is O(n · log n) again.
During the main phase of the computation T repeatedly codes pairs of blocks

and compares the unary values. Let us consider one of the pairs, e.g. B1, B1,
let B1 contain string u. T codes the content of B1 in k iterations. The i-th
iteration consists of a creation of horizontal blocks Ci and Ui, both starting in
the leftmost input field and continuing downwards (these blocks are not disjunct,
they share some fields). Ui is of length 2i and length of Ci is of length code(v),
where v is the prefix of w of length i. code(v) can be possibly 0 – in this case T
does not represent block Ci in the tape, but it stores this information in states.
U1 and C1 can be marked in constant time. Let us assume that Ui, Ci have
already been created. T starts the i + 1-st iteration by scanning the i + 1-st
symbol of u and stores it in states. After that it moves the head to the fist filed
of B1 and creates Ui+1 by doubling Ui. It is done in time at most |Ui|2 = (2i)2

copying field by field. If the i + 1-st symbol of u is a, then Ci+1 = Ci, else Ci+1

is the concatenation of Ci and (a copy of) Ui+1 placed after Ci. It means, to
create Ci+1 requires time at most |Ui+1|2 = (2(i+1))2, since |Ci| ≤ |Ui+1|. When
Ui+1 and Ci+1 are marked, T can remove markers used to represent Ui and Ci,
they are no longer needed. When the k-th iteration is finished, Ck is an unary
representation of code(u). Figure 4.2 demonstrates how blocks Ui and Ci are
marked.

We can see that the i-th iteration is done in time bounded by c1 · 4i for a
suitable constant c1. After summing steps required by particular iterations we
get

k∑

i=1

c1 · 4i ≤ c1 · 4k+2 = O(n)

44

b a b B2 D B2 babU1

U2

U3

C3

U

C3
¾ -

Figure 4.2: Example of an input string divided into five blocks, the first and
the last block contain string bab. Symbols denoting vertical blocks are placed
next to the last field of the block. Note, that C1 = C2 = U1. C3 and C3 are of
length 5, which equals code(bab).

T continues by doubling Uk and marks all fields of the created block (U) as
’border’. It holds that code(u′) ≤ |U | for any u′ of length k. At this stage, T
has done all encoding related to B1, thus it moves the head to the rightmost
field of B1 and encodes its content. Let B1 contain u. The only difference
comparing to B1 is that the reversion of u is coded instead of u, i.e. an unary
representation of uR has to be computed (we want to check whether u = uR,
meaning the strings can be a prefix and a suffix of some palindrome). T finishes
this phase, when the block representing the desired code is computed (let the
block be denoted by Ck). Now, it is not necessary to continue with marking an
equivalent to border block U . Instead of it, T checks if code(u) equals code(uR).
It moves the head to the last field of Ck, then keeps moving left until it detects
a field belonging to the border block U . T checks if the field is marked as the
last field of Ck. If so it means the unary codes are identical and thus u = uR.
In this case T marks B and B as ’verified’ and continues by checking the next
pair of blocks (B2, B2). Otherwise T rejects w.

When T reaches block D, it verifies if D is the last block not marked by
’verified’ yet (in another words: if D is really the central block) and if D contains
a palindrome. It can be done in O(k2) time comparing pairs of fields that have
to match. If the verification passes, T accepts w, otherwise it rejects it.

We can see that the coding and the comparison of one pair is done in time
linear in n. The number of blocks is dn/ke, thus the whole computation re-
quires time O(n2/ log n) (note that we have already estimated that the phase
computing k and dividing w into blocks requires time O(n log n)). ut

4.3 Crossing Sequences

The next definition is a two-dimensional generalization of the crossing sequence
defined in [4].

Definition 7 Let T = (Q, Σ,Γ, δ, q0, QA) be a two-dimensional deterministic
Turing machine, P an input picture, i an integer, and let the computation of T
over P be finite. The crossing sequence of T at position i for P is the sequence
K constructed using the following algorithm:

45

1) K is initialized to be the empty sequence, j is an integral variable initialized
by 1. The algorithm goes through all computational steps of T .

2) During the execution of the j-th step, if the control unit enters state q and
the head moves from the i-th column to the i + 1-st column or vice versa
in the row of index r, the element (q, r) is appended to K. Otherwise, if
the head does not move in this way, nothing is appended to K at all. If
j is not the number of the last computational step, it is increased by one
and point 2) is repeated. Otherwise, K has been constructed.

The crossing sequence at position i for an input picture P records all movements
of the head across the border between the i-th and i + 1-st column.

Note that another possibility was to define crossing sequences based on move-
ments of the head between two neighboring rows. We can speak about vertical
and horizontal crossing sequences then. However, for our purposes, it is suffi-
cient to consider the crossing sequences we have defined only.

Let i be the index of some column. We can divide the tape into two parts
– the left part, which includes every field with x-coordinate less or equal to i
and the right part, which includes the remaining fields. If we know the crossing
sequence at position i and the content of one of the two parts in the initial con-
figuration, we can determine how this part will change during the computation
without knowledge of the content of the other part. For example, let the content
of the left part be known. Then, each time the head enters the left part (or
starts there), the entry point and the current state of the control unit is given
by the crossing sequence, thus it is possible to simulate the computation until
the head leaves the left part again. This observation is used in the following
lemma.

Proposition 7 Let T be a two-dimensional deterministic Turing machine. Let
us assume T accepts two pictures:

W1 = A1
dA2

d. . . dAn

and
W2 = B1

dB2
d. . . dBm

where each Ap, resp. Bq is a one-column picture. Let us further assume there
are two integers i, j such that 1 ≤ i ≤ n, 1 ≤ j ≤ m, and the crossing sequence
of T at position i for W1 is identical to the crossing sequence of T at position j
for W2. Then T accepts

W3 = A1
d. . . dAi

dBj+1
d. . . dBm

Proof. Let τ(left , P, k), resp. τ(right , P, k) be the portion of the tape that
stores P as the input (i.e. the content of the tape corresponds to the initial
configuration for the input P), where the portion consists of all columns with
x-coordinate less or equal to, resp. greater than k. The computation of T in
τ(left ,W3, i), resp. τ(rigth,W3, i) is exactly the same as the computation of T
in τ(left ,W1, i), resp. τ(right , W2, j). In both cases, whenever T leaves the left
part, it enters the right part in state q and the head is placed in the r-th row
and vice versa. ut

46

Proposition 8 Let T = (Q, Σ,Γ, δ, q0, QA) be a two-dimensional deterministic
Turing machine computing in time t, P be an input picture over Σ. Then the
sum of the lengths of all different non-empty crossing sequences of T for P , is
less than or equal to t(n).

Proof. Inspecting the algorithm defining crossing sequences, we can see that
the machine contributes to one of the considered crossing sequences during its
horizontal movement with exactly one element. The number of movements is
bounded by the number of computational steps. ut

4.4 Lower Bounds on Time Complexity

We will use the crossing sequences and the previous lemmas to derive results on
lower bounds on time complexity.

Theorem 8 Let r be a real number greater than 1. There is not any
two-dimensional deterministic Turing machine that recognizes LP in time
O(n2/logrn).

Proof. Let T = (Q, Σ,Γ, δ, q0, QA) be a two-dimensional deterministic Turing
machine recognizing LP in time t. We show that t /∈ O(n2/logrn) for every real
number r > 1.

First of all we will make an auxiliary observation. Let us consider two strings
v, w of the same length belonging to LP that can be written as v = v1v2cv

R
2 vR

1

and w = w1w2cw
R
2 wR

1 . Let us assume the crossing sequences of T between v1,
v2 and between w1, w2 (i.e. at position |v1|, resp. |w1|) are identical, |v1| = |w1|
and v1 6= w1. Proposition 7 implies T accepts v1w2cw

R
2 wR

1 too, but it is not
possible because v1w2cw

R
2 wR

1 is not a palindrome (v1 6= w1). It means that
the mentioned crossing sequences must always be different. We denote this
observation by (1).

For a given odd number n ≥ 1, we take all strings in LP of length n. Let L1

denote the set consisting of all these strings, s be the number of elements in Q.
For L1, we define function p : Z→ N, where p(i) is equal to the average length
of a crossing sequence at position i for strings from L1.

There are 2
n−1

2 strings in L1. At least one half of these strings (i.e. 2
n−1

2 −1)
must have the length of the corresponding crossing sequence at position i less
than or equal to 2 · p(i) (since p(i) is the arithmetical average of all lengths).
We need estimate the number of all crossing sequences of length less or equal
to 2 · p(i). Each j-th element from a crossing sequence is of the form (qj , rj).
The first component of this pair is one of s different values. Since T can reach
maximally t(n) different rows during its computation, the second component
is one of t(n) different values. It means the number of all different crossing
sequences of length k is maximally (s · t(n))k. To estimate the number of all
crossing sequences of length less or equal to 2 · p(i) we use the formula for the
sum of elements of a geometric sequence:

m∑

k=1

qk = q · qm − 1
q − 1

≤ qm+1

47

where the inequality surely holds for every q ≥ 2. In our case, we have q = s·t(n)
and m = 2 · p(i), so we get that the number of required sequences is at most
(s · t(n))2·p(i)+1.

Let i be an integer in {1, . . . , n−1
2 }. Using two previous paragraphs, we get

there are at least
2

n−1
2 −1

(s · t(n))2·p(i)+1

strings with identical crossing sequences at position i. By observation (1), all
these strings have identical prefixes of length i. There are 2

n−1
2 −i such different

strings. It implies the inequality:

2
n−1

2 −1

(s · t(n))2·p(i)+1
≤ 2

n−1
2 −i

We derive
2

n−1
2 −1

2
n−1

2 −i
≤ (s · t(n))2·p(i)+1

2i−1 ≤ (s · t(n))2·p(i)+1

i− 1 ≤ (2 · p(i) + 1) · log2(s · t(n))

We sum these inequalities for each i ∈ {1, . . . , n−1
2 }

n−1
2∑

i=1

(i− 1) ≤
n−1

2∑

i=1

(2 · p(i) + 1) · log2(s · t(n))

n− 1
4

·
(

1 +
n− 1

2

)
− n− 1

2
≤

2 ·

n−1
2∑

i=1

p(i) +
n− 1

2

 · log2(s · t(n))

By Proposition 8,
∑n−1

2
i=1 p(i) ≤ t(n) which implies

(n− 1)2

8
+

n− 1
4

− n− 1
2

≤
(

2 · t(n) +
n− 1

2

)
· log2(s · t(n))

(n− 1)2

8
− n− 1

4
≤

(
2 · t(n) +

n− 1
2

)
· log2(s · t(n))

Time complexity of T has to satisfy the derived inequality for every odd
n > 0. Let us consider t(n) = O(n2

logr n), where r > 1. The right-hand side of
the inequality is

(
2 · t(n) +

n− 1
2

)
· log2(s · t(n)) = O(t(n) · log t(n)) =

= O

(
t(n) · log

(
n · n

logr n

))
= O (t(n) · log n) = O

(
n2 · log n

logr n

)

while the expression on the left-hand side is Ω(n2). Thus the inequality cannot
be fulfilled by given t for each required n. ut

48

Chapter 5

Two-dimensional On-line
Tessellation Automata

5.1 Properties of OTA

The two-dimensional on-line tessellation automaton (OTA) is a kind of cellular
automaton. We give its formal definition first.

Definition 8 A (non-deterministic) two-dimensional on-line tessellation au-
tomaton A is a tuple (Σ, Q, q0, QF , δ), where

• Σ is an input alphabet

• Q is a finite set of states and it holds Σ ⊆ Q

• q0 is the initial state

• QF ⊆ Q is a set of accepting states

• δ : Q×Q×Q → 2Q is a transition function

Let P ∈ Σ∗∗ \ {Λ} be an input to A. Informally, for this input, the au-
tomaton consists of cells forming an array of size rows(P) × cols(P). For
i ∈ {1, . . . , rows(P)} and j ∈ {1, . . . , cols(P)}, let c(i, j) denote the cell at
coordinate (i, j). Moreover, let c(0, j) and c(i, 0) denote fictive cells that stay
in the state # during the whole computation.

In the initial configuration, each cell c(i, j) is in the state P (i, j). The
computation has a character of a wave passing diagonally across the array. A
cell changes its state exactly once. In the t-th step, the cells c(i, j) such that
i + j − 1 = t compute, i.e. in the first step, it is the cell c(1, 1) only, in the
second step, c(1, 2) and c(2, 1), etc. When c(i, j) performs a computational step,
the change is driven by the current states of the top and left neighbor and the
initial state of c(i, j). If the cell is located in the first column, resp. row, then
the left, resp. top neighbor is considered to be the fictive cell we have already
mentioned. Let the initial state of c(i, j) be q and let ql, resp. qt be the current
state of the left, resp. top neighbor. Then, all possible transitions of c(i, j) are
given by states in δ(ql, q, qt). Figure 5.1 shows a scheme related to the change.

49

#
#
#
#

#

cl c

ct

Figure 5.1: Example of an OTA working on an input of size 4×8. The transition
of the cell c depends on its initial state and states of cl and ct. #’s denote fictive
cells neighboring to cells in the first row, resp. column.

The computation consists of rows(P)+cols(P)−1 steps. When it is finished,
the set of states reachable by c(rows(P), cols(P)) determines whether A accepts
P (a state in QF can be reached) or rejects it (otherwise).

When the input picture equals Λ, we consider OTA to be formed of one cell
which of the initial state is #.

A is deterministic (DOTA) if |δ(q1, q2, q3)| ≤ 1 for each triple of states q1,
q2, q3 in Q.

We list some of the known properties of the classes L(OTA) and L(DOTA)
(as they can be found in [2], [5] and [12]).

1. L(DOTA) is a proper subset of L(OTA)

2. L(OTA) is closed under row and column concatenation, union and inter-
section

3. L(OTA) is not closed under complement while L(DOTA) is closed under
complement

4. L(FSA) is a proper subset of L(OTA)

5. L(OTA) contains some NP2d-complete problems

6. L(DOTA) and L(FSA) are incomparable

7. L(DFSA) is a proper subset of L(DOTA)

In [2], the class L(OTA) is considered to be a good candidate for the
”ground” level of the two-dimensional theory. This opinion is justified by the
fact that L(OTA) has many properties we would expect the ground level class
will have. It is true, that not all natural expectations are met (property 3.),
however, comparing to the class L(FSA), the situation is better.

Furthermore, the notion of finite-state recognizability associated with
L(OTA) is robust, since there are more possibilities how to characterize the
class. L(OTA) coincides with, e.g., the class of languages generated by tiling
systems or the class of languages expressed by formulas of existential monadic
second order logic.

Although the given arguments sound reasonably, there is also one that
speaks against the suggestion – it is property 5. which indicates that OTA’s
are quite strong, since they are able to recognize some NP2d-complete languages.

50

5.2 Simulation of Cellular Automata

In this section, we show that, in some sense, OTA’s can simulate one-
dimensional bounded cellular automata. As a consequence, the simulation pro-
vides a generic way how to design OTA’s recognizing modifications of one-
dimensional NP -complete problems recognizable by one-dimensional bounded
cellular automata.

Before we start to study questions regarding the simulation, we give a de-
finition and a brief, informal description of the model of cellular automata we
work with.

Definition 9 A one-dimensional cellular automaton is a tuple C =
(Q, δ,QI , QA), where Q is a finite set of states, δ : Q3 → 2Q is a transition
function, QI ⊆ Q is a set of initial states and QA ⊆ Q is a set of accepting
states. In addition, it always holds # ∈ Q \QI .

Let us consider a cellular automaton C and let Σ = QI \ {#}. Informally,
C can be interpreted as a sequence (infinite in both directions) of cells, where,
at any given time, each of them is in some state – an element in Q. During
a computational step, each cell changes its state depending on the state and
current states of two neighboring cells. If the cell is in a state q and the left,
resp. right neighbor in a state qL, resp. qR, then all possible new states that
the cell can enter are elements in δ(qL, q, qR). If there is no such a state, the
computations halts and the input is rejected. As usual, we say C is deterministic
iff δ maps every triple to a set having at most one element. Any configuration
of C can be expressed by a string, where particular characters correspond to
states of cells. Inputs to cellular automata are non-empty strings over Σ. If
σ ∈ Σ+ is an input, the correspondent initial configuration is #∞σ#∞. We
say C is bounded if δ is #-preserving, i.e. if # ∈ δ(p, q, r) implies q = # and
δ(p, #, r) ⊆ {#} for all p, q, r ∈ Q. If C is bounded, its configuration can be
expressed using the form #α#, where α ∈ Q+ and |α| = |σ| = n. In this
case, we can imagine that C consists of n cells c1, c2, . . . , cn, where each i-th
cell stores i-th character of σ in the initial configuration. We consider c1, resp.
cn to have a fictive left, resp. right neighbor staying in the state # during the
whole computation. C accepts σ if the cell storing the leftmost symbol of σ
(which is c1 if we consider the described bounded automaton) can reach some
state in QA.

In [20], there is described a procedure how to synchronize cells of a one-
dimensional bounded cellular automaton by the assumption the leftmost (resp.
rightmost) cell is in some distinguished state qa while the other cells are in a
passive state qp (meaning these cells stay in this state until they are activated
by a signal sent by the leftmost cell). At the end of the process, all cells enter a
state qs first time in the same step. It can be interpreted they are synchronized
at this moment. The procedure requires 3 ·n computational steps maximally (n
denotes the number of cells of the automaton).

Let Σ be an alphabet and $ a special symbol not contained in Σ. We define
a function τ : Σ∗ × N+ × N+ → (Σ ∪ {$})∗∗, where P = τ(w, m, n) is of size
m× n and, for w = a1 . . . ak (ai ∈ Σ), it fulfills

P (i, j) =
{

aj if i = 1 and j ≤ |w|
$ otherwise

51

It means w is placed in the first row of P , starting in the top-left corner.
The remaining fields of P contain $.

Theorem 9 Let C = (Q, Σ, QA, δ) be a deterministic one-dimensional bounded
cellular automaton recognizing a language L1. Let $ /∈ Σ. There is a DOTA
A recognizing L2 such that a picture P is in L2 if and only if the following
conditions are fulfilled:

1) P equals τ(w, m, n) for some suitable positive integers m, n and a string
w ∈ L1.

2) Let t : L1 → N be a function, where, for v ∈ L1, t(v) is the number of
steps that C performs when computing over v. Let k = |w|, where w is
the string from point 1). Then

rows(P) ≥ k + 1
2

+ 3 · k + t(w)

and
cols(P) ≥ k + 1 + 3 · k + t(w)

Proof. We will construct a DOTA A simulating C. Let P be an input to A and
let P = τ(w, m, n) for some positive integers m, n and w ∈ Σ∗ (not necessarily
in L1), where |w| = k ≤ n, m ≥ k+1

2 + 3 · k + t(w), n ≥ k + 1 + 3 · k + t(w). The
other inputs will be discussed separately in the end of the proof.

Figure 5.2 outlines the main idea of the simulation. The computation of A is
divided into four phases. During the first phase, w is moved to the diagonal - it
is represented in dk+1

2 e cells, where each of the cells stores two input characters.
An exception is the cell corresponding to the end of w which can store at most
one character. When the first phase is completed, it is possible to simulate
one step of C during two steps of A. However, before the whole process can
be launched it is necessary to synchronize cells of A so that they are able to
start at the same moment. This is done during the second phase. The third
phase consists of a simulation of C and finally, the fourth phase just delivers
information about the result of the simulation to the bottom-right cell of A so
that A can correctly accept or reject the input.

During the computation, odd and even computational steps of A are required
to be distinguished. To achieve this, when c(1, 1) performs its step, it is marked
as a cell belonging to an odd step. In the following steps, the proper marker is
assigned to a computing cell depending on the marker recorded in the left or
top neighbor.

A description of the phases in more details follows. Let w = a1a2 . . . ak,
where each ai ∈ Σ. For i = 1, . . . , m and j = 1, . . . , n, let cij denote the
cell of A at coordinate (i, j). The cells c1,1, c2,1, . . . , ck,1 store symbols of w
at the beginning. The goal of the first phase is to represent w in the cells
di = ck+1−s+i,s−i+1 for i = 1, . . . , s and s = dk+1

2 e. The representation should
be as follows. For each i < s, di stores a2·i−1 and a2·i, ds stores ak if k is odd.
and an ’end of w’ marker if k is odd, else it is marked as the right end of w only.
In addition, d1, resp. ds is marked as the left, resp. right end of w.

To reach the desired configuration, A computes according to the following
rules:

52

(1)

(2)

(3)

(4)

Figure 5.2: Simulation of one-dimensional cellular automaton. Groups of cells
involved in one of the four computational phases are distinguished.

a)

(a1 (a1a2 a3 a3a4)$ $

(a1a2(a1a2 a3a4

(a1a2

b)

q1q2

q3q4

q5q6

r1r2

r3r4

r5r6

q1q2

q3q4

q3q4

q5q6

Figure 5.3: a) Moving of the string a1a2a3a4a5 to the highlighted diagonal.
Cells are labelled by symbols they represent after performing the transition.
”)”, resp. ”(” denotes the right, resp. left end marker. b) Simulation of one
parallel step of the cellular automaton. In the beginning, simulated cells are in
states qi, after performing the step, each qi is changed to ri.

• During each odd computational step of A – a cell checks if the top neighbor
is in a state that represents a pair of symbols. If so, the symbols are copied
to the cell. Cells in the first row do not perform any changes except the
cell c1,1, which records the presence of the left end of w. This marker is
copied together with the represented symbols in all next steps.

• During each even step – a cell checks the state of its left neighbor. If the
neighbor represents a pair of symbols, the cell copies them. If the cell is
placed in the first row and stores ai, then it reads ai−1 stored in the left
neighbor and represents the pair (ai−1, ai).

• The only exception from the previous two rules is the cell c1,k+1 which
stores $ following the last symbol of w. If k + 1 is odd, c1,k+1 copies ak

and marks the right end of w, else it marks the end only. After A finishes
the k + 1-st computational step, the desired diagonal representation of w
is formed.

