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Abstract

We present a method for calculation of disparity maps
from stereo sequences. Disparity map from previous frame
is first transferred to the new frame using estimated mo-
tion of the calibrated stereo rig. The predicted disparities
are validated for the new frame and areas where prediction
failed are matched with a traditional stereo matching algo-
rithm. This method produces very fast and temporally stable
stereo matching suitable for real-time applications even on
non-parallel hardware.

1. Intro

Last decade marked an increasing interest of researchers
in stereo matching of image sequences. This task comes
up mainly in automotive industry, 3D TV technologies and
robotics.

Using classical stereo algorithms (designed for stan-
dalone image pairs) on stereo sequences is not sufficient for
these cases because of several issues. First of all, the re-
sulting disparity maps are not temporally consistent — most
methods exhibit unwanted flicker between the frames of the
sequence. Second, it is desired to lower the computational
complexity to achieve higher processing framerates. Typi-
cally this means that algorithms have higher error rate be-
cause they search a smaller volume in disparity space or do
other simplifications. Finally, additional temporal informa-
tion such as ego-motion or 3D scene flow may be extracted.

2. Related Work
2.1. Spacetime Stereo

Early work on spacetime stereo [19, 5] proposed exten-
sions of spatial windows used for computation of matching
costs to spatiotemporal windows, however they do not per-
form well with dynamic scenes. Their main advantage is
that existing algorithms can be easily adapted to handle tem-
poral dimension. Recent work from Richardt ef al. [14] use

spatiotemporal windows for the temporal variant of their al-
gorithm (with addition of per-frame weights).

Temporally stable stereo proposed in [15] considers im-
age sequences as space-time volumes and the matching cost
is based on similarity of spatiotemporal elements called ste-
quels — optical flow is not explicitly computed to recover
motion.

A different approach is taken in [2] where temporal
smoothing is applied as a post-processing of disparity maps
using a median filter for each pixel over few adjacent
frames. In order to cope with motion they compute opti-
cal flow between frames and trace the pixels over time.

Min et al. [12] achieve temporal stability by adding a
coherence function to the stereo matching cost to lower the
matching cost in areas with small changes between frames.

2.2. Stereo and Scene Flow

The concept of scene flow has been introduced in [17] as
an extension of optical flow to temporal dimension. Some
algorithms are designed to take advantage of joint calcula-
tion of disparity maps and disparity (scene) flow. For ex-
ample, in [9] disparities are computed either using WTA or
DP strategy, then the disparity flow is calculated using pre-
vious frame. Disparity prediction is done for the next frame
and matching costs are updated to ensure temporal smooth-
ness. In a similar fashion [3] describe a stereo algorithm
with joint estimation of scene flow based on seed growing.
The scene flow is grown from stereo matches from previous
frame, then the scene flow is used to predict matching in the
next frame.

Conversely, [18, 13] present a framework for computa-
tion of scene flow that separates stereo matching from scene
flow computation. They argue that it is an advantage since
the user is free to choose stereo and optical flow algorithm
with best properties.

2.3. Real-time Stereo

Some of the above mentioned methods are capable of
real-time or near real-time performance by implementing
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the proposed algorithms on GPU. There are further real-
time algorithms performing neither temporal smoothing nor
any extraction of temporal information. Of these the most
related to this work is [7], who employ a technique involv-
ing triangulation that helps limit the search space for corre-
spondences. Similar to our algorithm the parallel hardware
is not required for real-time operation.

Middlebury Stereo Evaluation page' lists more than a
dozen of real-time algorithms. Most methods leverage the
power of GPU (e.g. [14]), while only a few achieve real-
time performance on CPU (e.g. [6]).

3. Algorithm Description

Our initial targets were two-fold: (1) implement a real-
time stereo based on an existing algorithm; and (2) explore
possibilities how to decrease the amount of disparity search
space and achieve temporal stability.

The proposed Real-time Prediction (RTP) algorithm is
based on the observation that scenes observed by vehicles
or robots are typically mostly static and only few objects
in a scene are moving. We could therefore predict how the
scene would look like in the next frame (assuming static
scene and considering ego-motion) and only validate that
the prediction has been successful. Only the areas where
the prediction fails shall be matched with traditional stereo
algorithm, possibly avoiding a lot of computation.

3.1. Global Prediction and Validation

We propose a technique we call disparity transfer. It in-
volves (1) prediction of disparity map from the last frame
and (2) validation of predicted disparity values in the new
stereo frame. The prediction assumes that stereo rig cali-
bration is known. Matched points in the disparity map rep-
resent points in the 3D space. In case the scene is static
and the stereo rig moves, the 3D points representing rigid
objects should only be transformed using a global rotation
and translation. If the rig is not moving then a disparity map
identical to the last one should be predicted.