See Figure 5.2 for an illustrative example of the described process.

53

The second phase simulates the synchronizing procedure we have already
mentioned. The rightmost cell of C, which is represented in c1,k+1 or c2,k,
is taken as the only cell in the active state. Thanks to the synchronization,
a simulation of all cells of C (working over w) can be started at the same
moment (i.e. in one computational step of A). Both phases, (2) and (3), are
similar – in the next paragraphs we need not to distinguish between them.
Comparing to the first phase, cells of A are required to behave differently during
the second and third phase, thus there must be some notification about the
change. The notification is done by spreading signal ’phase one ended’. The
signal is generated by the cell c1,k+1. In the following steps, each cell which
detects a neighbor marked by the signal marks itself as well. When a cell is
marked, it computes as it is described in the next paragraphs. Since the signal
is being spread faster than the signals related to the synchronization process
(during two steps of A, signal ’phase one ended’ notifies two additional cells of
A simulating together 4 cells of C, while there is one step of C simulated only),
this consecutive notification is sufficient. It is true that some cells belonging to
the second phase will not be notified about the beginning of the second phase,
however, since the cells of C simulated by them are in the passive state, they
are required to copy represented states only, exactly as it happens during the
first phase.

Let us assume some configuration of C is represented in a diagonal D1. Let
D1 be formed of s cells cx1+i,y1−i, where i = 0, . . . , s − 1 and (x1, y1) is the
coordinate of the bottom-left cell of D1, A be performing two computational
steps that should produce the next configuration of C. In the first step, each
cell which has the left and top neighbors in D1 records states represented by
the neighbors. The diagonal consisting of these cells is D2 = {cx1+1+i,y1−i | i ∈
{0, . . . , s−2}}. In the second step, each cell that has at least one of the neighbors
in D2, i.e. each cell in D3 = {cx1+1+i,y1−1−i | i ∈ {0, . . . , s− 1}}, simulates one
computational step of represented cells of C. For example, let us consider some
cij ∈ D1 storing states of two cells of C (denoted c′1 and c′2) at the moment
when the l-th computational step of C is done. Then, the cell ci+1,j−1 ∈ D3

can retrieve states of c′1, c′2 (recorded in the top neighbor of ci+1,j−1) as well as
states of neighbors of c′1, c′2 in C (recorded in the left and the top neighbor),
thus ci+1,j−1 can simulate the l+1-st computational step of c′1 and c′2 and record
the resulting states. A portion of cells performing the described simulation is
shown in Figure 5.2.

The fourth phase is started at the moment the leftmost cell of C reaches an
accepting state. If w is in L1, it occurs after the simulation of at most t(k) steps.
In this case, signal ’input accepted’ is started to be spread. First of all, the cell
of A that detects C has accepted w is marked to carry the signal. Then, each cell
of A having a left or top neighbor carrying the signal is marked as well. Using
this principle, the signal reaches the bottom-right cell of A, which indicates the
input should be accepted. If C does not accept, no signal is generated and A
rejects. Note that, during the fourth phase, some cells of A still work as it was
given in the description of the second and third phase, however, this process
does not interfere with spreading of the signal, thus it has no affect on the
result.

It remains to discuss, how A detects that the input cannot be written as
τ(w, m, n) for some suitable values w, n, m, where m ≥ k+1

2 + 3 · k + t(w) and
n ≥ k + 1 + 3 · k + t(w). First of all, during the simulation, A can easily verify

54

if the only symbols different to $ are placed in the first row as a contiguous
sequence starting at the first field – if a cell of A contains this symbol, it checks
if the top neighbor is in state # and if the left neighbor was originally (before
it performed its computational step) in a state different to $. Whenever a
problem is encountered, a signal notifying bad input is generated and spread to
the bottom-right cell. A verification of m and n is done automatically. If one
of these values is less than it should be, then A has not a space large enough
to perform all four phases, thus ’input accepted’ signal cannot be generated
implying the input is rejected. Note that phase one requires dk+1

2 e rows of cells
and k + 1 columns to be performed, phase two additional 3 · k rows and the
same number of columns and finally, phase three additional t(w) rows and also
t(w) columns. ut

The simulation we have presented can be improved in the case of non-
deterministic OTA’s.

Theorem 10 Let C = (Q, Σ, QA, δ) be a non-deterministic one-dimensional
bounded cellular automaton recognizing a language L1. Let $ /∈ Σ. For v ∈ L1,
let t(v) be the minimal length of a computation among all accepting computations
of C when computing over v. There is a non-deterministic OTA automaton A
recognizing L2 consisting of pictures that can be written as τ(w, m, n), where
w ∈ L1, m ≥ |w|+1

2 + t(w) and n ≥ |w|+ 1 + t(w).

Proof. We will modify the computation presented in the proof of Theorem 9.
It is possible to remove the second phase (the synchronization). Using non-
determinism, an equivalent configuration, where all cells are synchronized, can
be guessed immediately after the representation of w is created in a diagonal.
The other phases remain the same, so we describe the modification of the syn-
chronizing process only. Let cells of A be denoted by ci,j again and let r = dk

2 e.
Let each cell taking part in the first phase non-deterministically guess if it

belongs to the diagonal D = {ck−r+i,r+1−i | i ∈ {1, . . . , r}} or not (for a cell, the
guessing is performed when the cell performs its computational step). Note that
cells in this diagonal compute during the k-th step of A, i.e. one step before
the first phase is finished. If a cell decides it belongs to D, it records this fact
in its state (let us call such a cell to be ’synchronized’). Each cell related to the
first phase checks the presence of the ’synchronized’ marker in its left and top
neighbor. By the position of a cell c and by its initial state, we distinguish the
following cases:

1) c is placed in the first row, it is in the state $ and this is the first $
following the last symbol of w (i.e. c = ck+1) – c checks if the left neighbor
is ’synchronized’. If not, the cell generates ’bad synchronization’ signal,
that is spread to the bottom-right cell and causes that the correspondent
computational branch of A does not accept.

2) c is placed in the first row and it is in some state in Σ – if the left neighbor
is ’synchronized’ c generates ’bad synchronization’ signal.

3) c is not a cell of the first row and both its neighbors represent some
symbols of w. Now, if exactly one of the neighbors is ’synchronized’, then
’bad synchronization’ is generated.

55

It should be evident that no ’bad synchronization’ signal is generated if
and only if all cells in D are the only cells that guess they are ’synchronized’
– conditions 1) and 2) force ck to be the first ’synchronized’ cell in the first
row, condition 3) inducts that a cell in D preceding a ’synchronized’ cell is
’synchronized’ as well.

Let us consider a computational branch of A, where the synchronization
is correctly guessed. Cells computing in the k + 1-st step verify this fact and
become ’active’. From now, no more guesses related to the synchronization are
needed (’active’ status is spread during the remaining parts of the computation),
the simulation of C can begin following the same scenario as it was described
for the deterministic variant. ut

Example 5 Let us consider a well known NP-complete problem – the knapsack
problem. Informally, an instance of the problem is a finite sequence of positive
integers n0, n1, . . . , nk (k ≥ 1) represented in binary. These numbers are com-
monly interpreted as a knapsack of size n0 and k items of sizes n1, . . . , nk. The
question is whether it is possible to select some of the available items so that
they exactly fit into the knapsack. In another words, if there is a subset of
indices I ⊆ {1, . . . , k} such that n0 =

∑
i∈I ni.

We show that the knapsack problem can be decided by a one-dimensional
non-deterministic bounded cellular automaton in time t(n) = n. For our pur-
poses, we will use a special format of inputs over the alphabet Σ = {0, 1, a, b}.
We encode one sequence n0, n1, . . . , nk by the string w = w0awR

1 bwR
2 b . . . bwR

k ,
where wi is ni written in binary (wR is the reversion of w). It means
wi = ai,1ai,2 . . . ai,li , where ai,1 = 1, for all j = 2, . . . , li: ai,j ∈ {0, 1} and

li∑

j=1

ai,j · 2li−j = ni

Note that w contains exactly one symbol a. All remaining delimiters between
binary values are b’s.

We define LK to be the language over Σ containing exactly all strings
encoding an instance of the knapsack problem that has a solution.

Lemma 6 There is a bounded one-dimensional cellular automaton recognizing
LK in time t(n) = n.

Proof. Let us consider a well formed input of the form w0awR
1 bwR

2 b . . . bwR
k . Let

the cell storing a in the initial configuration be denoted by ca.
The idea of the presented algorithm is to non-deterministically choose a

subset of items and subtract their sizes from the size of the knapsack. The cells
storing w0 in the initial configuration are used during the computation to form a
binary counter which is initialized by the knapsack’s size and being decremented
by the sizes of selected items. The cells positioned after ca only shift the string
wR

1 b . . . wR
k left, in each step by one symbol. The last symbol of the shifted

string is followed in the next step by a special signal E1 indicating the end. The
signal is generated by the rightmost cell. Since all cells preceding ca cannot be
distinguished immediately, they also shift the symbols left, however, this shifting
is not of any importance for the computation. Moreover, all cells remember its
initial state (this information will be needed in the cells of the counter).

56

The cell ca is consecutively feeded by one symbol of wR
1 b . . . wR

k in each step.
If the currently received symbol is the first symbol of some wR

i , i.e. the least
significant bit of wi, ca non-deterministically decides if wi will be added to the
knapsack or not. In the latter case, bits of wi are absorbed by ca. It means,
no signals are sent to the cells on the left. In the former case, for each received
bit 1, resp. 0 of wR

i , ca sends left signal S1, resp. S0 representing subtraction
of 1, resp 0. Moreover, if the received bit is the least significant (i.e. the first
bit of wR

i), ca sends together with Si signal N announcing the beginning of a
new subtraction. The idea of counting is based on delivering a signal generated
by the i-th bit of wR

j to the correspondent cell representing the i-th bit of the
counter. Note that to achieve this we have decided to code all wi, i > 0 in the
reversed form. The last thing to be mentioned is that ca changes E1 to E2 when
the signal is received (the purpose of this change will be clear later).

Let us take a closer look at the behavior of cells forming the counter at the
moment they receive one of the previously defined subtraction signals. Let c
be one of these cells, keeping a bit d. Moreover, let f be a boolean flag which
of value is stored in states of c. The flag is used to control delivering of Si

signals. If f is true, it indicates that c awaits signal Si – when the signal is
received f is changed to false meaning that next signals Si should be passed to
next cells. One more signal is still needed – signal D will be generated when a
carriage from a bit to higher bits occurs during a subtraction. We have already
mentioned that N can be sent together with signal S0 or S1. We consider N to
be processed by a cell, which receives it, first (before Si). A detailed description
of how c processes received signals follows.

N) c sets f to be of true value (meaning c is the target cell for the firstly
received signal Si), N is sent to the left neighbor.

S0) If f is false c sends S0 to the left, else c changes f to false and, since 0
is subtracted from the bit d kept by the cell, no additional changes are
needed to be performed.

S1) Again, if f is false c sends S1 to the left, else c changes f to false. If
d = 1, d is changed to 0, otherwise d is changed to 1 and a signal D is
generated and sent to the left neighbor (a decrement is needed in higher
bits to complete the subtraction).

D) If d = 1, d is changed to 0, else d is changed from 0 to 1 and D is sent to
the left neighbor.

If the leftmost cell is about to send Si or D to its left neighbor, it indicates
that a negative value has been reached by the counter, thus the input is rejected.
While moving from ca to the leftmost cell, signal E2 checks if all bits of the
counter are 0. If so, it means the knapsack problem has been solved successfully
and the input is accepted. To verify correctness of the presented algorithm, it
is sufficient to realize that signals handling subtractions of the counter never
mutually interfere.

It remains to discuss how the automaton detects badly formatted inputs. If
there is no symbol a contained in the input, the leftmost cell receives E1 instead
of E2. If there are two or more symbols a, one of the correspondent cells receives
E2 instead of E1 since E1 is never changed to E2. If one of the cells forming the

57

counter stores b at the beginning, it is detected when the cell receives some of
the substraction signals or E2. And finally, it can be checked by ca whether each
binary value representing the size of an item starts with bit 1 (to do it, ca needs
always to remember the bit received in the previous step) and the leftmost cell
of the automaton checks the highest bit of the knapsack size.

The computation is of time complexity exactly |w| for any w ∈ Σ+ – signal
E1 is generated in the first step, after next |w| − 2 steps, it reaches the second
cell (being possibly changed to E2), the first cell detects it and finishes the
computation in one more step. ut

Proposition 9 Let L be the following language

L = {τ(w, m, n) |w ∈ LK ∧ m ≥ |w|+ 1
2

+ |w| ∧ n ≥ 2 · |w|+ 1}

Then, L is NP2d-complete and it is recognizable by a OTA.

Proof. The automaton can be constructed based on Theorem 10 and Lemma 6.
NP2d-completeness of L is implied by Lemma 5. ut

Note that, in the literature, it is possible to find some specific NP2d-complete
languages recognizable by OTA. An example is the language of 3-colorable
maps given in [12]. Our simulation offers a more general approach. On the
other hand, NP2d-complete languages like the language L in Proposition 9 are
only extensions of one-dimensional languages given by the function τ – their
structure is not based on the two-dimensional topology.

58

Chapter 6

Two-dimensional Forgetting
Automata

In this chapter we present a two-dimensional generalization of forgetting au-
tomata as it is given in [1] and [9]. Forgetting automata are bounded Turing
machines with restricted capabilities of rewriting symbols on the tape. They
can rewrite the content of a field by the special symbol @ only (we say, they
erase it). One-dimensional forgetting automata were studied for example in [7]
and [8]. It has been shown how they can be used to characterize the class of one-
dimensional context-free languages. Later, in section 7.3, we will extend some
of these ideas and show that two-dimensional forgetting automata can recognize
languages generated by grammars with productions in context-free form.

6.1 Technique Allowing to Store Information in
Blocks

Definition 10 Two-dimensional forgetting automaton is a tuple
(Q, Σ, q0, δ,QF) such that the tuple (Q, Σ ∪ {#, @},Σ, q0, δ,QF) is a two-
dimensional, bounded Turing machine. @ /∈ Σ is a special symbol called the
erase symbol. In addition, whenever (a2, q2, d) ∈ δ(a1, q1), then a2 = a1 or
a2 = @.

We abbreviate a two-dimensional forgetting automaton by FA, a determin-
istic FA by DFA and the class of languages that can be recognized by these
automata by L(FA) and L(DFA) respectively.

Before we start to present what forgetting automata are able to compute,
we show a very useful technique of how a forgetting automaton can store and
retrieve information by erasing some symbols on the tape so that the input
picture can be still reconstructed. The technique comes from [10]. Two of our
results regarding forgetting automata are strongly based on it.

Example 6 Let A = (Q, Σ, q0, δ,QF) be a FA. Let Σ0 = Σ \ {@,#}, O be
an input picture to A and M be the set of the tape fields containing P . Let
P (f) denote the symbol contained in the field f ∈ M . Then, for each G ⊆ M ,
there is s ∈ Σ0 such that |{f | f ∈ G ∧ P (f) = s}| ≥

⌈
|G|
|Σ0|

⌉
. If the automaton A

59

n

n

u

n n n n v

n

n

w

Figure 6.1: Decomposition of M into blocks of fields when both dimensions of M
are at least n and when the width is lower than n. It holds that n ≤ u, v, w < 2n.

erases some fields of G containing the symbol s, it is still able to reconstruct the
original content – the erased symbol is always s. Each such field can therefore
store 1 bit of information: the field is either erased or not erased. It is thus
ensured that G can hold at least

⌈
|G|
|Σ0|

⌉
bits of information.

Let us consider M to be split into blocks of size k × l, where n ≤ k < 2n,
n ≤ l < 2n for some n. The minimal value for n will be determined in the
following paragraphs. In the case when the height, resp. width of the picture
is lower than n, the blocks will be only as high, resp. wide as the picture. In
the case of both the height and width of P being less than n, an automaton
working over such an input can decide whether to accept it or reject it on the
basis of enumeration of finitely many cases.

If both the width and height of M are at least n, all blocks contain n × n
fields, except the blocks neighboring with the bottom border of M , which can
be higher, and the blocks neighboring with the right border of M , which can be
wider. Nevertheless, both dimensions of each block are at most 2n− 1.

An example of a division into blocks can be seen on Figure 6.1. Let us
consider each block Bi of the decomposition to be divided into two disjunct
parts – Fi and Gi, where Fi consists of the first |Σ0| fields of Bi. We can choose
the size of the blocks arbitrarily, so that a block will always contain at least
|Σ0| fields. Gi contains the remaining fields of Bi. Let sr ∈ Σ0 be a symbol for
which

|{f | f ∈ Gi ∧ P (f) = sr}| ≥
⌈ |Gi|
|Σ0|

⌉

The role of Fi is to store sr: if sr is the r-th symbol of Σ0 then A stores it by
erasing the r-th field of Fi. Now, A is able to determine sr, but it needs to store
somewhere the information about the symbol originally stored in the erased
field in Fi. A uses the first |Σ0| bits of information that can be stored in Gi. If
the erased symbol in Fi was the t-th symbol of Σ0 then the t-th occurrence of
sr in Gi is erased, allowing A to determine the erased symbol in Fi. This way
a maximum of |Σ0| bits of available information storable in Gi will be lost. For

60

any block Bi containing m fields this method allows A to store at least
⌈

m− |Σ0|
|Σ0|

⌉
− |Σ0|

bits of information in Bi.

Proposition 10 Let A = (Σ, Q, QA, δ) be an OTA and L be the language which
is accepted by A. It is possible to construct a two-dimensional forgetting automa-
ton M recognizing L. Moreover, if A is deterministic, then M is deterministic
as well.

Proof. Let P be an input to A of size m× n. Each computational branch of A
is fully identified by a sequence C = {Ci}m+n−1

i=1 , where each Ci is a sequence of
states in which the cells computing in the i-th parallel step finish. The number of
the cells performing a parallel computational step is always at most min(m, n).
Let k ∈ N+ be a constant used to drive some parts of the computation of M .
A suitable value for k will be derived later as a consequence of all requirements
on M .

If min(m,n) < k, then A can be simulated even by a finite state automaton –
M need not rewrite any symbols, it can operate as follows. M starts by reading
the symbol in the top-left corner, simulating the first step of A and storing
the obtained configuration C1 in states. If more configurations are reachable,
M non-deterministically branches for each of them. M finishes the phase by
moving the head to the rightmost field of the neighboring diagonal which of
cells compute in the second step. Next, let us assume M stores Ci in states
(since |Ci| < k, it is always possible) and the head scans the rightmost field
of the diagonal corresponding to Ci+1. To simulate the i + 1-st step of A,
M scans and stores the initial states of cells – one by one. After that, using
stored information on Ci, it is able to determine all states reachable by cells
corresponding to Ci+1. Ci+1 is recorded in states (this information replaces the
information on Ci, which is no longer needed) and the head is moved to the
rightmost field of the next diagonal. M repeats the described process until all
steps of A have been simulated.

Let us focus on the case min(m,n) ≥ k now. M simulates steps of A again,
however, it cannot record an arbitrary configuration in states. Instead of it,
it uses the technique described in Example 6 to record configurations in the
tape. We consider P to be divided into blocks of sizes determined by k. To
spare available space, configurations of A are not computed and stored one
by one – M computes and stores configurations Ci·4k for i = 1, 2, . . . only. A
configuration is stored in blocks the diagonal of related cells goes through. Since
the width an height of a block are both less than 2k, it is evident that one block
is intersected by at most one diagonal as it shows Figure 6.2. Let us list, which
information a block should represent:

• One bit is used to distinguish if the block is intersected in its first row or
not (if not, the diagonal of cells intersects the last column).

• A positive integer less than 2k determines, which field of the first row
(resp. last column) is in the intersection.

• At most 2k integers between 1 and |Q| are needed to represent states of
cells corresponding to the diagonal.

61

c
︸ ︷︷ ︸

d

D

Figure 6.2: The first picture is a portion of a cellular automaton and it illus-
trates, which cells computing in the i-th step affect the cell c that computes in
the step i + d. There are at most d + 1 such cells (the number is smaller if the
distance from c to the top or left border is less than d + 1). The second picture
shows the intersection between a block and the diagonal D corresponding to a
subset of cells computing in the same step.

If all numbers are represented in binary, the capacity of

1 + blog2 2kc+ 2k · blog2 |Q|c

bits is always sufficient. Since the expression is O(k), while a block can store
Ω(k2) bits, a suitable constant k exists.

Assuming Ci is represented in blocks, we describe how M computes and
represents Ci+4k. Let c be a cell of A computing in the step i + 4k. The state
c finishes in is determined by states of at most 4k + 1 cells related to Ci (see
Figure 6.2). M retrieves these states from blocks, computes the new state of c
directly and represents it in a proper block. To compute Ci+4k, M processes all
related cells, starting with the rightmost one. If Cj , where j > m + n− 1− 4k,
has been computed (it can be detected by checking if there are at least 4k
next diagonals or not), after reading states in Cj , M can compute the final
configuration Cm+n−1 that consists just of one state. It should be obvious that
for a deterministic automaton A the simulation is deterministic as well. ut

Lemma 7 There is a DFA recognizing the language L = {anbn |n ∈ N} over
Σ = {a, b}.

Proof. We describe how to construct a DFA A accepting L. For an input P over
Σ, A checks whether rows(P) = 1 and whether P is formed by two consecutive
blocks: the first one consisting of a’s and the second one consisting of b’s (this
can be checked even by a DFSA). After that, it repeatedly erases pairs a and
b, until there is no complete pair of these symbols. At this stage, if all symbols
has been erased, P is accepted, otherwise it is rejected. ut

Theorem 11

• L(OTA) is a proper subset of L(FA)

• L(DOTA), L(DFSA) and L(FSA) are proper subsets of L(DFA)

62

Proof. Let L be the language from Lemma 7. Since FSA behaves like a one-
dimensional two-way finite-state automaton and OTA like a one-dimensional
finite-state automaton when a string is the input to them, it is clear that L /∈
L(DFSA) ∪ L(DOTA). The inclusion L(FSA) ⊆ L(DFA) was proved in [10],
the remaining inclusions hold by Proposition 10. ut

6.2 Forgetting Automata and NP2d-completeness

Proposition 11 L(DFA) ⊆ P2d

Proof. Let A = (Q, Σ, q0, δ,QF) be a two-dimensional deterministic forgetting
automaton and P 6= Λ be an input to it of size m× n. We can easily show that
if A computing over P halts, it performs maximally c ·(m ·n)2 steps, where c is a
constant independent on P . The head of A can be placed at m · n + 2 · (m + n)
different positions (fields corresponding to P and also columns of #’s neighbor-
ing to borders of P). The control unit can be in one of |Q| different states. That
implies that during s = |Q| · [m · n + 2 · (m + n)] steps A must erase at least one
symbol, otherwise it repeats the same configurations and cycles. There are m ·n
symbols that can be erased, thus the number of steps A performs is bounded
by s ·m · n which is O(m2 · n2). ut

Proposition 12 There is a FA recognizing an NP2d-complete language.

Proof. We will show that it is possible to construct FA A recognizing SAT
problem.

First of all we describe how instances of the problem will be encoded. Let
the input alphabet be Σ = {0, 1,∧,∨,¬, ∗}, F =

∧m
i=1(

∨si

j=1 Aij) be a formula
(each Aij is a variable or a negated variable). Let n =

∑m
j=1 si, V be the set of

all different variables that appear in F and let k = blog2 |V |c. We can encode
each variable in V by a binary string over {0, 1} of length k. The whole formula
F is encoded by a picture P of size (2k + 1 + 3 · n)× (k + 1). P consists of two
parts – the left part which is formed of the first 2k columns and the right part
formed of the last 3 · n columns. Both parts are separated by one additional
column located between them. This column is filled by ∗’s. In the left part,
each i-th column stores a string of length k + 1 representing i − 1 written in
binary. It means, the first column is 0k+1, the second column is 0k1, etc. The
right part represents F written as

A1,1 ∨ . . . ∨A1,s1 ∧A2,1 ∨ . . . ∨A2,s2 ∧ . . . ∧Am,1 ∨ . . . ∨Am,sm (1)

It is a concatenation of n blocks, each of them consisting of three columns.
The i-th block represents the i-th Apq in (1), possibly preceded by the negation
sign, and the operator that immediately follows the variable (except the last
variable, which is not followed by any operator). Let the j-th variable in (1)
be encoded by a binary string w = b1 . . . bk and φ be the operator following
it. Then, the first column of the j-th block stores ¬b1 . . . bk if the variable is
negated, otherwise 0b1 . . . bk, the second column is filled by 0’s and the third
column stores φ0k. An example of a formula encoded by a picture is shown in
Figure 6.3.

63

∗
∗
∗ ¬ ∨ ∧ ∨ ¬

0
0

0
1

1
0

1
1

0
0

0
1

1
0

0
1

Figure 6.3: (¬A ∨ B) ∧ (C ∨ ¬B) encoded by a picture. All fields that are not
labelled by any symbol store 0.

Let P ′ be a picture over Σ. It is possible to check by a DFSA A2 whether
P ′ encodes a formula or not. It can be done checking the left and right part as
follows.

• The left part is checked column by column starting by the leftmost one.
First of all, A2 verifies if the first column is completely filled by 0’s. After
that, A2 repeatedly checks if the next column represents a binary value
and if this value equals the value represented in the previous column incre-
mented by one. To do it, A2 moves the head in the previous column from
the least significant bit to the most significant bit, performs ”plus one”
operation in states and verifies continually if the computed bits match
values in the column that is being checked. The end of the left part is
given by a column storing string of the form 01k. This column has to be
followed by the separating column formed of ∗’s.

• In the right part, A2 checks if each block contains in particular fields
symbols that are permitted by the used encoding.

Now, we can proceed with the algorithm for A. Let the input to A be P ′.
A computes as follows.

• A checks if P ′ encodes a formula. If not, A rejects P ′.

• A goes trough all variable codes represented in the left part of P ′ and
non-deterministically assigns true or false value to each of them. When a
value is assigned to a particular code, A goes trough blocks in the right
part of P ′ and guesses which of the blocks store the variable corresponding
to the code. Whenever a block is chosen, A checks if the stored code really
matches the code in the left part. If it does not, A rejects, otherwise it
records the assigned boolean value in the block. The first field of the
middle column is used to do it – this field is erased just in the case of true
value.

• A checks that each block was chosen during some stage of the previous
procedure. If so, it evaluates the formula, otherwise it rejects. This can
be done easily in states while scanning the first row of the right part. A
accepts if and only if the formula is evaluated to true.

To complete the description, it remains to give more details on the second
part of the algorithm.

Whenever A finishes guessing of blocks that match the currently processed
code in the left part, it moves the head to the column storing this code and erases
all fields in the column except the first one. The code to be processed next is
then the leftmost column not containing erased symbols thus it can be detected

64

∗
∗
∗ ¬ ∨ ∧ ∨ ¬@ @

@ @
@@

@ @
@@

@ @
@@

@ @
@@

@
@1

0
1
1

0
0

0
1

1
0

0
1

Figure 6.4: Computation over the picture encoding (¬A ∨ B) ∧ (C ∨ ¬B) in
progress. The automaton has completed evaluation and guessing of occurrences
of variables A and B (they were guessed correctly, A evaluates to false, while B
to true). Variable C encoded by 10 is being processed now. Moreover, the third
block has been guessed to contain an occurrence of it (at this stage, within the
block, symbols are erased in the third column only).

easily. Moreover, whenever A verifies that a block in the right part matches the
currently processed code and records a boolean value in the block, the block is
always left with all fields in the second and third column, except the first row,
being erased. On the other hand, a block that has not been guessed to store a
variable matching the currently processed code has all the mentioned fields non-
erased. This helps to distinguish between already evaluated and non-evaluated
blocks.

Now, let us assume A has already processed some of the codes and it is about
to start to process the next one. It non-deterministically chooses a boolean value
for the correspondent variable and remembers it in states. It places the head
in the first block and then, while moving it left, it guesses if the scanned block
matches the current code (note that this guess is done only if the block has not
been already matched to one of the previously processed codes and evaluated).
If a block is chosen, A erases all symbols in its third column except the first one.
After that, A repeatedly checks bit by bit of the code represented in the block
if it matches the correspondent bit in the left part. It starts in the last row. In
states, it records the least significant bit, moves the head left until it detects
the leftmost non-erased field in the left part (when A encounters ∗, it is notified
about entering the left part). It verifies if the bit recorded in states is equal to
the scanned bit. After that, it moves the head one row up and performs the
verification on the next pair of bits. Note that A is able to detect the block in
the right part currently being processed, since it is the only block containing in
the scanned row non-erased symbol in the middle column and @ in the third
column. When the verification is done, A records the chosen boolean value in
the first field of the second column of the block and erases the remaining fields
of the column. Then it continues in moving the head right and guesses the
other occurrences of the variable. See Figure 6.4 for a scheme illustrating a
computation of A in progress.

It should be clear that the described algorithm is correct. If the encoded
formula is satisfiable, A can guess a suitable evaluation of variables as well as
occurrences of variables in the blocks. On the other hand, if A manages to assign
boolean values to all blocks, this assignment is always consistent – whenever two
blocks store the same variable code, the same boolean value has been assigned
to them. ut

In the proof, we encoded F by a picture of size (2k + 1 + 3 · n)× (k + 1). It
means, we needed O(|V | · log |V |+ n · log |V |) = O(n · log |V |) fields to do it.

65

Let the language the automaton A recognizes be denoted by LSAT . In the
presented construction, we used the advantage of the two-dimensional topology.
Binary codes of variables were represented in columns, thus a check if the i-th
bits of two codes equal or not could have been simply done moving the head in a
row. We would have difficulties if we try to design a one-dimensional forgetting
automaton recognizing γ(LSAT) (see section 4.1 for the definition of γ). To
make an analogous construction for one-dimensional FA, it would require to use
different encoding of formulas that will provide space large enough to perform
the checks. Another possibility is to encode variables in unary which requires
strings of length O(n · |V |). Such a construction has been done by F. Mraz for
one-dimensional forgetting automata with the operation of deletion.

Note that we have not explicitly shown that LSAT is NP2d-complete, how-
ever, it is implied by Theorem 5, since γ(LSAT) is surely an NP -complete
language.

Since it is very unlikely that NP = P , based on the previous two proposi-
tions, we can state the following conjecture.

Conjecture 1 L(DFA) is a proper subset of L(FA).

Furthermore, since the language in Lemma 7 is not in L(OTA), we know
that L(DFA) is not a subset of L(OTA). On the other hand, by Proposition
11 and Proposition 9, NP 6= P implies L(OTA) is not subset of L(DFA).

Conjecture 2 L(DFA) and L(OTA) are incomparable.

66

Chapter 7

Grammars with
Productions in Context-free
Form

7.1 Introduction into Two-dimensional
Context-free Grammars

One of the motivations why the grammars we deal with in this chapter are
studied comes from M.I. Schlesinger and V. Hlavac. They present the grammars
in [22] as a tool for pattern recognition based on syntactic methods.

We will follow their informal description leading to the notion of two-
dimensional context-free grammars and giving basic ideas about their usage
in the mentioned area.

Let us consider the set of all pictures over the alphabet Σ = {b, w}, where
b, resp. w represents a pixel of the black, resp. white color. Our task will be
to define a sub-set of pictures that can be considered to contain exactly the
letter H written in black on white (in [22], Schlesinger and Hlavac work with
the Russian letter ”sh”). We require the definition to be based on rules of the
following forms:

1. A picture of size 1 × 1 is named b, resp. w if its the only field is of the
black, resp. white color.

2. A picture is named s if it can be divided into two parts by a horizontal
line so that the top part is named st and the bottom part is named sb.

3. A picture is named s if it can be divided into two parts by a vertical line
so that the left part is named sl and the right part is named sr.

4. A picture is named s if it is also named s′.

The presented rules are simple enough to be checked automatically by a
recognizing device.

We would like to form a suitable set of rules determining which pictures are
named H. The first rule is demonstrated by Figure 7.1. A picture is named H

67

H1 ︸ ︷︷ ︸
H1

︸︷︷︸
WR

H︷ ︸︸ ︷

Figure 7.1: Generating the letter H – a usage of productions (1.1) and (1.2),
i.e. the separation of a white border on the right.

H2

H1

}
WR

H2

Figure 7.2: Generating the letter H – a usage of productions (2.1) and (2.2),
i.e. the separation of a white border on the top.

if it can be divided by a vertical line into two pictures, where the right part is a
white rectangle (a picture named WR) and the left part is a picture representing
H such that the letter is ”attached” to the right border of the picture (a picture
named H1). Also, a picture is named H if it is named H1. This rule covers
situations, where there is no white rectangle neighboring with the letter on the
right side. We denote these two rules by assignments as follows:

H := H1 (1.1)
H := H1 |WR (1.2)

We can continue with pictures named H1 analogously – they can be divided
by a horizontal line into two parts, where the top (if present) is a white rectangle
and the bottom a picture named H2 storing the letter H attached to the top-
right corner. After that we can cut a white rectangle on the left (we get H3)
and finally on the bottom (we get H4). The corresponding rules, illustrated in
Figures 7.2, 7.3 and 7.4, follow:

H1 := H2 (2.1)
H1 := WR

H2 (2.2)
H2 := H3 (3.1)

H2 := WR |H3 (3.2)
H3 := H4 (4.1)
H3 := H4

WR (4.2)

A picture named H4 is decomposed into a vertical concatenation of pictures
BR and T , where BR is a black rectangle. T is formed of V and BR, V is a
horizontal concatenation of WR and V 1 and finally, V 1 is decomposed into BR
and WR – see Figure 7.5. Rules follow:

68

H3 ︸ ︷︷ ︸
H3

︸︷︷︸
WR

H2︷ ︸︸ ︷

Figure 7.3: Generation of the letter H – a usage of productions (3.1) and (3.2),
i.e. the separation of a white border on the left.

H4

H3

}
WR

H4

Figure 7.4: Generation of the letter H – a usage of productions (4.1) and (4.2),
i.e. the separation of a white border on the bottom.

H4 := T |BR (5.1) T := BR |V (5.2)
V := WR

V 1 (5.3) V 1 := BR
WR (5.4)

It remains to give rules for pictures named WR and BR respectively:

WR := WR
WR (6.1) BR := BR

BR (7.1)
WR := WR |WR (6.2) BR := BR |BR (7.2)

WR := w (6.3) BR := b (7.3)

See related Figures 7.6 and 7.7.
Figure 7.8 shows an example of a picture of the letter H, which can be

named H using the presented rules, as well as an example of a picture which
does not contain H and which cannot be named H applying the rules. How-
ever, the same Figure demonstrates that our definition is not fully ideal. We

T︷ ︸︸ ︷ BR

︸ ︷︷ ︸
H4

V︷ ︸︸ ︷BR

︸ ︷︷ ︸
T

V

 V 1

}
WR

V 1

}
WR

}
BR

Figure 7.5: Generating the letter H – a usage of productions (5.1), (5.2), (5.3)
and (5.4).

69

WR

WR

WR WR WR︸ ︷︷ ︸
WR

w

Figure 7.6: Generation of the letter H – a usage of productions (6.1), (6.2) and
(6.3), i.e. a decomposition of a white rectangle.

BR

BR

BR BR BR︸ ︷︷ ︸
BR

b

Figure 7.7: Generating the letter H – a usage of productions (7.1), (7.2) and
(7.3), i.e. a decomposition of a black rectangle.

can see a picture named H which can be hardly considered to be H and, on
the other hand, a picture containing H with some small fluctuations that can-
not be named H using the rules. Our example is not suitable to be used for
pattern recognition directly. Its purpose is mainly to show tools on which more
sophisticated approaches can be based.

We have seen four types of context-free rules. These rules can be translated
into productions as follows:

N → A B N → A
B

N → A N → a

N , A and B are non-terminals, a is a terminal. There is a possibility to go
beyond these simple right-hand sides containing one or two elements only – a
general matrix can be considered there, productions are of the form N → [Aij]p,q

then. The context-freeness is still preserved. This form can be considered as
the generalization of the form of one-dimensional context-free productions.

(a) (b) (c) (d)

Figure 7.8: (a) a picture resembling the letter H that can be generated by the
presented productions; (b) a picture not resembling H that cannot be generated;
(c) a picture not resembling H that can be generated; (d) a picture resembling
H that cannot be generated

70

Schlesinger and Hlavac do not study context-free grammars with general
right-hand sides, but we can find another source, where these grammars appear
– they were introduced by P. Jiricka [9] in his master thesis. Comparing to
the example given above, a different approach to define pictures generated by
a context-free grammar is used there. It is based on sentential forms and the
relation ”derives” rather than the presented recurrent approach. To complete
the list, we should mention O. Matz [13] who also studies context-free grammars
with single right-hand sides. His paper focuses on connections between the
grammars and a sort of two-dimensional regular expressions.

Results in [22], [9] and [13] cover a few basic properties of the class generated
by context-free grammars only. Schlesinger and Hlavac give an algorithm solving
the membership problem in polynomial time (an analogy to the algorithm known
from the one-dimensional case), P. Jiricka shows how a two-dimensional context-
free language can be recognized by a FA. In the next sections we will give a
more complex characterization of the class. It will include the following facts:

• Both approaches of how to define generated pictures (i.e. the recurrent
one and that one based on sentential forms) lead to the same class.

• The generative power of context-free grammars having restricted right-
hand sides of their productions (Schlesinger, Hlavac) is less than the gen-
erative power of context-free grammars without the restriction.

We will also see that there are many properties of the class that do not resemble
the properties of the class of one-dimensional context-free languages. That is the
reason why we do not use the term context-free grammars, but rather grammars
with productions in context-free form. We will keep on using the second term
strictly from now.

As for the other proposals of two-dimensional context-free grammars, resp.
languages, we will show two of them in the end of this chapter (section 7.9). We
will also make a basic comparison between these languages and L(CFPG).

7.2 CFP Grammars, Derivation Trees

In this section we give a formal definition of the grammars with productions
in context-free form and the languages generated by them. We also introduce
derivations trees for the grammars.

Definition 11 A two-dimensional grammar with productions in context-free
form is a tuple (VN , VT , S0,P), where

• VN is a finite set of non-terminals

• VT is a finite set of terminals

• S0 ∈ VN is the initial non-terminal

• P is a finite set of productions of the form N → W , where N ∈ VN and
W ∈ (VN ∪ VT)∗∗ \{Λ}. In addition, P can contain S0 → Λ. In this case,
no production in P contains S0 as a part of its right-hand side.

71

Definition 12 Let G = (VN , VT , S0,P) be a two-dimensional grammar with
productions in context-free form. We define a picture language L(G,N) over
VT for every N ∈ VN . The definition is given by the following recurrent rules:

A) If N → W is a production in P and W ∈ VT
∗∗, then W is in L(G,N).

B) Let N → [Aij]m,n be a production in P, different to S0 → Λ, and Pij

(i = 1, . . . , n; j = 1, . . . ,m) be pictures such that

– if Aij is a terminal, then Pij = Aij

– if Aij is a non-terminal, then Pij ∈ L(G,Aij)

Then, if
⊕

[Pij]m,n is defined,
⊕

[Pij]m,n is in L(G,N).

The set L(G,N) contains exactly all pictures that can be obtained by applying
a finite sequence of rules A) and B). The language L(G) generated by the
grammar G is defined to be the language L(G,S0).

We abbreviate a two-dimensional grammar with productions in context-free
form by CFPG (or by CFP grammar). L(CFPG) is the class of all languages
generated by these grammars. Languages in L(CFPG) are called CFP lan-
guages. If P ∈ L(G,N), we say N generates P in G, or shortly, N generates P
if it is evident from the context, which grammar G we refer to.

To illustrate the presented definition, we give a simple example of a CFPG
generating the set of all non-empty square pictures over a one-symbol alphabet.

Example 7 Let G = (VN , VT , S0,P) be a CFP grammar, where VT = {a},
VN = {V,H, S0} and P contains the following productions:

1) H → a 2) H → a H 3) V → a 4) V → a
V

5) S0 → a 6) S0 → a H
V S0

Productions 1), 2) are one-dimensional, thus it should be clear that L(G,H)
contains exactly all non-empty rows of a’s – applying rule A) on production
1), we have a ∈ L(G,H). Furthermore, if ak ∈ L(G,H), then rule B) applied
on production 2) gives ak+1 ∈ L(G,H). Similarly, L(G,V) contains non-empty
columns of a’s.

Applying rule A) on production 5), we get that a is generated by G. Since
a ∈ L(G,S0) ∩ L(G,H) ∩ L(G,V), rule B) applied on production 6) gives that
the square 2 × 2 is also in L(G,S0). The row, resp. column of length 2 is
generated by H, resp. V , thus rule B) can be applied again to produce the
square 3 × 3, etc. By induction on the size, we can show that each non-empty
square picture over {a} can be generated and that there is no way to generate
any non-square picture.

Definition 13 Let G = (VN , VT , S0,P) be a CFPG. A derivation tree for G
is every tree T satisfying:

• T has at least two nodes.