We assume that P, and P, are camera projection matrices
of the stereo rig in one frame and the internal calibration K
is the same for both cameras:

P; =K[I|0] and P, =K [I|D] (1)

In the next frame the rig is transformed using a rotation R
and a translation t, inducing new matrices P} and P).

P) =P,T and P, = P,T where T = [ORT ﬂ )

It is possible to show that if x4 = (x,y,w,d), where
(x,y,w) are homogenous coordinates of a point in the im-
age plane of Py and d is disparity assigned to that point,

http://vision.middlebury.edu/stereo/eval/

then we can transform the point x4 to the new frame as
x); = Mxq using a homography

. [KRK—1 f*;tb“} 3)

where K is the calibration matrix, f focal length, b baseline
and R, t are rotation and translation between the frames.

The transformed points x/; in disparity space are then
aligned to integer image coordinates in the new disparity
map. Finally the predicted (real) disparity values are val-
idated by calculating the similarity in the new frame and
assigning either |d|, [d] or no disparity if the similarity is
below a threshold.

In dynamic scenes the validation will fail (i.e. no dispar-
ity is assigned) on objects which undergo a motion differ-
ent from the estimated ego-motion. Such objects will be
matched using traditional stereo (Sec. 3.3).

3.2. Estimation of Ego-motion

The prediction requires an estimate of ego-motion be-
tween consecutive frames. This is a relatively simple task
when a stereo camera is employed and we are aware of pre-
vious methods [1, 11, 8]. Here we propose a simple yet
roboust algorithm.

The task is to find relative rotation Ry and translation t;
of a stereo rig between consecutive frames from stereo im-
age and disparity map from last frame (IF, If%, Do) and
stereo image from current frame (I¥, If). Calibration ma-
trix K for both cameras and baseline b are known.

The estimation proceeds as follows:

1. Extract Harris interest points {x; } from image /. Use
the associated disparity map Dy to determine dispar-
ities {d;} for the points {x;} and discard the points
where the disparity is not known.

2. For each point x; = (u;,v;)" and its disparity d; com-
pute corresponding 3D point X = (x, %, z,w)" by us-
ing camera calibration K and baseline b.

3. Predict position of points {%;} in the current frame I
from points {X;} using ego-motion estimate from the
last frame Ry, t( (initially Ry = I, tg = 0).

4. Run Lucas-Kanade tracker for corresponding pairs
{x;}in I} and {%;} in I} to get subpixel estimation
{%;} in new frame I} of features {x;} from the last
frame.

5. Find relative camera rotation R; and translation t; us-
ing P3P algorithm in the RANSAC scheme by mini-
mizing the total solution error

e= Zmin {ei,ethr} where e; = || fa, ¢, (Xi) — X
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Figure 1: Source images and output disparity maps

3.3. Real-time Growing (RTG) Algorithm

For bootstrapping and matching of areas where predic-
tion failed we have produced a very efficient implementa-
tion of seed-growing method that is capable of real-time
performance. In principle, other fast stereo algorithms
could be used, but we have not tested them.

Our implementation is based on the Baseline Method
from [4]. The algorithm starts with a sparse set of ro-
bustly matched correspondences called stereo seeds. The
seeds are first inserted into a queue, then in each step their
neighborhood is analyzed. The best matches from neigh-
borhood are inserted into the queue for further process-
ing and put into the output disparity map. The matching
is greedy (once a disparity has been assigned, it will not
be changed in future) and terminates when the newly en-
countered correspondences stay below the minimal similar-
ity threshold. The threshold effectively determines the ratio
between matching density and error rate.

The original paper proposes also a more robust variant
(called GCS). That approach produces fewer errors in the
exchange of density of the disparity map. We have chosen
the Baseline Method in favor of the robust variant because
of speed. The baseline method is several times faster since
it searches a smaller part of the disparity space and omits
a final optimization step. We plan to develop a combined
method in future.

The advantage of the seed growing is that by controling
the seed queue one can indirectly limit the search space.
This has a similar effect as the adaptive search range in [7],
although the means to achieve it are completely different.
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Figure 2: Comparison with other algorithms

4. Evaluation

Figure 1 shows a sample of disparity maps produced
from real-world sequences [16]. RTP maintains a better
temporal stability compared to RTG as it greatly reduces
the flicker. The improved stability comes from the fact that
disparity maps from RTP are based on the ones from pre-
vious frames. The differences can be seen in the online
resource’. RTP generally produces more errors than RTG
because sometimes wrong disparity values are validated.