72

(S0, 3× 3)
³³³³³³³

´
´

´́
¦
¦¦

PPPPPPP
(a, 1× 1) (H, 1× 2) (V, 2× 1) (S0, 2× 2)

´
´

´́
¦
¦¦

E
EE

Q
Q

QQ
L
LL

HHHHH

PPPPPPP

```````````̀
(a, 1× 1) (H, 1× 1) (a, 1× 1) (V, 1× 1) (a, 1× 1) (H, 1× 1) (V, 1× 1)(S0, 1× 1)

(a, 1× 1) (a, 1× 1) (a, 1× 1) (a, 1× 1) (a, 1× 1)

Figure 7.9: Example of a derivation tree T , where p(T ) is the square 3× 3 over
{a}. Nodes are represented by assigned labels, edges appear in the lexicograph-
ical order which is induced by their labels.

• Each node v of T is labelled by a pair (a, k× l). If v is a leaf then a ∈ VT

and k = l = 1 else a ∈ VN and k, l are positive integers.

• Edges are labelled by pairs (i, j), where i, j ∈ N+. Let I(v) denote the set
of labels of all edges connecting v with its children. Then, it holds that
I(v) = {1, . . . , m} × {1, . . . , n} and m · n is the number of descendants of
v.

• Let v be a node of T labelled by (N, k × l), where I(v) = {1, . . . , m} ×
{1, . . . , n}. Let the edge labelled by (i, j) connect v and its child vij labelled
by (Aij , ki × lj). Then,

∑m
i=1 ki = k,

∑n
j=1 lj = l and N → [Aij ]m,n is a

production in P.

If S0 → Λ ∈ P then the tree TΛ with two nodes – the root labelled by (S0, 0× 0)
and the leaf labelled by (Λ, 0× 0) – is a derivation tree for G too (the only edge
in TΛ is labelled by (1, 1)).

Let T be a derivation tree for a CFP grammar G = (VN , VT , S,P) such that
T 6= TΛ, V be the set of its nodes. We assign a picture to each node of T by
defining a function p : V → VT

∗∗ as follows: if v ∈ V is a leaf labelled by (a, 1×1)
then p(v) = a else p(v) =

⊕
[Pij ]m,n, where I(v) = {1, . . . , m} × {1, . . . , n},

Pij = p(vij), vij is the child of v connected by the edge labelled by (i, j). We
also define p(T ) to be p(r), where r is the root of T , moreover, p(TΛ) = Λ.

We can make a simple observation: if v ∈ V is labelled by (N, k × l) then
rows(p(v)) = k and cols(p(v)) = l.

Figure 7.9 shows an example of a derivation tree which corresponds to gen-
erating the square 3× 3 in Example 7.

Lemma 8 Let G = (VN , VT , S,P) be a CFP grammar and N ∈ VN .

1. Let T be a derivation tree for G having its root labelled by (N, k× l). Then
p(T ) ∈ L(G,N).

2. Let P be a picture in L(G,N). There is a derivation tree for G with root
labelled by (N, k × l) such that rows(P ) = k, cols(P ) = l and p(T ) = P .

73



Proof. The lemma follows directly from the previous definitions. ut

7.3 L(CFPG) in Hierarchy of Classes

Example 8 Let us define a picture language L over Σ = {a, b} as follows:

L = {P | P ∈ {a, b}∗∗ ∧ ∃i, j ∈ N : 1 < i < rows(P ) ∧ 1 < j < cols(P ) ∧
∀x ∈ {1, . . . , rows(P )}, y ∈ {1, . . . , cols(P )} : P (x, y) = a ⇔ x 6= i ∧ y 6= j}

Informally, a picture P over Σ is in L iff P contains exactly one row and one
column completely filled by b’s and this row, resp. column is not the first neither
the last row, resp. column of the picture. An example follows:

a b a a a a
a b a a a a
b b b b b b
a b a a a a

L belongs to L(CFPG). It is generated by the CFP grammar G =
(VN , Σ, S,P), where VN = {S, A, V, H, M} and the set P consists of the fol-
lowing productions:

S →
A V A
H b H
A V A

A → M A → A M M → a M → a
M

V → b V → b
V

H → b H → b H

The non-terminal M generates one-column pictures of a’s, A generates the lan-
guage {a}∗∗ \ {Λ}, V generates one-column pictures of b’s and finally, H gener-
ates one-row pictures of b’s.

Definition 14 Let G = (VN , VT , S,P) be a CFP grammar. We say G is
CFPG2 iff each production in P has one of the forms: N → a, N → Λ,
N → A, N → [Aij ]1,2 or N → [Aij ]2,1, where a is a terminal, A and each Aij

non-terminals.

CFPG2 grammars are the grammars studied by Schlesinger and Hlavac [22].
Let L(CFPG2) denote the class of languages generated by them. We will
prove that L(CFPG2) is strictly included in L(CFPG).

In proofs that follow, we will often use words a picture P is generated in
the first step by a production Π. Assuming we refer to a grammar G, the
interpretation should be as follows: there is a derivation tree T for G such that
p(T ) = P and Π is the production connected to the root of T .

Theorem 12 L(CFPG2) is a proper subset of L(CFPG).

74



Proof. By contradiction. Let G = (VN , VT , S,P) be a CFPG2 generating the
language L in Example 8. Let n be an integer greater than 2 (chosen with respect
to the requirements that will be given), L1 be the subset of L containing exactly
all square pictures of size n in L. We can choose n to be sufficiently large so that
no picture in L1 equals the right-hand side of an arbitrary production in P. L1

consists of (n − 2)2 pictures. At least d (n−2)2

|P| e of these pictures are generated
in the first step by the same production. Without loss of generality, let the
production be S → AB. If n is large enough, then there are two pictures with
different indexes of the row of b’s (maximally n− 2 pictures in L1 can have the
same index). Let us denote these pictures by O and O. It holds O = O1

dO2,
O = O1

dO2, where O1, O1 ∈ L(G,A) and O2, O2 ∈ L(G,B) which implies
O = O1

dO2 ∈ L(G). It is a contradiction, since O contains b in the first and
and also in the last column, but these b’s are not in the same row. ut

We have found later that O.Matz [13] already showed there is a language
in L(DFSA) that cannot be generated by any CFPG2. His example of the
language is similar to that one presented in the proof.

The technique of proof based on categorizing pictures by a production used
to generate them in the first step will be used several times in the following
text, so, the purpose of the proof was also to introduce the technique on a
simple language. The other usages will be more complicated.

Example 9 Let us define a language L over the alphabet Σ = {0, 1, x}, where
a picture P ∈ Σ∗∗ is in L if and only if:

1. P is a square picture of an odd size

2. P (i, j) = x ⇔ i, j are odd indexes

3. if P (i, j) = 1 then the i-th row or the j-th column (at least one of them)
consists of 1’s

Here is an example of a picture in L:

x 1 x 1 x 0 x
0 1 0 1 0 0 0
x 1 x 1 x 0 x
0 1 0 1 0 0 0
x 1 x 1 x 0 x
1 1 1 1 1 1 1
x 1 x 1 x 0 x

Lemma 9 L is recognizable by a DFSA.

Proof. A DFSA automaton A recognizing L can be constructed as follows. A
checks if the input picture is a square picture of an odd size. It can be done
by counting mod 2 when moving the head diagonally. After this verification, A
scans row by row and checks if the symbol x is contained exactly in all fields
having both indexes of odd values and in all cases when a field contains the

75



symbol 1, whether the four neighboring fields form one of the following allowed
configurations:

1
x 1 x

1

x
1 1 1

x

1
0 1 0

1

0
1 1 1

0

1
1 1 1

1

x
# 1 1

x

#
x 1 x

1

x
1 1 #

x

1
x 1 x

#

This local check ensures that the third property is fulfilled. ut

Lemma 10 L(DFSA) is not a subset of L(CFPG).

Proof. Let G = (VN , VT , S,P) be a CFPG such that L(G) = L, where L is the
language from Example 9. Without loss of generality, P does not contain any
production of the form A → B, where A, B are non-terminals. We take an odd
integer n = 2k + 1 which conforms requirements listed in the next paragraphs.

Let L1 be the set of all pictures in L of size n. We can consider n to be
chosen sufficiently large so that no picture in L1 equals the right-hand side of
an arbitrary production in P. We have |L1| = 2k · 2k = 2n−1 (there are k
columns and k rows, where, for each of them, we can choose if the whole row,
resp. column consists of 1’s or not). L1 contains at least d 2n−1

|P | e pictures that
can be generated in the first step by the same production. Let the production
be S → [Aij ]p,q and let the mentioned set of pictures be L2. Without loss of
generality, we assume p ≥ q and moreover, p ≥ 2 (otherwise the production is
of the form A → B).

Now, our goal is to show there are two pictures U, V ∈ L2 that can be
written as U =

⊕
[Uij ]p,q, V =

⊕
[Vij ]p,q, where all Uij , Vij are in L(G, Aij)

and rows(Uij) = rows(Vij), cols(Uij) = cols(Vij) (we denote this property by
(1)) and furthermore, that the first row of U does not equal the first row of V
(let this be property (2)). The number of all different sequences

cols(U1,1), cols(U1,2), . . . , cols(U1,q), rows(U1,1), rows(U2,1), . . . , rows(Up,1)

is bounded by np+q. It implies there is a subset L3 ⊆ L2 such that

|L3| ≥ 2n−1

|P| · np+q

and each pair of pictures in L3 fulfills property (1). Let L′ be a subset of L2,
where arbitrary two different pictures do not satisfy property (2). We have
|L′| ≤ 2k = 2

n−1
2 (columns of even indexes that are completely filled by 1 are

determined by the fixed first row, thus we can choose among k rows of even
index which of them to completely fill by 1). We can assume n is sufficiently
large so that

|L3| > 2
n−1

2

It implies the pair U , V we are looking for can be found in L3. If we replace
sub-pictures U1,1, . . . , U1q in U by sub-pictures V1,1, . . . , V1q (U1i being replaced

76



by V1i), we get a picture P which belongs to L again. It is a contradiction, since
P does not have all properties of pictures in L. ut

Since one-dimensional context-free grammars are a special case of CFP
grammars, all context-free languages are included in L(CFPG). It implies that
L(CFPG) is not a subset of L(DFSA), neither of L(OTA). We summarize this
observation and the proved theorem:

Theorem 13 L(CFPG) is incomparable to L(DFSA), L(FSA), L(DOTA)
and L(OTA).

Proof. Follows from Lemma 10 and the observation. ut

P. Jancar, F. Mraz and M. Platek have shown in [8] that the class of one-
dimensional context-free languages can be characterized by one-dimensional for-
getting automata. We extend this idea into two dimensions and study the re-
lationship between FA’s and CFP grammars. Our result is as follows: for
a given CFP grammar G, it is possible to construct a FA recognizing L(G).
On the other hand, since L(FSA) ⊆ L(FA), it is clear that FA’s are stronger
than GFP grammars and the model cannot be used as a recognizing device
characterizing L(CFPG).

The construction in the following proof is based on the construction that
has been already presented by P. Jiricka in [9]. Comparing to this author, our
version includes some improvements and simplifications. We also investigate
some ”edge” cases that are missing in [9].

Theorem 14 L(CFPG) ⊆ L(FA)

Proof. Let us consider a CFP grammar G = (VN , VT , S0,P). We describe
how to construct a two-dimensional forgetting automaton A accepting L(G).
Without loss of generality, we assume P does not contain any production of
the form A → B, where A,B ∈ VN . Let the working alphabet of A be Σ =
VT ∪ {#, @} and O be an input to A. The idea of the computation is to try to
build a derivation tree T in G having the root labelled by (S0, rows(O)×cols(O))
and p(T ) = O.

Let M be the portion of the tape storing O in the initial configuration. By
a region we mean each block B ⊆ M labelled by an element in VT ∪ VN . We
distinguish two types of regions:

• t-region is a region consisting of one field and having assigned an element
in VT as the label

• N -region is a region labelled by an element in VN (there is no restriction
on its size)

We say that a region is represented if there is information stored in the tape
determining the position, size and label of the region (details on how this rep-
resentation is realized will be given later). The computation of A consists of
several cycles. After finishing a cycle, let S be the set containing exactly all
currently represented regions. It always holds that each two regions in S are
disjunct and the union of all the regions equals M (we treat regions as blocks,
when taking them as operands of operations like union and intersection, their

77



labels are not relevant at this moment). Moreover, if R is an N -region in S
labelled by X, then R ∈ L(G, X). At the beginning (before the first cycle is
started), M is split into rows(O) · cols(O) represented t-regions, each region at
position (i, j) being labelled by O(i, j). A cycle can be roughly described as
follows: A non-deterministically chooses a block B that is the union of some
represented regions, where the number of regions is limited by a global con-
stant. Furthermore, it chooses a non-terminal N and checks if N can generate
B applying a sequence of productions on the selected represented regions. After
finishing a cycle, if S contains exactly one region labelled by S0, it is clear that
O can be generated by G.

To store information, A uses the technique presented in Example 6. Let n be
a suitable constant determining the decomposition into blocks. We will specify it
later, when we collect all requirements on the storage capacity of blocks. We will
assume rows(O), cols(O) ≥ n. The rest of inputs will be discussed as a special
case. To distinguish between referring a block of the decomposition and a block
of M in general, let us denote the set of blocks related to the decomposition by
B.

We proceed by a description of how to represent regions during the com-
putation. First of all, we will require that A does not represent any N -region
that is a subset of a block in B – we denote this requirement by (1). It should
be interpreted as follows: if O ∈ L(G), then A can derive this fact keeping the
requirement fulfilled upon finishing each cycle – we will show later how this can
be done. The requirement ensures A need not to represent a large number of
regions in a block. Since there can be Ω(n2) regions of size 2 × 2, it would be
problematic to fit correspondent information into the block. Instead of that, it
is better to derive such a small region within a cycle when needed and combine
it immediately with another regions to get a larger region.

In the following text, we work with N -regions fulfilling the requirement. Let
us consider a block B ∈ B of size k × l and an N -region R (we remind that
n ≤ k, l < 2n). Let us denote the four fields neighboring with the corners of B
as the C-fields of B (see Figure 7.10). We say that B is a border block of R iff
R ∩ B 6= ∅ and R does not contain all C-fields of B. A represents a region in
its all border blocks.

We consider the bits available to store information in B to be ordered in
some way and divided into groups. One group represents one intersection be-
tween B and some region such that B is a border of the region. Each group
has an usage flag consisting of two bits determining if the group is not used
(information has not been stored in the group yet), used (the group is currently
used and represents an intersection) or deleted (stored information is not rel-
evant anymore). The first state is indicated by two non-erased symbols, the
second one by one symbol erased and finally the third one by two erased sym-
bols. It allows to change the flag from ’not used’ to ’used’ and from ’used’ to
’deleted’. The remaining bits of groups are reserved to represent coordinates in
B (one coordinate is a value in {1, . . . , 2n−1}, thus, stored in binary, it requires
at most 2 · blog2(2n)c bits), non-terminals (they can be represented in unary,
which requires |VN | bits per one item) and some additional flags that will be
listed in next paragraphs.

We say that an intersection between R and B is of the first type if R contains
one or two C-fields of B and of the second type if R does not contain any C-
field. It is obvious that if R has an intersection of the first, resp. second type

78



C1 C2

C4 C3

Figure 7.10: A block and its C-cells; eight different types of intersection between
the block and an N1-region.

with a border block then it has intersections of the same type with all its border
blocks. It allows us to denote by N1-region, resp. N2-region each region having
intersections of the first, resp. second type.

Let us inspect all possible configurations of an intersection between B and
some N1-region R. There are 8 different possibilities with respect to which
C-fields of B are included in R – see Figure 7.10.

It means one intersection can be represented using 3 bits determining the
type and one or two coordinates determining the exact position of the intersected
part.

Next, let us solve the question how many intersections with N1-regions A
needs to represent during the computation in B. First of all, we will consider
a situation, when B already represents an intersection with some N1-region R1

and a cycle is to be performed. If R2 is a new N1-region to be represented
(a product of the cycle) such that R1 ⊆ R2 and R2 has exactly the same
intersection with B as R1, then, to spare space in B, it is possible to reuse the
old representation (A needs only to record a change of the label – we will describe
in the next paragraph how this can be done). So, we have to estimate how many
different intersections (with respect to type and coordinates) with represented
N1-regions can appear in B. To do it, we observe that after performing a cycle,
B can be a border block of at most 4 different represented N1-regions. The
border (coordinates in B) of one N1-region can be changed maximally k + l− 2
times (before it completely leaves B), because every change increases, resp.
decreases at least one of the coordinates. It means it is sufficient if B can
represent 4 · (k + l − 2) ≤ 4 · (4n) ≤ 16 · n intersections.

While the border of an N1-region R is represented in each border block, the
label corresponding to R will be recorded in one of the border blocks only. We
assume, each group of bits representing an intersection of the first type contains
space to store one non-terminal together with a usage flag, which can be in one
of the states ’not used’, ’used’ or ’deleted’ again. If R is represented, exactly
one of the usage flags is in the ’used’ state. Then, the related non-terminal is
stored in the correspondent block.

To show that this method is correct, we need to realize that whenever a new
N1-region is produced by a cycle and needs to be represented, then its border
has at least one intersection of the first type, which is represented first time (i.e.
it has not been reused from a region represented before, see Figure 7.11). So,
an empty slot for the related non-terminal can be always found. Note that if A
knows coordinates of R in B it can determine, which group of bits represents R
in neighboring blocks, thus it is able to traverse trough all border blocks of R.

We consider N2-regions to be vertical or horizontal (see Figure 7.10). Let
the width of a vertical, resp. horizontal N2-region be its number of columns,

79



R1 R2

B

Figure 7.11: If the union of regions R1, R2 has to be represented, then the
border block denoted by B contains a new intersection, thus a new group of
bits in B will be used to represent it. Blocks in B are depicted by dashed lines.

a) b)

Figure 7.12: a) Three types of intersection between a horizontal N2-region and
a block. The intersection can contain the right end of the region, the left end
or neither of them. b) Three types of intersection between a vertical N2-region
and a block.

resp. rows. We add the second requirement, denoted (2), on the representation
of regions: If R is a represented horizontal, resp. vertical N2-region then there
was not any different represented horizontal, resp. vertical N2-region of the
same width having the same border blocks.

Without loss of generality, let R be a horizontal N2-region. There are three
types of intersection between R and B, thus the kind of an intersection can
be represented using tree bits, where the first one determines if the region is
vertical or horizontal and the second and third bit indicate one of the three
possible types. Two coordinates are used to record positions of the first and
last row of R. These coordinates are reused similarly as in case of N1-regions.
Also the representation of labels is done using the technique from the previous
case. It is possible, since requirement (2) ensures that whenever a new N2-region
is to be represented, then it always has at least one new intersection comparing
to already represented intersections, thus there can be found a group of bits that
has not been used to store a non-terminal yet. The last information required to
be recorded consists of coordinates of the left end of R in the leftmost border
block and the right end in the rightmost border block. To spare space, these
coordinates are handled together with the label. It means, the ”usage flag and
non-terminal” part of each group of bits representing an N2-region is extended
by space for two coordinates.

Now, we estimate how many different intersections with N2-regions A needs
to represent in a block B. We are interested in intersections that differ in type
or in coordinates of the first and last row (horizontal N2-regions), resp. columns
(vertical N2-region). Other coordinates are not relevant at this point. Let us
consider horizontal intersections of some fixed kind and let R be the set of all
different intersections of this kind that have to be represented in B. If I1, I2

are two different elements in R, then one of these intersections covers the other

80



or I1, I2 are disjunct. We say I1 directly covers I2 if I1 covers I2 and there
is not any I3 ∈ R (I3 6= I1, I3 6= I2) such that I3 covers I2 and I1 covers I3.
We can construct trees corresponding to the relation ”directly covers”. Leaves
are intersections that do not cover any other intersections, children of a node
are all directly covered intersections. There are at most 2n leaves which implies
the trees have at most 4 · n nodes, thus |R| ≤ 4 · n. If we consider both types
of N2-regions and three kinds of intersections per a type, we can conclude that
6·4·n = 24·n different intersections are needed to be represented in B maximally.

We complete and summarize what information should be stored in a block
during the computation.

• One bit determines if B is a subset of some derived N -region or not – this
information is changed during the computation once maximally. Accord-
ing to this bit, A determines if a field of a block that is not a border block
of any N -region is a t-region or not.

• 16 · n groups of bits are reserved to represent intersections of the first
type. Each group consists of a usage flag, 3 bits determining the type of
intersection and a subgroup storing one usage flag and label.

• 24 · n groups of bits are reserved to represent intersections of the second
type. Comparing to the previous type, the subgroup of these groups is
extended by two coordinates.

It means we need O(n · log(n)) bits per a block, while a block can store Ω(n2)
bits, thus a suitable constant n can be found.

We can describe cycles in more details now. Let d be the maximal number
of elements of the right-hand side of a production among productions in P and
let c = d · 16 · n2. In a cycle, A non-deterministically chooses a non-represented
region R which is the union of some set of regions R = R1, . . . , Rs that are
all represented, and a sequence of productions P1, . . . , Pt, where s, t ≤ c. A
chooses R as follows. It starts with its head placed in the top-left corner of
O. It scans row by row from left to right, proceeding from top to bottom and
non-deterministically chooses the top-left corner of R (it has to be the top-left
corner of some already represented region). Once the corner is chosen, T moves
its head to the right and chooses the top-right corner. While moving, when T
detects a region Ri first time, it postpones the movement right and scans borders
of Ri. It remembers in states what are neighboring regions of Ri including their
ordering and also the label of Ri. After finishing the scan, it returns the head
back to the position, where the movement right was interrupted, and continues.
When the top-right corner is ”claimed”, A scans next rows of R until it chooses
the last one. Every time T enters a new represented region (not visited yet), it
detects its neighbors using the method we have already mentioned. Thanks to
the recorded neighboring relation among Ri’s, A is able to move its head from
one region to any other desired ”mapped” region.

A continues by deriving new regions. Note that all derivations are performed
in states of A only. The first region is derived by P1. A chooses S1 =

⊕
[Sij ]s1,t1 ,

where each Sij is one of Ri’s and checks if S1 can be derived. Let us consider all
Sij ’s to be deleted from R and S1 to be added. A performs the second step on
the modified set R using P2, etc. In the last step, A derives R. After that, A
records changes in the tape – representations of regions in R are deleted, while
a representation of the new region R is created.

81



If the region corresponding to O labelled by S0 is derived then T has been
constructed and O ∈ L. On the other hand, let T be a derivation tree for G
having its root labelled by (S0, rows(O)× cols(O)) and p(T ) = O. A can verify
whether O ∈ L(G) despite the requirements (1), (2) as follows. The selection of
regions in cycles is driven by the structure of T . Let us consider the nodes of T
to be ordered in a sequence V, where each parent is of a greater index than its
any descendant (e.g. the post-order ordering). The sequence of regions to be
represented determined by V as follows. The nodes are searched from the first
one to the last one and a region R corresponding to a node v is chosen to be
derived and represented iff

• R is not a subset of some border block (requirement (1))

• if R is an N2-region, then, there is not any region R′ corresponding to a
node v′ which is of a less index than v, such that R′ ⊆ R, R and R′ have
the same border blocks and the same width (requirement (2))

For a node v ∈ V, let r(v) be the region corresponding to v. Let R = r(v) be
chosen to be produced in a cycle. We denote by T (v) the subtree of T which is
induced by v taken as the root and consists of all nodes located in paths from
v to leaves. Next, we denote by T (R) the only subgraph of T (v) determined as
follows:

• T (R) is a tree, v is its root, a node v′ in T (v) is a leaf in T (R) iff the region
corresponding to v′ is currently represented (meaning at the moment the
cycle is started)

• each node and edge in T (R) which is a part of the path from v to a leaf
of T (v) is in T (v)

Since each leaf corresponds to a region and each non-leaf node to a usage of one
production in a cycle, our goal is to show that the number of leaves, resp. inner
nodes of T (R) is always bounded by c.

v has at most d descendants. If v′ is one of them, then r(v′) is either
a represented region, a region, which is a subset of some border block or non-
represented N2-region. If the second case occurs, then r(v′) contains at most 4n2

fields and thus T (R)(v′) has at most 4n2 leaves. In the third case, there must be
a leaf v1, a descendant of v′ (possibly non-direct), such that r(v1) is a represented
N2-region of the same width and border blocks as r(v′) and r(v1) ⊆ r(v′). It
means the sub-tree T (R)(v′) has at most 2 · (2n) · (2n − 1) + 1 ≤ 8 · n2 leaves,
see Figure 7.13.

Summing over contributions of children of v, T (R) can have d · 8 · n2 leaves
maximally implying the number of inner nodes is not greater than 16 ·d ·n2 ≤ c,
since, except those nodes that are parents of a leaf, each other inner node has
at least two descendants. The case when a node has one descendant must
correspond to productions of the form A → a, where a ∈ VT (there are no
productions A → B, B ∈ VN ).

It remains to discuss the special case when either the width or height of O is
less than n. If cols(O) and rows(O) are both less than n, A scans all symbols and
computes in states whether O should be accepted. Without loss of generality,
let cols(O) = m < n and rows(O) ≥ n. In this case, A needs to represent
horizontal N2-regions in a block only. In addition, 4 ·m different intersections

82



RR′

Figure 7.13: A horizontal region R intersects three blocks. R′ is a region of the
same type derived within a cycle. Comparing to R, its left, resp. right end is
prolonged by at most k · (l − 1) ≤ (2n) · (2n− 1) fields on the left, resp. right.

have to be represented in a block maximally – this can be estimated similarly
as in the case we have already inspected. O(m · log(n)) bits are required per a
block, while Ω(m · n) bits can be stored there, thus a suitable constant n exists
again. ut

Based on the previous theorem and L(DFSA) ⊆ L(FA), it holds:

Corollary 1 L(CFGP ) is a proper subset of L(FA).

M. Schlesinger and V. Hlavac proved that any language in L(CFPG2) can be
recognized in time t(m,n) = O

(
(m + n) ·m2 · n2

)
by the RAM computational

model. Their algorithm is the generalization of the well known algorithm for one-
dimensional context-free languages which is of time complexity t(n) = O(n3)
(and can be performed by a multi-tape Turing machine, as it can be found in
[4]). We can make a simple generalization for CFPG, however, since there is no
analogy to the Chomsky normal form (it will be proved in the following section),
time complexity of the generalized algorithm is a polynomial which of degree
depends on sizes of productions.

Theorem 15 L(CFPG) ⊆ P2d

Proof. Let L be a language in L(CFPG) and G = (VT , VN , S,P) a grammar
such that L = L(G). Let p, resp. q be the maximal number of rows, resp.
columns among the right-hand sides of productions in P.

Let P be an input picture over VT of size m×n and, for x1, x2 ∈ {1, . . . ,m}
and y1, y2 ∈ {1, . . . , n}, where x1 ≤ x2 and y1 ≤ y2, let P (x1, x2, y1, y2) denote
the set containing exactly each field of P at coordinate (x, y), where x1 ≤ x ≤ x2

and y1 ≤ y ≤ y2. Such a set represents a rectangular area (a region) in P . We
consider the areas to be ordered into a sequence R, where, whenever R1, R2 are
different areas and R1 ⊆ R2, then R1 is of a lower index in R than R2.

The algorithm goes through all areas in the order given by R. For an area
R = P (x1, x2, y1, y2), it computes all non-terminals that generate the sub-
picture of P represented by R. For every production Π = N → [Aij ]r,s in
P, it inspects all decompositions of R into r × s sub-areas and checks whether
the area at coordinate (i, j) can be generated by Ai,j (when Ai,j ∈ VN ) or it
consists of one field containing Ai,j (when Ai,j ∈ VT ). The resulting set of non-
terminals is recorded into a four-dimensional array, at index (x1, x2, y1, y2), so
that the values can be used to compute the sets for the following areas.

We have, |R| ≤ m2 · n2. Moreover, the number of decompositions of R
is bounded by mp−1 · nq−1. It implies, for fixed G, the algorithm is of time

83



a a a b b a a a a
b b b a a b b b b
b b b a a b b b b

a a a b b a a a a
a a a b b a a a a

Figure 7.14: Example of a picture in L(3).

complexity O(mp+1 · nq+1).
ut

7.4 Restrictions on Size of Productions’ Right-
hand Sides

In Section 7.3 we have shown that if we restrict right-hand sides of productions
to be of sizes 2× 1, 1× 2 and 1× 1 only, then it is not possible to generate all
languages in L(CFPG). We can go further in these considerations and ask how
the generative power of CFP grammars changes when sizes of right-hand sides
are limited by a constant.

Definition 15 A CFP grammar with the restriction on productions’ right-
hand sides of the order k (k ∈ N+) is every CFPG G = (VT , VN , S,P), where
each production N → [Aij ]m,n in P fulfills: m ≤ k and n ≤ k.

We denote the class of CFP grammars with the restriction on productions’
right-hand sides of the order k by CFPG(k). L(CFPG(k)) is the class of
languages generated by CFPG(k) grammars.

Example 10 For any positive integer c, let Lch(c) be the language over Σ =
{a, b} consisting exactly of all pictures that can be written as

⊕
[Pij ]c,c, where

Pij =
{

a non-empty picture over {a} iff i + j is even
a non-empty picture over {b} iff i + j is odd

Informally, each picture in Lch(c) can be interpreted as an irregular chessboard
of size c×c, formed of rectangles of a’s and b’s. An illustrative example is shown
in Figure 7.14.

Theorem 16 For each k ∈ N+, L(CFPG(k)) is a proper subset of
L(CFPG(k + 1)).

Proof. The inclusion L(CFPG(k)) ⊆ L(CFPG(k + 1)) is obvious, since
each CFPG(k) grammar is CFPG(k + 1) as well. To prove L(CFPG(k)) 6=
L(CFPG(k + 1)) we use the languages defined in Example 10 – we will show:

1. Lch(k + 1) ∈ L(CFPG(k + 1))

2. Lch(k + 1) /∈ L(CFPG(k))

84



Let us consider the grammar G1 = ({a, b}, {A,B, S1}, S1,P1), where P1

consists of:

A → a A → a A A → A
A

B → b B → b B B → B
B

S1 → [Cij ]k+1,k+1 where Cij =
{

A if i + j is even
B otherwise

L(G1, A), resp. L(G1, B) is the language of all non-empty pictures over {a},
resp. {b}, G1 is a CFPG(k + 1) grammar generating L(k + 1).

The second statement will be proved by contradiction. Let G =
(VT , VN , S,P) be a CFPG(k) grammar such that L(G) = Lch(k + 1), n be
an integer greater than k · (|P| + 1). Without loss of generality, P does not
contain productions of the form C → D, where C,D ∈ VN . Let L be the
subset of Lch(k + 1) containing exactly all square pictures of size n. At least
d |L||P|e pictures in L can be generated by the same production in the first step.
Let the production be Π = S → [Aij ]p,q and the correspondent subset be L′.
Without loss of generality, let p ≤ q which implies q ≥ 2, since max(p, q) ≥ 2.
Furthermore, we have p, q ≤ k.

Let us divide pictures in L into groups with respect to vertical coordinates
of borders between rectangles of a’s and b’s. More precisely, if P is a picture
in L, which can be written as

⊕
[Pij ]k+1,k+1, where all Pij are the pictures

corresponding to the fields of the chessboard as it was described in Example 10,
then the sequence V(P ) = v1, . . . , vk, where

• v1 = rows(P1,1)

• vi = vi−1 + rows(Pi,1) for each i = 2, . . . , k

is assigned to P . We can derive there are
(
n−1

k

)
different sequences assigned to

pictures in L, since there are n− 1 borders between adjacent rows of a picture
in L and, to form one sequence, we always choose k of them. Let Mv denote
the set of these sequences. For V ∈Mv, let G(V ) be a set of pictures as follows

G(V ) = {P |P ∈ L ∧ V(P ) = V }
Analogously, we can define sequences corresponding to horizontal coor-

dinates of borders. Let Mh denote the set of these sequences. It holds
|Mh| =

(
n−1

k

)
again. Furthermore, there is one to one correspondence among

pictures in L and elements in Mv ×Mh, since each picture in L is determined
by vertical and horizontal coordinates of the borders. It means

|L| =
(

n− 1
k

)2

Moreover, for each V ∈Mv, |G(V )| = (
n−1

k

)
.

Now, we will consider another division of pictures in L′ into groups, but this
time with respect to how they are generated applying Π. A picture Q in L′ can

85



be written as
⊕

[Qij ]p,q, where Qij ∈ L(G,Aij) (there are possibly more options
how to generate Q, in this case we choose anyone of them). Now, the sequence
D(Q) assigned to Q is the empty sequence if p = 1, else D(Q) = w1, . . . , wp−1,
where

• w1 = rows(Q1,1)

• wi = wi−1 + rows(Qi,1) for each i = 2, . . . , p− 1

There are
(
n−1
p−1

)
such sequences. Let the set of these sequences be denoted by

Md. For D′ ∈ Md, let G(D′) = {P |P ∈ L′ ∧ G(P ) = D′}. There must be
D ∈Md such that

|G(D)| ≥ |L′|(
n−1
p−1

)

We derive that this number is greater than |G(V )| = (
n−1

k

)
(for any V ∈Mv).

First of all, the assumption n > k · (|P|+ 1) ensures that n > 2 · k, since P
cannot be empty. We have

p− 1 ≤ k − 1 ≤
⌊

n− 1
2

⌋

which implies (
n− 1
p− 1

)
≤

(
n− 1
k − 1

)
≤

(
n− 1⌊
n−1

2

⌋
)

hence

|G(D)| ≥ |L′|(
n−1
k−1

)

Using the assumption on n, we can derive

n > k · (|P|+ 1)

n > k + k · |P|
n− k > k · |P|

(n− k) · (n− 1)!
(k − 1)!(n− 1− k)!

> |P| · k · (n− 1)!
(k − 1)!(n− 1− k)!

(n− 1)!
k!(n− 1− k)!

> |P| · (n− 1)!
(k − 1)!(n− k)!

(
n− 1

k

)
> |P| ·

(
n− 1
k − 1

)

This inequality allows us to derive the desired result:

|G(D)| ≥ |L′|(
n−1
p−1

) ≥ |L′|(
n−1
k−1

) ≥ |L|
|P| · (n−1

k−1

) >
|L|(
n−1

k

) =
(

n− 1
k

)
= |G(V )|

|G(D)| > |G(V )| ensures there are two pictures P , P ′ in G(D) such that
V(P ) 6= V(P ′). The pictures can be written in the form from Example 10:
P =

⊕
[Pij ]p,q, P ′ =

⊕
[P ′ij ]p,q. If we construct a new picture O = [Oij ]p,q,

where

86



• Oi,1 = Pi,1 for all i = 1, . . . , p

• Oi,j = P ′i,j otherwise

then O is generated by G. It is a contradiction since the borders between a’s and
b’s in the first column of O are not identical to the borders in the last column.

ut

For every one-dimensional context-free grammar, it is possible to construct
an equivalent grammar in the Chomsky normal form, where productions are
of the form N → AB, N → a and N → λ (A, B, N are non-terminals, a is
a terminal). Theorem 16 says that an analogy to the Chomsky normal form
cannot be found for CFP grammars.

Of course, for a CFPG G = (VT , VN , S,P), we can construct an equivalent
grammar, where terminals are present in productions right-hand sides only if
the right-hand side is of size 1 × 1. Assuming VT = {a1, . . . , ak}, for each ai,
we can add a new non-terminal Ti and the production ai → Ti. Moreover, each
occurrence of ai in the right-hand side of a production in P of size different to
1×1 can be replaced by Ti. This normal form is presented in [9], however, we do
not consider such a form to be an analogy to the Chomsky normal form, since
sizes of the productions right-hand sides are not limited by a global constant as
they are in the one-dimensional case.

7.5 Sentential Forms

Definition 16 Let G = (VT , VN , S, P ) be a CFPG. A Sentential form over G
is every triple U = (BH , BV , R), where

1. BV , BH are finite, ascending sequences of real numbers in 〈0, 1〉,
|BV |, |BH | ≥ 2. R is a finite set of tuples (x1, x2, y1, y2, X), where
X ∈ VT ∪ VN , x1, x2 ∈ BH , y1, y2 ∈ BV , x1 < x2, y1 < y2.

2. If (x1, x2, y1, y2, X) ∈ R and X ∈ VT then there is not any x ∈ BV such
that x1 < x < x2, neither any y ∈ BH such that y1 < y < y2.

3. Let the elements of BV , resp. BH be v1 < v2 < . . . < vr, resp. h1 < h2 <
. . . < hs. For each pair i ∈ {1, . . . , r − 1}, j ∈ {1, . . . , s − 1}, there is
exactly one element (x1, x2, y1, y2, X) in R such that x1 ≤ vi, vi+1 ≤ x2,
y1 ≤ hj, hj+1 ≤ y2.

4. If x ∈ BH , resp. y ∈ BV , then there is an element (x1, x2, y1, y2, N) in
R, such that x = x1 or x = x2, resp. y = y1 or y = y2.

Informally, a sentential form U is a grid covered by labelled rectangles. The
grid is determined by elements of BV (vertical coordinates) and BH (horizontal
coordinates), rectangles correspond to elements in R – see Figure 7.15.

Point 3) says that each single element of the grid is covered by a rectangle.
If a rectangle is labelled by a terminal, it covers exactly one grid’s element (it
is stated by point 2)). Point 4) says that each line of the grid has to form a
border of a rectangle in R – no additional coordinates are allowed.

87



A

B

C

a

Figure 7.15: Sentential form (BH , BV , R), where the set of vertical, resp. hor-
izontal coordinates is BV = (v1, v2, v3, v4), resp. BH = (h1, h2, h3, h4) and
R = ((h1, h4, v1, v2, A), (h1, h2, v2, v3, B), (h2, h4, v2, v4, C), (h1, h2, v3, v4, a)).

c

b

a

A N

W

Z
X

c

b

a

B

C

Y

X

B

A
A

W

Z
X

Figure 7.16: Sentential forms U and V . Assuming N → CXA
BY B is a production,

then U directly derives V (U ⇒ V ).

Definition 17 Let G = (VT , VN , S,P) be a CFPG and U = (BH , BV , R),
U ′ = (B′

H , B′
V , R′) two sentential forms over G. Let the elements of BV , resp.

BH be v1 < v2 < . . . < vr, resp. h1 < h2 < . . . < hs. We write U ⇒G U ′

and say that U directly derives U ′ in grammar G iff there is a production Π =
N → [Aij ]p,q in P such that R′ can be written as R \ {(x1, x2, y1, y2, N)} ∪R1,
where (x1, x2, y1, y2, N) ∈ R and R1 consists of p · q elements: for each pair
i = 1, . . . , p; j = 1, . . . , q it holds (xij , xi+1,j , yij , yi,j+1, Aij) ∈ R1, where xij’s,
resp. yij’s are elements in B′

H , resp. B′
V satisfying

x1 = x1,j < x2,j < . . . < xp,j < xp+1,j = x2

y1 = yi,1 < yi,2 < . . . < yi,q < yi,q+1 = y2

Figure 7.16 shows an example of a direct derivation.

Definition 18 Let G = (VT , VN , S,P) be a CFPG and U = (BH , BV , R),
U ′ = (B′

H , B′
V , R′) two sentential forms over G. We say that U derives U ′ in G

(and denote this relation by U ⇒∗
G U ′) iff U = U ′ or there is a finite, non-empty

sequence S = {Ui}n
i=0 of sentential forms over G such that

U = U0 ⇒G U1 ⇒G U2 ⇒G . . . ⇒G Un−1 ⇒G Un = U ′

If it is clear which grammar G we refer to, we write U ⇒ V instead of U ⇒G

V and U ⇒∗ V instead of U ⇒∗
G V . Let us consider a CFPG G = (VT , VN , S,P)

and a sentential form U = (BV , BH , R) over G, where, for all (x1, x2, y1, y2, X) ∈

88



R, it is X ∈ VT . Let the elements of BV , resp. BH be v1 < v2 < . . . < vr, resp.
h1 < h2 < . . . < hs. We can interpret U as a picture over VT . By the second
point in Definition 16, for every pair i = 1, . . . , r − 1, j = 1, . . . , s − 1, there is
in R exactly one element of the form (vi, vi+1, hj , hj+1, Xij), thus we can assign
to U the picture σ(U) of size (r − 1) × (s − 1), where σ(U)(i, j) = Xij . In the
following text, we consider function σ to be defined on the set of all sentential
forms of the described form.

Lemma 11 Let G be a CFP grammar and U = (BH , BV , R), U ′ =
(B′

H , B′
V , R′) two sentential forms over G such that U ⇒ U ′.

In addition, let AV , AH , A′V , A′H be ascending, finite sequences of real
numbers in 〈0, 1〉, where |AV | = |BV |, |A′V | = |B′

V |, |AH | = |BH |, |A′H | = |B′
H |,

AV ⊆ A′V and AH ⊆ A′H . Let S be the set obtained from R by replacing each
occurrence of the i-th element in BV , resp. BH by the i-th element in AV , resp.
AH (i.e. each (xi, xj , yk, yl, A) ∈ R is replaced by (x′i, x

′
j , y

′
k, y′l, A), where xt,

resp. yt, resp. x′t, resp. y′t is the t-th element of BV , resp. BH , resp. AV , resp.
AH). Let S′ be the set obtained in the same way using sets R′, A′V and A′H .

Then, V = (AV , AH , S) and V ′ = (A′V , A′H , S′) are sentential forms and
V ⇒ V ′. Moreover, if σ(U ′) is defined then σ(V ′) is defined too and σ(U ′) =
σ(V ′).

Proof. Follows obviously from the definition of sentential forms and direct
derivation. U and V , resp. U ′ and V ′ differ just in positions of particular
coordinates, but the structure of the sentential forms remains the same. ut

Let us consider a CFP grammar G = (VT , VN ,P, S0) and two senten-
tial forms U = (BH , BV , R), V = (AH , AV , T ) over G. Furthermore, let
r = (x1, x2, y1, y2) be a tuple of elements in 〈0, 1〉, such that x1 < x2 and
y1 < y2. We say that V is a sub-form of U given by r if the following conditions
are fulfilled:

1. AH ⊆ BH ∩ 〈x1, x2〉, AV ⊆ BV ∩ 〈y1, y2〉
2. (xa, xb, ya, yb, N) ∈ T iff (xa, xb, ya, yb, N) ∈ R, x1 ≤ xa, xb ≤ x2, y1 ≤ ya

and yb ≤ y2

It is evident that for a pair U and r, there is at most one sub-form of U given
by r. If the sub-form exists, we will denote it s(U, r). To give an example, let us
take some element (x1, x2, y1, y2, N) ∈ R and r = (x1, x2, y1, y2). Then, s(U, r)
exists (is defined) – it consists of a non-terminal or terminal covering the whole
grid. Formally

s(U, r) = {{x1, x2}, {y1, y2}, {(x1, x2, y1, y2, N)}}

On the other hand, if 〈x1, x2〉 ∩BH = ∅, then s(U, r) is not defined.