The processing speed on Intel Core i5 processor and
VGA resolution is about 10-15 fps for RTG and 15-20 fps
for RTP — it depends on the density of disparity maps. Our
implementation uses two threads.

Next we compare the performance of RTP, RTG to ELAS
[7] and SGM algorithms [10] in three aspects: disparity
map density, RMS error of valid disparities and error rate
(|d — dgr| > 2). The tests were run on a synthesized se-
quence with ground truth [16] — Sequence 2. The results
are shown on per-frame basis in Figure 2. The RMS error
is low for both RTP and RTG. The end of the sequence is
more challenging: the density of RTP/RTG decreases keep-
ing stable error, while ELAS and SGM increase the error
rate and keep the density.

5. Demo Content

The work will be presented as a live demo with Bumble-
bee?2 stereo camera. We will demonstrate real-time 3D visu-
alization of the scene as a point cloud and automatic regis-
tration of point clouds from estimated ego-motion. Figure 3
shows an example of a live demonstration.

’http://cmp.felk.cvut.cz/ dobiama5/stereort/



Figure 3: 3D scanning demonstration

Acknowledgements

This work was supported by the Czech Ministry of Edu-
cation under Project MEB111006.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

H. Badino. A robust approach for ego-motion estima-
tion using a mobile stereo platform. In Proceedings of
the Ist international conference on Complex motion,
IWCM’ 04, pages 198-208, 2007.

M. Bleyer and M. Gelautz. Temporally consistent dis-
parity maps from uncalibrated stereo videos. In ISPA,
pages 383-387, sept. 2009.

J. Cech, J. Sanchez-Riera, and R. Horaud. Scene
flow estimation by growing correspondence seeds. In
CVPR, pages 3129-3136, june 2011.

J. Cech and R. Sara. Efficient sampling of disparity
space for fast and accurate matching. In CVPR Ben-
COS, june 2007.

J. Davis, D. Nehab, R. Ramamoorthi, and
S. Rusinkiewicz.  Spacetime stereo: a unifying
framework for depth from triangulation. /EEE PAMI,
27(2):296-302, feb. 2005.

S. Gehrig and C. Rabe. Real-time semi-global match-
ing on the CPU. In CVPR Workshops, pages 85-92,
june 2010.

A. Geiger, M. Roser, and R. Urtasun. Efficient large-
scale stereo matching. In R. Kimmel, R. Klette, and
A. Sugimoto, editors, ACCV, volume 6492 of Lecture
Notes in Computer Science, pages 25-38. Springer,
2010.

A. Geiger, J. Ziegler, and C. Stiller. Stereoscan: Dense
3d reconstruction in real-time. In Intelligent Vehicles
Symposium (IV), pages 963-968, june 2011.

(9]

[10]

[11]

[12]

M. Gong. Real-time joint disparity and disparity
flow estimation on programmable graphics hardware.
CVIU, 113:90-100, January 2009.

H. Hirschmuller. Stereo processing by semiglobal
matching and mutual information. PAMI, 30(2):328—
341, February 2008.

A. Howard. Real-time stereo visual odometry for au-
tonomous ground vehicles. In IROS, pages 3946—
3952, sept. 2008.

D. Min, S. Yea, and A. Vetro. Temporally consistent
stereo matching using coherence function. In 3DTV-
CON, pages 1-4, june 2010.

C. Rabe, T. Miiller, A. Wedel, and U. Franke. Dense,
robust, and accurate motion field estimation from

stereo image sequences in real-time. In ECCV, pages
582-595, 2010.

C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. A.
Dodgson. Real-time spatiotemporal stereo matching
using the dual-cross-bilateral grid. In ECCV, pages
510-523, 2010.

M. Sizintsev and R. Wildes. Spatiotemporal stereo via
spatiotemporal quadric element (stequel) matching. In
CVPR, pages 493-500, june 2009.

T. Vaudrey, C. Rabe, R. Klette, and J. Milburn. Dif-
ferences between stereo and motion behavior on syn-
thetic and real-world stereo sequences. In 23rd Inter-

national Conference of Image and Vision Computing
New Zealand (IVCNZ ’08), pages 1-6, 2008.

S. Vedula, S. Baker, P. Rander, R. Collins, and
T. Kanade. Three-dimensional scene flow. In ICCV,
volume 2, pages 722-729 vol.2, 1999.

A. Wedel, T. Brox, T. Vaudrey, C. Rabe, U. Franke,
and D. Cremers. Stereoscopic scene flow computation
for 3d motion understanding. IJCV, 95:29-51, 2011.
L. Zhang, B. Curless, and S. Seitz. Spacetime stereo:

shape recovery for dynamic scenes. In CVPR, vol-
ume 2, pages Il — 36774 vol.2, june 2003.