Lemma 12 Let G = (VT , VN ,P, S0) be a CFP grammar, U = (BH , BV , R),
V = (AH , AV , T ) sentential forms over G such that U ⇒∗ V . Let r =
(x1, x2, y1, y2) be a quadruple of real numbers in 〈0, 1〉.

1. If the sub-form s(U, r) is defined, then s(V, r) is defined as well and
s(U, r) ⇒∗ s(V, r).

89



2. If V can be derived from U in n steps (n ∈ N+), i.e. if there are n − 1
suitable sentential forms U1, . . . , Un−1 such that

U ⇒ U1 ⇒ U2 ⇒ . . . ⇒ Un−1 ⇒ V

and s(U, r) is defined, then it is possible to derive s(V, r) from s(U, r) in
n or less steps.

Proof. If U = V , the first statement is fulfilled trivially. Let U 6= V and
U = U0 ⇒ U1 ⇒ . . . ⇒ Un = V be a derivation of V from U in G. Since s(U, r)
is defined, it is evident that each Si = s(Ui, r) is also defined. Moreover, for
every Si, Si+1 (i = 0, . . . , n− 1) we have Si = Si+1 or Si ⇒ Si+1. That proves
the lemma. ut

Definition 19 Let G = (VT , VN , S,P) be a CFP grammar. We say that a
picture O over VT is generated by a non-terminal N ∈ VN in G via sentential
forms iff there is a sentential form U such that

({0, 1}, {0, 1}, {(0, 0, 1, 1, N)}) ⇒∗ U

and σ(U) = O. LS(G,N) denotes the language consisting of all pictures that
can be generated from N in G via sentential forms. LS(G) = LS(G,S) is the
language generated by G via sentential forms.

Let Π = N → [Aij ]p,q be a production. To simplify the proof of the next
theorem, we define a function assigning a sentential form to a production as
follows: sf(Π) = (BV , BH , R), where BV = { i

p | i = 0, . . . , p}, BH = { j
q | j =

0, . . . , q} and R = {( i
p , i+1

p , j
q , j+1

q , Aij) | i = 0, . . . , p− 1; j = 0, . . . , q − 1}.
Theorem 17 For every CFP grammar G, L(G) = LS(G).

Proof. Let G = (VT , VN , S,P) be a CFP grammar.
1) Firstly, we show L(G, N) ⊆ LS(G, N) for an arbitrary N ∈ VN . Let

O = [aij ]p,q be a picture in L(G,N), T be a derivation tree for O in G. We
prove by induction on the depth of T that O ∈ LS(G,N).

If the depth of T is 1 then there is a production Π = N → O in P. We have
({0, 1}, {0, 1}, {(0, 0, 1, 1, N)}) ⇒ sf(Π) and σ(sf(Π)) = O, thus O ∈ LS(G,N).

Let the depth of T be k > 1, Π = N → [Aij ]p,q be the production assigned
to the root of T , vij be the direct descendant of the root of T labelled by Aij and
T (vij) be the subtree of T having vij as the root. O can be written as

⊕
[Oij ]p,q,

where each Oij is in L(G,Aij). The depth of each T (vij) is at most k − 1. It
means, after applying the hypothesis, if Aij ∈ VN , then there is a sentential
form Uij such that σ(Uij) = Oij and ({0, 1}, {0, 1}, {(0, 0, 1, 1, Aij)}) ⇒∗ Uij .
O can be derived as follows:

1. ({0, 1}, {0, 1}, {(0, 0, 1, 1, S)}) ⇒ sf(Π)

2. Let sf(Π) = (BV , BH , R). For each element (xij , xij , yij , yij , Aij) in
R, where Aij ∈ VN , a sequence of derivations can be applied on
s(sf(Π), (xij , xij , yij , yij)) to derive U ′

ij such that σ(U ′
ij) = σ(Uij). It

is ensured by Lemma 11. It should be clear that all these sequences of
derivations can be adjusted and applied on sf(Π) to derive U such that
σ(U) = O.

90



2) We prove LS(G,N) ⊆ L(G,N). Let O be a picture in
LS(G,N). By induction on the length of a derivation of O: Let U0 =
({0, 1}, {0, 1}, {(0, 0, 1, 1, S)}) ⇒ U , where σ(U) = O. Then the considered
grammar contains the production S → O. A derivation tree for O of the depth
one can be easily constructed.

Let U0 ⇒ U1 ⇒ . . . ⇒ Un, where n ≥ 2 and σ(Un) = O. U1 is of the form
(BH , BV , R), where

• BH = {hi}p
i=0 and 0 = h0 < h1 < . . . < hp = 1

• BV = {vi}q
i=0 and 0 = v0 < v1 < . . . < vq = 1

• R = {(vi, vi+1, hi, hi+1, Aij) | i = 0, . . . , p − 1; j = 0 . . . , q − 1}, where
S → [Aij ]p,q is a production in P

For i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, let s(i, j), resp. s′(i, j) denote
s(U1, (vi−1, vi, hj−1, hj)), resp. s(Un, (vi−1, vi, hj−1, hj)). Then, by Lemma 12,
for any possible pair i, j

s(i, j) ⇒∗ s′(i, j)

Since O = σ(Un), we have

O =
⊕

[σ(s′(i, j))]p,q

If we denote each sub-picture σ(s′(i, j)) by Oi,j , then Oi,j ∈ LS(G,Ai,j) –
Lemma 11 can be used to obtain a proper derivation. Moreover, the length of
this derivation is at most n− 1 (Lemma 12), thus Oi,j ∈ L(G,Ai,j). Now, it is
evident that a derivation tree proving O ∈ L(G,S) can be constructed.

ut

7.6 CFP Grammars over One-symbol Alphabet,
Pumping Lemma

In this section, we study which integral functions are representable by CFP
languages (as for the representation of functions by languages, see Definition 5).

In our descriptions, when we write productions, right-hand sides can contain
elements of the form Ak, where A is a terminal or non-terminal and k ∈ N+.
This notation abbreviates k repetitions of A in the related row. For example

N → A3 B
C3 D

should be interpreted as

N → A A A B
C C C D

Proposition 13 Every integral constant function f : N+ → {c}, where c ≥ 1,
is representable by a CFP language.

91



Proof. It is evident that the following CFP grammar G generates a language
representing f : G = ({a}, {S, C},P, S), P consists of the productions

C → ac S → C S → C
S

ut

Proposition 14 Let f be a function representable by a CFP language and
c ∈ N+. Then, c · f is representable by a CFP language as well.

Proof. Let L be a CFP language that represents f , G = (VT , VN ,P, S) be a
CFP grammar generating L and S0 /∈ VN a non-terminal. If we define

G′ = (VT , VN ∪ {S0},P ∪ {S0 → Sc}, S0)

then, G′ is a CFP grammar and L(G′) represents c ·f . Whenever an occurrence
of S in S0 → Sc is substituted by a picture P , it forces other pictures substituted
to the other occurrences of S to have the same number of rows as P . The only
possibility is to choose P in all these cases again. ut

Proposition 15 Let f , g be two functions representable by CFP languages.
Then, f + g is representable by a CFP language as well.

Proof. Let L1, resp. L2 be a CFP language representing f , resp. g, G1 =
(VT , V1,P1, S1), resp. G2 = (VT , V2,P2, S2) be a CFP grammar generating L1,
resp. L2. Without loss of generality, we can assume V1 ∩ V2 = ∅. For a new
non-terminal S0 /∈ V1 ∪ V2, we can define the following CFP grammar

G = (VT , V1 ∪ V2 ∪ {S0},P1 ∪ P2 ∪ {S0 → S1S2}, S0)

It is easy to see that L(G) represents f + g. ut

Proposition 16 Let f : N+ → N+ be a function given by the following recur-
rent formula:

f(1) = c

∀n ≥ 2 : f(n + 1) = k · f(n) + g(n)

where g is a function representable by a CFP language or g(n) = 0 for all
n ∈ N+ and c, k are positive integers. Then, f is representable by a CFP
language.

Proof. If g 6= 0, let G1 = ({a}, V1,P1, S1) be a CFP grammar generating the
language over {a} that represents g. We can construct grammar G, such that
L(G) represents f , as follows. G = ({a}, V1∪{S0, A},P1∪P, S0), where S0 and
A are both non-terminals, not contained in V1, and P consists of the following
productions:

(1) A → a (2) A → a A (3) S0 → ac (4) S0 → Sk
0 S1

Ak A

92



We show that L(G) represents f by induction on the number of rows of a picture
in L. Firstly, L(G,A) contains exactly all pictures of the form ak, where k is any
positive integer. Next, there is exactly one picture in L(G) that contains one
row. It is generated in the first step using production (3) (pictures generated
using production (4) in some step have at least two rows), thus the picture
equals to [1, c]. Let n > 1 be an integer and let us assume, for each integer m,
1 ≤ m < n, L contains exactly one picture having m rows and this picture equals
[m, f(m)]. Any picture having n rows must be generated by production (4) in
the first step. All pictures in L(G, A) consist of one row, hence S0 and S1 on
the right-hand side of the production have to be substituted by pictures having
n− 1 rows. The only possibility is to use [n− 1, f(n− 1)] and [n− 1, g(n− 1)],
which implies the picture [n, k · f(n− 1) + g(n− 1)] is in L(G).

If g = 0, it is sufficient to take G = ({a}, {S0, A},P ′, S0), where P ′ consists
of productions (1), (2), (3) and production (5):

(5) S0 → Sk
0

Ak

ut

Let us use Proposition 16 to obtain examples of functions representable by
a CFP language.

If we take c = k = 1 and g(n) = 1 for all n ∈ N+, we get f(n) = n is
representable. f(n) = n2 is representable as well, since

f(n + 1) = (n + 1)2 = n2 + 2 · n + 1 = f(n) + 2 · n + 1

thus it is sufficient to choose c = k = 1, g(n) = 2·n+1. Note that g(n) = 2·n+1
is representable. It can be written as g(n) = f(n)+f(n)+1. Since all summands
are representable functions, their sum is representable by Proposition 15.

In general, we can conclude that if f is a polynomial function

f(n) =
k∑

i=0

ni · ai

where ai’s are natural numbers and at least one of them is positive, then f is
representable by a CFP language. It can be shown by induction on the degree
of polynomial using the formula

(n + 1)k =
k∑

i=0

(
n

i

)
· ni = nk +

k−1∑

i=0

(
n

i

)
· ni

Another examples are exponential functions. Let us choose c = 1, g(n) = 0
for all n ∈ N+ and let k be a parameter. Proposition 16 gives f(n) = kn is
representable by a CFP language.

We have already shown that the language L = {[n, n2] |n ∈ N+} is not
recognizable by a FSA (it is a consequence of Theorem 1). On the other hand,
L represents f(n) = n2 and it is a CFP language. It can be given as another
example of a language that is in L(CFPG) and is not in L(FSA) (see Theorem
13).

93



The next result we are going to present is a contribution to the study of the
question whether there is some sort of the pumping lemma applicable on CFP
languages. We show that it is possible to ”pump” pictures that are sufficiently
”wide” or ”high” respectively.

We recall the pumping lemma (also known as uvwxy theorem) from the
classical theory of languages, which says: For every (one-dimensional) context-
free language L, there are constants c1, c2 such that if α is a word in L such
that |α| ≥ c2, then it can be written as uvwxy, where |vwx| ≤ c1, |v|+ |x| ≥ 1
and, for any natural number i, uviwxiy ∈ L.

Still considering the one-dimensional theory, the lemma can be extended
on sentential forms in the following way: Let G = (VT , VN , P, S0) be a
one-dimensional context-free grammar. There are constants c1, c2, such that if
N ⇒∗

G β, where N is a non-terminal, β a sentential form of length at least c1,
then β can be written as uvwxy, where N ⇒∗

G uviwxiy for each i ∈ N.

Theorem 18 Let L be a CFP language over the alphabet Σ = {a}. There is a
positive integral constant c for L, such that if [m, n] ∈ L and n ≥ cm, then, for
all i ∈ N, [m,n + i · n!] ∈ L as well.

Proof. Let G = (Σ, VN ,P, S0) be a CFP grammar generating L. Without
loss of generality we will assume, P does not contain productions of the form
A → B, where A, B are non-terminals in VN . Let p be the maximal number of
columns forming the right-hand side of a production in P , i.e.

p = max{cols(A) |N → A ∈ P}

Let G′ = (Σ, VN ,P ′, S0) be a one-dimensional context-free grammar, where

P ′ = {N → A|N → A ∈ P ∧ rows(A) = 1}

i.e. G′ is created based on G by taking all productions having one-row right-
hand sides. Let d be a constant given by the extended pumping lemma applied
on G′ determining the required length of sentential forms. It means, if N ⇒∗

G′ β
and |β| ≥ d, then β can be written as uvwxy, etc. We put c = p · d.

For any N ∈ VN and an integer m ≥ 1, we define auxiliary languages
L(N, m):

L(N,m) = {O |O ∈ L(G,N) ∧ rows(O) = m ∧ cols(O) ≥ cm}

We are ready to prove the theorem by induction on m (the number of rows
a of picture). Let O be a picture in L(N, 1). Since rows(O) = 1 and n =
cols(O) ≥ p · d ≥ d, the one-dimensional pumping lemma can be applied on O
implying [1, n + i · k] ∈ L(N, 1) for some suitable integer 1 ≤ k ≤ n and each
natural number i, thus [1, n + i · n!] ∈ L(N, 1) for all i ∈ N.

Let m > 1 and let us suppose that, for each integer m′, 1 ≤ m′ < m and
each nonterminal N ∈ VN , it holds that [m′, n] ∈ L(N,m′) implies [m′, n+ i ·n!]
for all i ∈ N. We distinguish two cases depending on how a picture O ∈ L(N, m)
is generated in the first step. Let n = cols(O). If it is possible to generate O
in the first step by a production Π = N → [Aij ]r,s, where r > 1, then O can
be written as

⊕
[Uij ]r,s, where Uij ∈ L(G, Aij) if Aij is a non-terminal and

94



Uij = Aij if Aij is a terminal. Since s ≤ p, there is a column of index s0 such
that, for each i = 1, . . . , r

n0 = cols(Ui,s0) ≥
n

p

We have
n ≥ (p · d)m

thus
n0 ≥ n

p
≥ (p · d)m−1 · d ≥ (p · d)m−1

Since rows(Ui,s0) ≤ m − 1 it holds n0 ≥ crows(Ui,s0 ). It means, each Ui,s0 is
in L(Ai,s0 , rows(Ui,s0)), thus, with respect to our inductive hypothesis, Ui,s0 =
[ri, n1] can be ”pumped” to U ′

i,s0
(k) = [ri, n1+k ·n1!] ∈ L(G,Ai,s0) for all k ∈ N

(note that it would be also sufficient if n0 ≥ n/(p · d) only – this will be used
in the second part of the proof). If we replace each sub-picture Ui,s0 in O by
U ′

i,s0
(k) for a fixed number k, we get [m,n+k ·n1!] ∈ L(N, m). Since n1! divides

n!, we are finished in this case.
If there is no possibility to generate O by a production having at least two

rows on the right-hand side in the first step, we have to consider a production
with the right-hand side consisting of one row, i.e. Π = N → A1 . . . As. O can
be written as U1

dU2
d. . . dUs in this case. One of Ui’s must contain at least n

p
columns again. Let Uk be such a sub-picture. Once again, we examine, which
production is used to generate Uk from Ak in the first step. If the production
has more than one row, we can follow the steps we have already described before
(in this case, we have n0 ≥ n/(p · d), which is still sufficient). Otherwise Uk

can be expressed as V1
dV2

d. . . dVt for suitable pictures Vi. It means, O can be
written as a column concatenation of s + t− 1 sub-pictures:

O = U1
d. . . dUk−1

dV1
d. . . dVt

dUk+1
d. . . dUs

Now, it is possible to take a sub-picture consisting of at least n/(s + t − 1)
columns and repeat the steps described above until a sub-picture that can be
generated by a production with more than one row is found or O is expressed
as a concatenation of d or more sub-pictures.

In the first case the found sub-picture has at least n/d columns. Again,
this number is sufficiently large to apply the steps related to a production with
more than one row and finish the proof. The second case implies N ⇒∗

G′ β and
β ⇒∗

G W , where β, W are sentential forms (we treat β as a two-dimensional
sentential form in the second relation) and σ(W ) = O. β is a one-dimensional
sentential form of length at least d. It means, we can apply the pumping lemma
on β, hence [m,n + i · k] ∈ L(N, m) for some k ≤ n and each i ∈ N. Finally,
k|n!, thus each [m,n + i · n!] is in L(N,m) as well. ut

Remarks on the theorem follows:

1. To achieve a good readability of the proof we have worked with grammars
over the one-symbol alphabet Σ = {a} only, however, the proof can be
easily extended on grammars over any alphabet containing any number of
symbols, since the proof does not depend on Σ.

95



0 1 0 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0

Figure 7.17: Example of a picture in LR.

2. The theorem is also valid if we swap the terms ’row’ and ’column’, i.e. if
[m,n] ∈ L and m ≥ cn, then [m + i ·m!, n] ∈ L.

3. The fact that exponential functions are representable by CFP languages
indicates that the condition n ≥ dm in Theorem 18 is optimal. It cannot
be possible to ”pump” languages {[m, cm] |m ∈ N+}, where c ∈ N, c ≥ 2.
This observation rises a question if some kind of the pumping lemma that
pumps rows and columns together can be found. Then, it could also work
for the mentioned languages.

For c ∈ N+, let expc : N+ → N+ be an integral function such that ∀n ∈ N+ :
expc(n) = cn.

Proposition 17 Let f : N+ → N+ be a function satisfying f = o(expc) for
each positive integer c. Then, f cannot be represented by a CFP language.

Proof. By contradiction. Let f be a function such that f = o(expc) for all
c ∈ N+ and L be a CFP language representing f . By Theorem 18, there is a
constant d fulfilling: if some picture [m,n] is in L and n ≥ dm, then [m,n+i·n!] ∈
L for each positive integer i. We have f = o(expd), thus it is possible to find m0,
such that f(m0) > dm0 . L represents f , hence [m0, f(m0)] ∈ L, which implies
[m0, f(m0) + f(m0)!] ∈ L. It contradicts the fact that L represents f . ut

7.7 Closure Properties

Example 11 Let LR be the language over the alphabet {0, 1} consisting of all
pictures having in every row and column exactly one symbol 1. Formally

LR = {O | O ∈ {0, 1}∗∗ ∧ ∀i = 1, . . . , rows(O) ∃!j : O(i, j) = 1
∧ ∀j = 1, . . . , cols(O) ∃!i : O(i, j) = 1}

Figure 7.7 shows an example of a picture in LR. Every picture in LR is a
square picture. The reason is that the number of occurrences of the symbol 1
in such a picture has to equal the number of rows of the picture as well as the
number of columns.

A picture in LR of size n can be interpreted as one of the possible placements
of n rooks on the n×n chessboard, where no two rooks threat each other (rooks
correspond to occurrences of the symbol 1).

96



Lemma 13 Let r be a natural number and S = {si}n
i=1 a sequence of natural

numbers, where n ≥ 2 and, for all i = 1, . . . , n: si ≤ r ≤ s =
∑n

i=1 si. Then

n∏

i=1

si! ≤ r! · (s− r)!

Proof. We can consider S to be sorted in the descending order, i.e. s1 ≥ s2 ≥
. . . ≥ sn. The expressions on both sides of the inequality to be proved can
be replaced by products of s numbers (each m!, where m > 0, is expressed by
1 · 2 · . . . ·m, eventual occurrences of 0! are omitted). It means, the left-hand
side is:

1 · 2 . . . s1 · 1 . . . s2 . . . 1 . . . sn

and the right-hand side:
1 · 2 . . . r · 1 . . . (s− r)

If these products are divided by s1! · t!, where t = min(s2, s − r, r) and
expressed as products of s − s1 − t numbers sorted in the ascending order (in
our case, to divide one product by m! means to remove m factors of values
1, . . . , m), then each i-th factor of the left-hand side is not greater than the i-th
factor of the right-hand side. E.g., if t = s− r, then the left-hand side (written
with non-sorted factors) is

(s− r + 1) · (s− r + 2) . . . s2 . . . 1 . . . sn (L)

while the right-hand side is

(s1 + 1) · (s1 + 2) . . . r (R)

The product (s − r + 1) . . . s2 is not surely greater than the product (s −
s2 + 1) . . . r, since s2 ≤ r and both products consist of the same number of
factors. If the remaining factors in (L) are sorted in the ascending order into a
sequence SL = {ai}k

i=1 and remaining factors in (R) into SR = {bi}k
i=1, where

k = s− s1 − t− s2 + s− r, then, assuming k > 0, we have

1. SR is an ascending sequence, where bi+1 > bi for all i ∈ 1, . . . , k − 1 and
b1 ≥ 1

2. SL is a monotonic sequence, where ai+1 = ai or ai+1 = ai + 1 for all
i = 1, . . . , k − 1 and a1 = 1

These two points imply that ai ≤ bi for each i ∈ {1, . . . , k}.
The cases t = r and t = s2 can be inspected analogously. ut

Lemma 14 LR /∈ L(CFPG)

Proof. By contradiction. Let G = (VN , VT ,P, S) be a CFP grammar gener-
ating LR. Without loss of generality, we can assume P does not contain any
production of the form A → B, where A, B are non-terminals. Let n be an
integer, L1 the set of all square pictures in LR of size n. Let us assume n is
large enough so that none of the pictures in L1 equals the right-hand side of a
production in P. We have |L1| = n!. At least d n!

|P |e pictures are generated in

97



the first step by the same production. Let the production be Π = S → [Aij ]p,q.
We denote by L2 the set of pictures that can be derived by Π in the first step.
Without loss of generality, p ≥ q and p ≥ 2. Our goal will be to derive an upper
bound on |L2| leading to a contradiction to |L2| ≥ d n!

|P |e.
We say that D is a division of a picture if it is a pair

((r1, . . . , rl1), (s1, . . . , sl2))

where r1 < . . . < rl1 and s1 < . . . < sl2 are integers.
For a division D = ((r1, . . . , rp), (s1, . . . , sq)), let L(D) denote the subset of

L2 containing exactly each picture U that can be expressed as U =
⊕

[Uij ]p,q,
where Uij ∈ L(G,Aij) and rows(Uij) = ri, cols(Uij) = sj for all possible pairs
of indices i, j.

Let us consider a pair of pictures U , V in L(D), U =
⊕

[Uij ]p,q, V =⊕
[Vij ]p,q, where for all i = 1, . . . , p, j = 1, . . . , q, rows(Uij) = rows(Vij) = ri

and cols(Uij) = cols(Vij) = sj . For an arbitrary pair of indices l, m, let U ′

be created from U by replacing Ulm by Vlm. Since U ′ is in L2 again, Ulm and
Vlm have to contain the same number of symbols 1. Moreover, if i1, . . . , ik are
indices of all rows, resp. columns in Ulm containing 1 then they have to be equal
to the analogous indices of rows, resp. columns in Vlm (if not, let, for example,
the i1-th row of Ulm contain 1 and the i1-th row of Vlm do not contain 1. Then,
U ′ has a row without the symbol 1).

Let kij be the number of occurrences of the symbol 1 in Uij . There are kij !
different pictures (including Uij) that can replace Uij in U so that the created
picture is in L2 again. It means, the number of elements in L(D) have to satisfy
the following inequality:

|L(D)| ≤
∏

i=1,...,p;j=1,...,q

kij ! (7.1)

Moreover, |L2| ≤
∑

D |L(D)|, where the sum goes trough all possible di-
visions D. To obtain an upper bound on |L2|, we distinguish two cases with
respect to coordinates of a given division D = ((r1, . . . , rp), (s1, . . . , sq)):

1) max(r1, . . . , rp) ≥ n − 4p and max(s1, . . . , sq) ≥ n − 4p; i.e., one of the
pictures Uij fulfils rows(Uij) ≥ n− 4p and cols(Uij) ≥ n− 4p. Let us say
that such a picture has property (B).

2) max(r1, . . . , rp) < n − 4p or max(s1, . . . , sq) < n − 4p; i.e., each of the
pictures Uij is of width or height less than n− 4p.

We can assume n is large enough comparing to p so that, for U =
⊕

[Uij ]p,q,
there is maximally one picture Uij which has property (B).

Ad 1). First of all, we estimate how many different divisions contain a sub-
picture of property (B). In the sequence r1, . . . , rp, there are p possibilities
which of the elements to choose to be the maximal one. This element can be
then of 3p+2 different values maximally (possible values are n−4p, . . . , n−p+1).
Each of the remaining elements of the sequence can be of a value in 1, . . . , 4p,
thus the number of all suitable sequences is bounded by

c1
′ = p · (3p + 2) · (4p)p−1

98



We can similarly derive that the number of all suitable sequences s1, . . . , sq is
bounded by c1

′′ = q · (4p− q + 2) · (4p)q−1, thus the number of divisions in the
case 1) is bounded by c1 = c1

′ · c1
′′.

Now, for a given division D, we derive an upper bound on L(D). Without
loss of generality, we can assume U1,1 is the only picture which has property
(B). max(rows(U1,1), cols(U1,1)) ≤ n − p + 1 (each other Uij is of size at least
1× 1), hence k1,1 ≤ (n− p + 1)!. Moreover, kij ≤ k1,1 for all pairs i = 1, . . . , p;
j = 1, . . . , q. If we put r = n− p + 1, s = n and apply Lemma 13 on values kij

in (7.1), we derive

|L(D)| ≤ (n− p + 1)! · (p− 1)! ≤ n!
n
· (p− 1)!

Ad 2). In this case, it is sufficient to consider the number of divisions to be
bounded by n2p (each element in both sequences can be of a value in 1, . . . , n).
We apply Lemma 13 on values kij again. Since each kij ≤ n− 4p− 1, we get

|L(D)| ≤ (n− 4p− 1)! · (4p + 1)!

We proceed by deriving an upper bound on the expression n2p · (n− 4p− 1)!

(n− 4p− 1)! · n2p =
n!

n · (n− 1) . . . (n− 4p)
· n2p

≤ n! · n2p

n · (n− 4p)4p
=

n!
n
·
(

n

(n− 4p)2

)2p

Finally, we can put together results of both cases and estimate the sum∑
D |L(D)|

|L2| ≤
∑

D

|L(D)| ≤ c1 · (p− 1)! · n!
n

+ (4p + 1)! · n!
n
·
(

n

(n− 4p)2

)2p

= f(n)

It is evident that, for sufficiently large n (with respect to p), we have |L2| < n!
|P | ,

since

lim
n→∞

f(n) · |P|
n!

= 0

This is the desired contradiction. ut

Theorem 19 The class of CFP languages is closed under union.

Proof. Let L1, L2 be two CFP languages and G1 = (V1, Σ, S1,P1), G2 =
(V2, Σ, S2,P2) grammars such that L(G1) = L1, L(G2) = L2. Without loss
of generality, we can assume V1 ∩ V2 = ∅. Let S0 be a new non-terminal, not
contained in V1 ∪ V2, and let

P =
{ {S0 → Λ} if Λ ∈ L1 ∪ L2

∅ otherwise

99



Then, the grammar

G = (V1 ∪ V2,Σ, S0,P1 ∪ P2 ∪ {S0 → S1, S0 → S2} ∪ P \ {S1 → Λ, S2 → Λ})
generates the language L1 ∪ L2. ut

Theorem 20 The class of CFP languages is not closed under intersection.

Proof. Let us define two languages over the alphabet Σ = {0, 1}
LH = {O | O ∈ Σ∗∗ ∧ ∀i = 1, . . . , rows(O) ∃!j : O(i, j) = 1}
LV = {O | O ∈ Σ∗∗ ∧ ∀j = 1, . . . , cols(O) ∃!i : O(i, j) = 1}

The language LH , resp. LV consists exactly of all pictures having in each row,
resp. column exactly one symbol 1. Both languages can be generated by a CFP
grammar. For example, the grammar GH = {Σ, {S, M, R,Z}, S,P}, where P
consists of the productions

S → Λ S → M M → R M → R
M

R → 1 R → 1 Z R → Z 1 R → Z 1 Z

Z → 0 Z → 0 Z

generates LH . A CFP grammar generating LV can be constructed analo-
gously.

LH ∩ LV is the language in Example 11. We proved this language is not
a CFP language, thus the class of CFP languages cannot be closed under
intersection. ut

Theorem 21 The class of CFP languages is not closed under complement.

Proof. For a language L, let L denote its complement. The intersection of two
languages L1, L2 can be expressed using union and complement operations as
follows

L1 ∩ L2 = L1 ∪ L2

thus, with respect to the previous two theorems, CFP languages cannot be
closed under complement. ut

Theorem 22 The class of CFP languages is closed under both, row and col-
umn, concatenations.

Proof. We make the proof for the row concatenation (the case of the column
concatenation is analogous). Let L1, L2 be CFP languages such that Λ /∈
L1 ∪ L2 and G1 = (V1,Σ, S1,P1), G2 = (V2, Σ, S2,P2) CFP grammars such
that L(G1) = L1, L(G2) = L2. We can assume V1 ∩ V2 = ∅. Let S0 be a new
non-terminal, not contained in V1 ∪ V2, Π be the production:

S0 → S1

S2

100



We put
G = (V1 ∪ V2, Σ, S0,P1 ∪ P2 ∪ {Π})

Then, L(G) = L1
dL2. If Λ ∈ L1 ∪ L2, then L1

dL2 can be expressed as follows:

• ((L1 \ {Λ}) d(L2 \ {Λ})) ∪ L1 ∪ L2 if Λ ∈ L1 and Λ ∈ L2

• (L1
d(L2 \ {Λ})) ∪ L1 if Λ /∈ L1 and Λ ∈ L2

• ((L1 \ {Λ}) dL2) ∪ L2 if Λ ∈ L1 and Λ /∈ L2

The proof is finished, since we have already proved that CFP languages are
closed under union. Also, it should be clear that whenever L is in L(CFPG),
L \ {Λ} is in L(CFPG) as well. ut

Theorem 23 The class of CFP languages is closed under projection.

Proof. Let G = (V, Σ, S0,P) be a CFP grammar, π : Σ → Γ be a projection.
We can construct a CFP grammar G′ = (V, Γ, S0,P ′), where productions in
P ′ are modified productions from P – all occurrences of terminals from Σ in
productions in P are replaced by terminals from Γ, a ∈ Σ being replaced by
π(a). It should be clear that π(L(G)) = L(G′).

ut

7.8 Emptiness Problem

In section 3.1, we have already mentioned that the emptiness problem is not
decidable for FSA’s. The idea behind the related proof is as follows. Let T
be a one-dimensional deterministic Turing machine, w an input to it, the tape
of T be infinite to the right only. A finite computation of T over w can be
encoded into a (square) picture – a configuration per a row, where the first field
of a row always encodes the first field of the tape. It is easy to see that we can
construct a DFSA A which checks whether the first row of an input encodes the
initial configuration of T having w as the input, whether the last row encodes
a final configuration and whether each row (except the first one) encodes a
configuration which is directly reachable from the configuration encoded in the
row above. It implies that the question whether T halts on w can be transformed
to the question whether A accepts some picture.

CFP grammars does not allow to force local constraints among symbols of
two neighboring rows in a picture as A did. However, using a different approach,
we show that the emptiness problem is not decidable for CFP grammars as well.
Moreover, we will see that this holds even for CFP grammars over one-symbol
alphabets.

Theorem 24 The problem if a given CFP grammar generates some picture is
not decidable.

Proof. Let T = (Σ,Γ, Q, q0, δ,QF ) be a one-dimensional single-tape determinis-
tic Turing machine, w ∈ Σ∗ an input to T . We will consider the tape of T to be
infinite to the right only. We show it is possible to construct a CFP grammar

101



G such that L(G) 6= ∅ if and only if T accepts w. Since the construction we are
going to describe can be performed on a Turing machine, it is evident that the
halting problem is transformable to the emptiness problem.

Let the constructed grammar be G = (VT , VN , S,P), where VT = {$}. Pro-
ductions and non-terminals of G will be specified successively. Briefly said, the
idea of the construction is to consider an encoding of each possible configuration
of T by a positive number and, for a non-terminal C, to find suitable produc-
tions such that P is in L(G,C) iff P is a square picture and its length encodes
a configuration which T can reach when computing on w. Furthermore, S will
generate a picture P iff there is a picture in L(G, C) encoding a configuration
preceding an accepting configuration.

For i > 0, let c(i) denote the configuration T enters after finishing the i-th
step, c(0) be the initial configuration. Denoting s = |Γ| and t = |Q|, an encoded
configuration of T will have the form of a (binary) string over {0, 1} starting by
1 followed by concatenations of blocks of the form 1uv, where |u| = s, |v| = t.
u codes a symbol in Γ. Let Γ = {γ1, . . . , γs}. Then, we encode each γi by
0i−110s−i, i.e. the string of length s consisting of 0’s except the i-th position.
Similarly, v codes a state in Q. Value 0t is permitted in this case meaning that
no state is encoded. For γ ∈ Γ, resp. q ∈ Q, we use code(γ), resp. code(q)
to denote the string coding γ, resp. q. For our purposes, we make the code of
a configuration dependent on the number of a step the configuration has been
reached in. To be more precise, let us consider T has just finished the k-th
computational step and a1a2 . . . ak+2 are the first k + 2 symbols on the tape
(starting by the leftmost one). Let the head scan the m-th field (obviously
m ≤ k + 2, even if |w| = 0) and T be in a state q. Then, c(k) is encoded as a
concatenation of k + 2 blocks preceded by the symbol 1:

1B1B2 . . . Bk+2

Each Bi is of the form 1uivi, where ui = code(ai) and if i = m, then vi =
code(q), otherwise vi = 0t.

Let Code(k) denote the code of c(k). We can observe that each value v =
Code(k) can be decomposed into c(k) and k, since

k = (blog2 vc)/(1 + s + t)− 2

and c(k) is determined by contents of blocks corresponding to the representation
of v in binary.

Now, our goal will be to give a set of productions generating the language
L(G, C) such that P is in L(G, C) if and only if P is a square picture and
cols(P ) = Code(k) for some k ∈ N. To simplify notations, let p(n) denote the
square picture over VT of size Code(n) and bin(P ) be the string over {0, 1}
expressing the size of P written in binary. Moreover, for w = a1 . . . an, where
ai ∈ {0, 1}, let num(w) =

∑n
i=1 ai ·2n−i, i.e. num(w) is the number represented

by a binary string w.
The first production we add to P is

C → p(0)

The meaning should be clear – C generates the picture which encodes the initial
configuration that is reachable at the beginning. Next, we would like to define

102



productions related to generating of p(k + 1) by the assumption that p(k) can
be generated. To do it, we will need some auxiliary sets of pictures. We start
by the following group of productions:

H → $ H → $ H V → $ V → $
V

A → V A → V A Q → $ Q → Q V
H $

They are similar to the productions given in Example 7. H generates all non-
empty rows over {$}, V columns, Q square pictures and A all pictures over {$}
except the empty one.

Next, we add three non-terminals D, E, F and productions, such that P is
generated by D, resp. E, resp. F iff P is a square picture and bin(P ) is of the
form

D) 1B1B2 . . . Bk, where k ∈ N, each Bi is a block 1ui0t, where ui codes a
symbol in Γ as we have already described (vi part always equals 0t).

E) 1B1B2 . . . BkB′B′ – the same situation as before except the presence of
two occurrences of B′, each consisting of 01+s+t, which are appended
after the string from D).

F ) 1B1B2 . . . BiB
′B′Bi+1 . . . Bk – the pair B′B′ is inserted inside or ap-

pended at the end, following the leading symbol 1 or any block Bi,
i = 1, . . . , k.

Note that L(G,E) ⊆ L(G,F ). Productions related to D are as listed bellow

(1) D → $

For each i = 1, . . . , s, there are productions

(2) D → Di Di → Di,s+t+1 (3)

(4) Di,i+1 →
Di,i Di,i V
Di,i Di,i V
H H $

Di,1 →
D D V
D D V
H H $

(5)

(6) Di,j → Di,j−1 Di,j−1

Di,j−1 Di,j−1
for each j ∈ {2, . . . , s + t + 1} \ {i + 1}

Let us take a closer look at the defined productions for some fixed i. We
show that L(G,Di) contains exactly all square pictures P , where bin(P ) is of
the form that was expressed in point D) and, moreover, it ends by the suffix
1 code(γi)0t.

Assuming D generates square pictures only, to apply production (5) means to
substitute the same picture in L(G,D) for all four occurrences of D on the right-
hand side of the production. Different square pictures cannot be concatenated

103



by this scheme. It implies the generated picture is a square again. Let P1

be some picture of size n in L(G,D) and let P2 be the picture generated by
production (5) when P1 is substituted to D. Then, P2 is of size 2n + 1. It
means bin(P2) = bin(P1)1 (the symbol 1 is appended). On the other hand, let
us consider a production of type (6) for some possible j, P1 be a square picture
in L(G,Di,j−1). If we apply the considered production on P1 to generate P2,
then P2 is the square picture of size 2 · cols(P1). It implies bin(P2) = bin(P1)0.
We can generalize these two observations on all productions of types (1)–(6)
and summarize them as follows:

• Every picture generated by D, Di or Di,j is a square picture – production
(1) generates the square picture of size 1, all productions (2)–(6) preserve
squareness of pictures if a square picture is substituted for Di or Di,j on
right-hand sides.

• Let P ′ be a picture in L(G,D). Then, the square picture P for which
bin(P ) = bin(P ′)1 code(γi)0t is in L(G,Di). On the other hand, each
picture in L(G,Di) is of a size which fulfils the given expression for some
P ′ ∈ L(G,D).

It can be proved as follows. Let 1 code(γi)0t = b1 . . . bs+t+1, where
bj ∈ {0, 1}. It means b1 = bi+1 = 1, while the other bj ’s are equal to
0. Next, for j = 1, . . . , s + t + 1, let Pj be the square picture for which
bin(Pj) = bin(P ′)b1 . . . bj . By induction on j, we can easily show that
Pj ∈ L(G,Di,j). P1 is generated by production (5) when P ′ is substituted
for D’s on the right-hand side. Next, for j > 1, each Pj is generated by pro-
duction (4), resp. (6), substituting Pj−1 in proper places in the right-hand
side. Since P = Ps+t+1, production (3) gives the desired result. Moreover,
it should be clear that whenever a picture O in L(G,Di) is generated, the
sequence of productions given in the description above is always forced to
be applied. It implies the equality bin(O) = bin(O′)1 code(γi)0t for some
O′ ∈ L(G,D).

Using the observation inductively, we can see that D generates exactly all
the required pictures.

E should generate a square picture P if and only if bin(P ) =
bin(P ′)0s+t+10s+t+1, where P ′ ∈ L(G,D). Speaking in words of the previ-
ous considerations, 0 is required to be appended 2 · (s + t + 1) times. The
following productions perform this operation:

E → Es+t+1

Ei → Ei−1 Ei−1

Ei−1 Ei−1
for each i = 2, 3, . . . , 2 · (s + t + 1)

E1 → D D
D D

L(G, F ) can be generated in the same way as L(G,D). The only difference is
that the process must be applied on some picture in L(G,E). The productions
are

F → E

104



for each i = 1, . . . , s

F → Fi Fi → Fi,s+t+1

Fi,i+1 →
Fi,i Fi,i V
Fi,i Fi,i V
H H $

Fi,1 →
F F V
F F V
H H $

Fi,j → Fi,j−1 Fi,j−1

Fi,j−1 Fi,j−1
for each j ∈ {2, . . . , s + t + 1} \ {i + 1}

Let us consider configurations c(k), c(k + 1) for some k ∈ N. Moreover,
let the computational step of T corresponding to the change of configuration
from c(k) to c(k + 1) be driven by an instruction I = (q, a) → (q′, a′, d) of the
meaning: T in state q scanning symbol a rewrites a by a′, enters state q′ and
moves the head left if d = L, right if d = R or does not move it if d = N . We will
investigate the difference between Code(k+1) and Code(k). Let u1 = bin(p(k))
and u2 = bin(p(k + 1)), in c(k), let the head be placed on the m1-th field of
the tape, m2 be m1 − 1 if d = L and m1 + 1 if d = R or d = N . We denote
m = min(m1,m2). If u1 is of the form 1B1B2 . . . Bk+2, then u2 can be written
as

1B1 . . . Bm−1B
′
mB′

m+1Bm+2 . . . Bk+3

Comparing to u1, u2 contains one additional block Bk+3 storing 1 code(#)0t,
and blocks B′

m, B′
m+1 reflecting the changes related to performing the instruc-

tion I. Let us define the following values:

• x1 = num(BmBm+1), x2 = num(B′
mB′

m+1)

• y = (s + t + 1) · (k + 1−m)

• v = num(u1)− x1 · 2y

• c1 = s + t + 1, c2 = num(1 code(#)0t)

Note that y equals the number of bits that follow after the last bit of Bm+1 in
u1 and that v equals num(u′1), where u′1 is obtained from u1 by replacing each
bit 1 in BmBm+1 by 0. We can express num(u2) to be

(v + x2 · 2y) · 2c1 + c2

Then, the difference between num(u2) and num(u1) is as follows

∆(u1, u2) = num(u2)− num(u1) = (v + x2 · 2y) · 2c1 + c2 − v − x1 · 2y =

= (2c1 − 1) · v + (2c1 · x2 − x1) · 2y + c2

Based on these considerations we will add the following productions to P.

(7) C → C J
A Q

S → C Jf

A Q
(8)

105



2c1−1︷ ︸︸ ︷ c2︷ ︸︸ ︷
(9) J → F · · · F A V · · · V

A · · · A X V · · · V

2c1−1︷ ︸︸ ︷ c2︷ ︸︸ ︷
(10) Jf → F · · · F A V · · · V

A · · · A Xf V · · · V

2c1︷ ︸︸ ︷

(11) Q2 → $ Q2 →
Q2 · · · Q2

...
. . .

...
Q2 · · · Q2





2c1 (12)

For each instruction I = (a, q) → (a′, q′, d), where q′ /∈ QF , we add one
production of type (13) (x1 and x2 are numbers related to I as it has been
already described above).

x2·2c1−x1︷ ︸︸ ︷

X →
Q2 · · · Q2

...
. . .

...
Q2 · · · Q2





x1 (13)

Analogously, for each instruction I = (a, q) → (a′, q′, d), where q′ ∈ QF , a
production of type (14) is added.

x2·2c1−x1︷ ︸︸ ︷

Xf →
Q2 · · · Q2

...
. . .

...
Q2 · · · Q2





x1 (14)

We will prove that C generates exactly all pictures p(k), where c(k) is not an
accepting configuration, while S generates p(k) if and only if c(k) is accepting.

• Production (11) generates the square picture of size 1. If a square picture
of size k is substituted in (12) for Q2, the result is the square picture of
size k · 2c1 . By induction, Q2 generates exactly all square pictures of size
2c1·y, where y ∈ N.

• Considering the previous point, X (resp. Xf ) generates pictures of size
x1 · 2c1·y × (x2 · 2c1 − x1) · 2c1·y, where y ∈ N. Note that x2 · 2c1 − x1 is
always greater than 0, since x2 ≥ 1 and 2c1 > x1.

• J generates pictures of size v+y1×(2c1−1) ·v+y2 +c2, where v is the size
of a picture in L(G,F ) and y1 × y2 the size of a picture in L(G,X). The
result for Jf is similar, we need only to replace X by Xf in the previous
reasoning.

106



Now, let us consider production (7). If the production is used to generate
a picture, it must be applied on pictures P1 ∈ L(G, C) and P2 ∈ L(G, J)
such that rows(P1) = rows(P2). Let us assume P1 = p(k). We have al-
ready derived that rows(P2) is of the form v + y1, where y1 = x1 · 2c1·y. To
find v, x1 and y satisfying the equality, we will compare binary strings cor-
responding to sizes. We denote u1 = bin(rows(P1)), bin(v) is of the form
u = 1B1 . . . Bm−1B

′
mB′

m+1Bm+2 . . . Bl2 , u1 = 1A1 . . . Al1 . After adding x1 ·2c1·y

to v, the following conditions must be fulfilled:

• Both symbols at positions corresponding to the first symbols of B′
m and

B′
m+1 must be changed from 0 to 1 (otherwise v + y1 does not encode a

configuration). It forces y to be l2−m (since blocks are of length at least
3, the case y = l2 −m− 1 cannot change the bit in B′

m).

• The addition does not change length of u, thus l1 must be equal to l2.
It implies bin(x1) = AmAm+1 and Bi = Ai for all i = 1, . . . , m − 2,m +
1, . . . , l1. Productions related to F guaranteer that the required value v
always exists. A suitable x1 exists only if there is a proper instruction I
corresponding to the current state and scanned symbol encoded in Am or
Am−1. Since T is deterministic, there is at most one such an instruction.

So, for given P1 ∈ L(G,C), values y and v are determined uniquely, also x1 if
exists. Let us return back to applying production (7). Q must be substituted
by the square picture of size cols(P2), A is forced to be the picture of size
cols(P2)× cols(P1). The generated picture is the square picture of size

cols(P1) + cols(P2) = v + x1 · 2c1y + (2c1 − 1) · v + (x2 · 2c1 − x1) · 2c1y + c2 =
= 2c1 · v + x2 · 2c1y · 2c1 + c2 = 2c1 · (v + x2 · 2c1y) + c2 = Code(k + 1)

By induction on k, we can easily show that L(G, C) contains exactly all the
desired pictures. In addition, a picture in L(G) can be generated if and only if
there is a configuration c(k) preceding an accepting configuration c(k + 1).

ut

7.9 Comparison to Other Generalizations of
Context-free Languages

In this section we examine some alternative classes of picture languages that
have a relation to context-freeness. Namely, we focus on two classes that are
mentioned in [2] as possible candidates for the second level of the generalized
Chomsky hierarchy.

Languages of the first class are generated by a special type of so called matrix
grammars. These grammars were proposed by G. Siromoney, R. Siromoney
and K. Krithivasan. They consist of two sets of productions – vertical and
horizontal respectively. Horizontal productions are used to produce a row of
symbols that serve as the initial non-terminals for generating columns using
vertical productions. Details on the matrix grammars can be found in [21].

The languages of the second class are defined via systems consisting of two
one-dimensional context-free languages (L1, L2) and a projection. A picture P

107



belongs to the language defined by such a system iff it can be obtained as the
product of the projection applied on a picture P ′, where each column, resp. row
of P ′ is a string in L1, resp. L2. This class is given in [2] as a suggestion only
(without any closer characterization). The proposal is motivated by results on
tiling systems (that are an equivalent to OTA’s). The class is an extension of
L(OTA).

We discuss properties of the classes with respect to their suitability to be
promoted to a generalization of context-free languages. We also compare them
to L(CFPG).

Definition 20 A matrix grammar is a tuple G = (S0,S,Σ, VN , VT ,P1,P2),
where

• S = {σi}n
i=1 is a finite, non-empty sequence of mutually different elements.

• Let Γ be an alphabet consisting exactly of all elements in S. G(0) =
(Σ, Γ, S0,P1) is a one-dimensional grammar.

• For all i = 1, . . . , n, G(i) = (VN , VT , σi,P2) is a one-dimensional grammar
as well.

Matrix grammars are classified by types of grammars G(0), G(1), . . . , G(n)
into several groups. Since we are interested in context-free grammars, we will
consider the case when G(0) and also all G(i)’s are context-free. Let MCFG
abbreviate a matrix grammar of the described type.

Let P be a picture over VT , k = cols(P ) and let P (i) denote the i-th column
of P . We define a function ord : Γ → N as follows

∀i ∈ {1, . . . , n} ord(σi) = i

P is generated by G iff G(0) generates a string w = x1x2 . . . xk (where each xi is
in Γ) such that, for each i = 1, . . . , k, P (i) ∈ L(G(ord(xi))). We should remark
that, in the literature, the procedure of generating is usually defined in terms
of parallel processing and it has to fulfill some restrictions related to the usage
of productions. However, for our purposes, it is sufficient to consider the given
description, since we are interested in the generated class, which coincides with
the class determined by the original definition.

Let L(MCFG) denote the class of all languages generated by MCFG’s.

Proposition 18 L(MCFG) is a proper subset of L(CFPG).

Proof. It is evident that a MCFG is a special case of a CFP grammar, since
right-hand sides of all productions are formed of one-row or one-column ma-
trixes. Furthermore, since each one-dimensional context-free grammar can be
replaced by an equivalent grammar in the Chomsky normal form, it should be
clear that MCFG’s can be simulated even by CFPG2’s for which we have al-
ready proved that their generative power is less than the generative power of
CFP grammars (Theorem 12). ut

Definition 21 A two-dimensional context-free system is a tuple S =
(Σ, Γ, GR, GC , π), where

108



• Σ and Γ are alphabets.

• GR and GC are one-dimensional context-free grammars over Γ

• π is a projection from Γ to Σ.

We abbreviate a two-dimensional context-free system by 2CFS or 2CF sys-
tem.

Definition 22 The language generated by a 2CF system S = (Σ, Γ, GR, GC , π)
is the set L(S) containing exactly each picture P over Σ that can be written as
P = π(P ′), where P ′ is a picture over Γ such that each row, resp. column of P ′

taken as a string is in L(GR), resp. L(GC).

L(2CFS) denotes the class of all languages that can be generated by a 2CF
system.

Proposition 19 L(2CFS) is not a subset of L(CFPG).

Proof. This relation is implied by the fact that L(OTA) is a subset of L(2CFS)
[2]. However, to give an example of a 2CFS, we will prove it directly.

Let us consider the language L in Example 11, i.e. the language over Σ =
{0, 1} consisting of pictures that contain exactly one symbol 1 in each row and
column. This language can be generated by the 2CF system S = (Σ,Σ, G, G, π),
where π : Σ → Σ is the identity and G = ({S0, Z},Σ, S0,P), where the produc-
tions in P are:

S0 → J J → 0J J → 1Z Z → 0Z Z → λ

As we can see, G is even a regular grammar.
On the other hand, we have already proved that L /∈ L(CFPG) (Lemma

14). ut

The following results regarding NP -completeness are also consequences of
the inclusion L(OTA) ⊆ L(2CFS). To demonstrate capabilities of 2CFS’s, we
again prove them directly.

Proposition 20 To decide whether a 2CF system S generates a picture P is
an NP -complete problem.

Proof. For a one-dimensional Turing machine T = (Q, Σ1, Γ1, q0, δ,QF ) com-
puting in polynomial time p and an input w = x1 . . . xm (where each xi ∈ Σ1),
we show how to construct a 2CF system S = (Σ2,Γ2, GR, GC , π) and a picture
P such that P ∈ L(S) ⇔ T accepts w. Since we deal with NP -completeness
of one dimensional languages, we assume P to be encoded into a string in some
way.

The main idea of the construction is based on encoding a computation of T
into a picture, where each row encodes one configuration, starting by the initial
configuration in the first row and ending by a final configuration in the last row.
S will generate all pictures encoding accepting computations.

Without loss of generality, we assume

109



• T never moves to the left from the filed scanned in the initial configuration,
i.e. from the field corresponding to the leftmost symbol of w if w 6= λ.

• During the first step, T always changes its state from q0 to q1, it does not
rewrite the scanned symbol and does not move the head. It means, there
is exactly one instruction applicable on the initial configuration and this
instruction is of the given form.

• T has exactly one final state. Let this state be qf .

• If T reaches qf , then the final configuration is always #qf . Before T
accepts, all symbols different to # are erased in the tape and the head is
moved to the field scanned in the initial configuration.

• T always performs at least |w| steps (this condition is implied by the
previous point).

Let I be the set of all instructions of T . For a convenience, we assume I
contains also a fictive instruction If that is applicable on each final configuration
and does not perform any changes (no rewriting, no head movement). We define

Σ2 = Γ1 ∪ (Γ1 × I) ∪ (Γ1 ×Q× I)

and Γ2 = Σ2 × {0, 1}. For any (b, d) ∈ Γ2, let

π((b, d)) =
{

b if d = 1
# if d = 0

For all (b, d) ∈ Γ2, let φ((b, d)) = b and for all v = y1 . . . yk, where each
yi ∈ Γ2, let φ(v) = φ(y1) . . . φ(yk). To achieve a better readability in the
following text, for each (b, d) ∈ Γ2, we will omit the d-part and write b only. This
step can be justified by the fact that whenever w will be in L(GR), resp. L(GC),
the language will be required to contain also each w′ for which φ(w′) = φ(w).

GR is designed to generate strings encoding a configuration of T and an
instruction T is going to perform. Let v = a1a2 . . . an ∈ Γ∗1 (ai ∈ Γ1), q ∈ Q, k
be a positive integer not greater than n and I ∈ I be an instruction applicable
on the configuration a1a2 . . . akqak+1 . . . an. Moreover, if I moves the head left,
resp. right, we assume k > 1, resp. k < n. Depending on the movement, GR

generates

• a1a2 . . . ak−2(ak−1, I)(ak, q, I)ak+1 . . . an (movement left)

• a1a2 . . . ak−1(ak, q, I)ak+1 . . . an (no movement)

• a1a2 . . . ak−1(ak, q, I)(ak+1, I)ak+1 . . . an (movement right)

A triple of the form (a, q, I) determines the current position of the head, state
and an instruction to be applied. A tuple of the form (a, I) determines a new
position the head will be moved to after applying I.

GC generates each string c1 . . . cn, where for every i = 1, . . . , n − 1, ci and
ci+1 fulfill

• If ci = (a, q, I), where I rewrites a by a′ and changes q to q′, then

110



− ci+1 = (a′, q′, I ′) if I does not move the head (I ′ is an arbitrary
instruction, not necessary applicable, since the applicability is being
checked by the grammar GR). This ensures that, after performing I,
the head of T remains at the same position.

− ci+1 = (a′, I ′) or ci+1 = a′ if I moves the head. The first case reflects
the situation when the head is moved back in the next step applying
I ′, while in the second case, a movement back does not occur.

• If ci = (a, I), then ci+1 = (a, q′, I ′). ci indicates that the head was moved
to this position by I, thus ci+1 must be a triple of the given form.

• If ci = a, then ci+1 = a or ci+1 = (a, I ′).

Informally, GC is designed to check in columns that instructions encoded to-
gether with configurations are really performed and changes made by them
reflected in following configurations.

All presented requirements on strings in L(GR) and L(GC) can be checked
by a finite-state automaton, thus GR and GC can be even regular grammars.

P is a square picture of size p(|w|) given by the following scheme:

(x1, q0, I0) x2 . . . xn # . . . #
# #
...

...
(#, qf , If ) # . . . #

I0, resp. If is the only instruction applicable on the state q0, resp. qf .
The first row of P encodes the initial configuration of T , the last row the final
configuration. Remaining rows are formed of #’s. Let P1 be a picture over
Γ2 such that P = π(P1) and all rows resp. columns of P1 are in L(GR), resp.
L(GC). It should be clear that rows of P1 encode an accepting computation of
T . On the other hand, if there is an accepting computation, a picture proving
P ∈ L(S) can be constructed.

So far, we have proved the NP -hardness of the problem. To finish the proof
it is sufficient to realize that if there is a picture P1 proving P ∈ L(S), it can be
non-deterministically guessed and verified in polynomial time, and vice versa.

ut

Proposition 21 L(2CFS) ∩NP2d 6= ∅

Proof. Let L1 be a one-dimensional NP -complete language over Σ, T be a one-
dimensional Turing machine recognizing L1 in polynomial time p. Since the
construction of S in the previous proof was nearly independent on the input
string w, we can use the same approach to construct a 2CF system for T
(assuming T fulfills all requirements listed in the proof), but this time with
additional minor modifications. Strings in L(GR), resp. L(GC) are required to
satisfy:

• In a row, if q0 appears in the represented configuration, then the configu-
ration must be initial.

111



• In a column, if a state is encoded in the first, resp. last field, it must be
q0, resp. qf .

• In a column, the first and last field of the column must store a symbol of
the form (b, 1), where b ∈ Σ2, while the other fields symbols of the form
(b, 0).

These three additional requirements ensure that S generates exactly each picture
P ′, where the first row encodes an initial configuration, the last row an accepting
configuration and the other rows are strings of #’s. Moreover, T accepts the
encoded input string in at most rows(P ′) steps using at most cols(P ′) fields of
space.

L2 = L(S) is NP2d-complete, since there is a polynomial transformation of
L1 to L2. Each w ∈ Σ∗ is transformed to the picture P as it was described in
the proof of Proposition 20. ut

We have already proved that languages in L(CFPG) can be recognized in
polynomial time (Theorem 15). We can conclude that 2CF systems are too
strong to be considered as a tool defining the generalization of context-free
languages.

112



Chapter 8

Conclusions

In the thesis we have confirmed the fact that there are many differences in
results between the theory of two-dimensional languages and the classical one.
They are caused by a more complex topology of pictures, which is, comparing
to strings, more contextual. Some of the most important differences we have
found are summarized in the following paragraphs.

• A two-dimensional finite-state automaton is a natural candidate for the
recognizing device defining the ground level class of picture languages,
however, L(FSA) has some properties that differ to those known from the
one-dimensional case. Namely, we have shown that L(FSA) is not closed
under projection (Theorem 2). On the other hand, two-dimensional on-
line tessellation automata seems to be too strong, since they are able to
recognize some NP2d-complete problems. We have shown that for every
bounded one-dimensional cellular automaton, an OTA simulating it can
be constructed (Theorems 9 and 10).

• Two-dimensional grammars with productions in context-free form are a
straightforward generalization of context-free grammars, but the proper-
ties of the class L(CFPG) prevent to promote L(CFPG) to a generaliza-
tion of context-free languages. We have seen that the class is incompara-
ble with L(FSA) (Theorem 13), there is no normal form of productions,
since the generative power depends on size of production’s right-hand sides
(Theorem 16), etc.

• We have shown that, comparing to a one-dimensional tape, a two-
dimensional tape is an advantage, since some computations can be done
substantially faster there. We have demonstrated this fact on palin-
dromes (section 4.2). Two-dimensional Turing machine can decide in time
O(n2/ log n) whether an input string is a palindrome. This cannot be done
in better than quadratic time when a one-dimensional tape is used. We
have also proved that our algorithm is optimal (section 4.4).

Throughout the thesis we have investigated relationships among the classes
of picture languages defined by the models. In Figure 8, we can see a scheme
where our results are summarized together with already known facts.

113



L(DFA) ? // L(FA)

L(OTA)

∗
OO

∗ ___

?

N N N N N N
L(CFPG)

ggNNNNNNNNNNN

L(FSA)

OO

77ppppppppppp
___ L(DOTA)

∗

YY

OO

L(DFSA)

OO 77ppppppppppp
∗

b d g j m p t
w

|
¢

¦
©

®

Figure 8.1: Relations among the classes we have studied. An arrow leading
from class C1 to class C2 denotes that C1 is a proper subset of C2 while dashed
line connecting two classes indicates that the classes are incomparable. Non-
labelled relations are already known results. Our results are labelled by ∗ and
?. The question mark indicates that the related result has been proved by the
assumption P 6= NP .

In the remaining part of this chapter we give a list of problems that have not
been solved and that, in our opinion, are important and deserve an attention.
They are related mostly to CFP grammars.

Recognizing device for L(CFPG)

We have not succeeded in finding a model of device recognizing exactly
L(CFPG). We have shown that two-dimensional forgetting automata can sim-
ulate CFP grammars (Theorem 14), however, they are able to recognize also
some languages outside the class L(CFPG). It is a question if some suitable
modifications of the model can be done to obtain the required device. Of course,
we can look for a model characterizing the class based on different principles
than forgetting as well.

One of the approaches can be to study devices equipped with a pushdown
store. Even if we consider a two-dimensional finite-state automaton having this
storage available we get a device of recognitive power surely greater comparing
to FSA’s. It seems, this sort of two-dimensional automata have not been studied
much yet.

Emptiness problem in case of CFPG2

In section 7.8, we have proved that the emptiness problem is not decidable for
CFP grammars. In the presented construction, it was essential that we worked
with productions having right-hand sides of size 2 × 2. The arising question is
if the emptiness problem is still undecidable if we restrict CFPG to CFPG2.

Language of pictures consisting of one component

To show that a language L is not in L(CFPG), we used the technique based
on classifying pictures in L with respect to by which productions they can be
generated in the first step (see, e.g., the proof of Theorem 10). This technique
was sufficient for our purposes, however, in [9], there is an open problem stated

114



that we have not solved applying the technique. Let us consider the language
described in Example 12.

Example 12 Let Σ = {a, b}, P be a picture over Σ and g(P ) a non-oriented
graph assigned to P , where nodes correspond to fields of P that store b and
an edge connects two nodes if and only if the related fields in P are neighbors
(we consider each field to have four neighbors maximally – the left, right, top
and bottom neighbor). We say that P contains one component of b’s iff g(P )
is formed of one component. Let Lc be the language consisting exactly of all
pictures over Σ that contain one component of b’s.

There is a hypothesis that Lc cannot be generated by a CFP grammar.
It is difficult to apply our technique to confirm the hypothesis, since, roughly
said, there are many variants of pictures in Lc. The problem remains still open
although we have presented the technique, which was not considered in the
mentioned resource.

Possible extension of CFPG

We have proved that L(CFGP ) and L(FSA) are incomparable (Theorem 13).
If we would like to have grammars that cover languages recognizable by two-
dimensional finite-state automata, we can consider the following extension:

Definition 23 An extended two-dimensional grammar with productions in
context-free form is a tuple (VN ,VS , S0,R,P), where

• VN is a finite set of non-terminals

• S0 ∈ VN is the initial non-terminal

• VS = {σi}n
i=1 is a finite, non-empty sequence of different starting symbols

• R = {Li}n
i=1 is a finite sequence of length |VS | of languages in L(FSA)

• Let VS be the set consisting exactly of all elements in VS. Then, P is
a finite set of productions of the form N → W , where N ∈ VN and
W ∈ (VN ∪ VS)∗∗ \{Λ}. In addition, P can contain S0 → Λ. In this case,
no production in P contains S0 as a part of its right-hand side.

Let ECFPG stand for an extended two-dimensional grammar with produc-
tions in context-free form. Comparing to CFPG, ECFPG does not contain
terminals, but rather starting symbols, where each σi can be substituted by any
non-empty picture in Li. More precisely, for V ∈ VN ∪ VS , we define L(G,V ),
the language generated by V in G, as follows.

1. If S0 → Λ is in P then Λ ∈ L(G,S0).

2. For each σi ∈ VS , L(G, σi) = Li.

3. Let N → [Aij ]m,n be a production in P, different to S0 → Λ, and Pij

(i = 1, . . . , n; j = 1, . . . , m) non-empty pictures such that Pij ∈ L(G,Aij).
Then, if

⊕
[Pij ]m,n is defined, it is in L(G,N).

115



The language generated by G is L(G) = L(G, S0). Having defined the ex-
tended variant of CFP grammars, we can make two observations.

1. L(CFPG) ⊆ L(ECFPG) – For any CFP grammar G = (VN , VT , S0,P),
where VT = {a1, . . . , an}, we can construct ECFP grammar G′ =
(VN , {σi}n

i=1, S0,R,P), where R = {Li}n
i=1 and each Li = {ai}. It should

be clear that L(G′) = L(G).

2. L(FSA) ⊆ L(ECFPG) – Let LF be a language in L(FSA). Then G =
({S0}, {σ}, S0, {LF },P), where P = {S0 → σ} if Λ /∈ LF , otherwise
P = {S0 → σ, S0 → Λ}, is a ECFPG generating LF .

Except the observations, it is also clear that if productions of the grammars
are restricted to have one row on their right-hand sides only (or possibly Λ),
then the grammars generate exactly context-free languages.

Questions regarding properties of the class L(ECFPG) arise here.

Relationship between FA and DFA

We have shown that by the assumption NP 6= P , FA’s are stronger than
DFA’s, since FA’s can recognize some NP2d-complete problems (Proposition
12). It is a question if a language L ∈ P2d such that L ∈ L(FA) and L /∈
L(DFA) can be found to separate these two classes. The open status of this
problem implies it is also open for the one-dimensional variant of forgetting
automata.

116



Bibliography

[1] P. Foltýn: Zapomı́naćı automat s rovinným vstupem, Master thesis, Faculty
of Mathematics and Physics, Charles University, Prague, 1994, (in Czech).

[2] D. Giammarresi, A. Restivo: Two-dimensional languages, in A. Salomaa
and G. Rozenberg, editors, Handbook of formal languages, volume 3, Be-
yond Words, pp. 215–267, Springer-Verlag, Berlin, 1997.

[3] D. Giammarresi, A. Restivo: Recognizable picture languages, Int. J. of Pat-
tern Recognition and Artificial Inteligence 6(2-3), pp. 32–45, 1992.

[4] J. Hopcroft, J. Ullman: Formal languages and their relation to automata,
Addison-Wesley, 1969.

[5] K. Inoue, A. Nakamura: Some properties of two-dimensional on-line tes-
sellation acceptors, Information Sciences, Vol. 13, pp. 95–121, 1977.

[6] K. Inoue, A. Nakamura: Two-dimensional finite automata and unacceptable
functions, Intern. J. Comput. Math., Sec. A, Vol 7, pp. 207–213, 1979.

[7] P. Jančar, F. Mráz, M. Plátek: A taxonomy of forgetting automata, in
proceedings of MFCS 1993, LNCS 711, pp. 527–536, Springer, 1993.

[8] P. Jančar, F. Mráz, M. Plátek: Forgetting automata and context-free lan-
guages, Acta Informatica 33, pp. 409–420, Springer-Verlag, 1996.

[9] P. Jǐrička: Grammars and automata with two-dimensional lists (grids),
Master thesis, Faculty of Mathematics and Physics, Charles University,
Prague, 1997, (in Czech).

[10] P. Jǐrička, J. Král: Deterministic forgetting planar automata, in proceedings
of the 4-th Int. Conference: Developments in Language Theory, Aachen,
Germany, 1999.

[11] J. Kari, Ch. Moore: Rectangles and squares recognized by two-dimensional
automata, In Theory Is Forever, Essays Dedicated to Arto Salomaa on
the Occasion of His 70th Birthday. J.Karhumaki, H.Maurer, G.Paun,
G.Rozenberg (Eds.), LNCS 3113, pp. 134–144.

[12] K. Lindgren, Ch. Moore, M. Nordahl: Complexity of two-dimensional pat-
terns, Journal of Statistical Physics 91(5-6), pp. 909–951, 1998.

117



[13] O. Matz: Regular Expressions and Context-free Grammars for Picture Lan-
guages, In 14th Annual Symposium on Theoretical Aspects of Computer
Science, volume 1200 of Lecture Notes in Computer Science, pp. 283–294,
Springer-Verlag, 1997.

[14] D. Pr̊uša, F. Mráz: Parallel Turing machines on a two-dimensional tape, In
proceedings of the Czech Pattern Recognition Workshop, ČVUT, Peršlák,
2000.

[15] D. Pr̊uša: Recognition of palindromes, In proceedings of WDS 2000, Charles
University, Prague, 2000.

[16] D. Pr̊uša: Two-dimensional Context-free Grammars, In proceedings of
ITAT 2001, pp. 27–40. Zuberec, 2001.

[17] D. Pr̊uša: Two-dimensional on-line tessellation automata: Recognition of
NP-complete problems, In proceedings of ITAT 2003, Sliezsky Dom, 2003.

[18] D. Pr̊uša: Two-dimensional Grammars in Context-free Form: Undecid-
ability of the Emptiness Problem, In proceedings of MIS 2004, Josef̊uv Důl,
Matfyzpress, 2004.

[19] D. Pr̊uša: Paralelńı Turingovy stroje nad dvojrozměrnými vstupy, Master
thesis, Faculty of Mathematics and Physics, Charles University, Prague,
1997, (in Czech).

[20] A. Rosenfeld: Picture languages – formal models of picture recognition,
Academic Press, New York, 1979.

[21] G. Siromoney, R. Siromoney, K. Krithivasan: Abstract families of matrices
and picture languages, Comput. Graphics and Image Processing 1, pp. 284–
307, 1972.

[22] M.I. Schlesinger, V. Hlaváč: Ten lectures on statistical and syntactic pattern
recognition, Kluwer Academic Publishers, 2002.

118


	Two-dimensional Languages

