
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

P
hD

T
H

E
S

IS

IS
S
N

12
13
-2
36
5

Learning for Sequential
Classification

Jan Šochman

jan.sochman@cmp.felk.cvut.cz

CTU–CMP–2009–24

February 25, 2009

Available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/sochman/Sochman-PhD.pdf

Thesis Advisor: Doc. Dr. Ing. Jǐŕı Matas

The research was supported by the European Commission project
FP6-IST-027113 eTRIMS, the Grant Agency of the Czech

Technical University under project CTU 0307313, and STINT
Foundation project Dur IG2003-2 062.

Research Reports of CMP, Czech Technical University in Prague, No. 24, 2009

Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz

Learning for Sequential Classification

A Dissertation Presented to the Faculty of the Electrical Engineering
of the Czech Technical University in Prague in Partial Fulfillment of the
Requirements for the Ph.D. Degree in Study Programme No. P2612 -

Electrotechnics and Informatics, branch No. 3902V035 - Artificial
Intelligence and Biocybernetics, by

Jan Šochman

February 25, 2009

Thesis Advisor

Doc. Dr. Ing. Jiřı́ Matas

Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering
Czech Technical University in Prague

Karlovo náměstı́ 13, 121 35 Prague 2, Czech Republic
fax: +420 224 357 385, phone: +420 224 357 465

http://cmp.felk.cvut.cz

Abstract

In many computer vision classification problems, both the error rates and the evaluation time
characterises the quality of a decision. Yet most of the learning algorithms do not optimise
the evaluation time explicitly. We show that such learning problems can be formalised in the
framework of sequential decision-making.

The proposed formalisation has been already studied (without learning) by Wald in the 1940’s,
who proved that the optimal sequential strategy in terms of the shortest average time to decision
(number of measurements used) is the sequential probability ratio test (SPRT). We built on the
SPRT test and enlarge its capabilities to problems with dependent measurements. We show, how
the limitations of SPRT to a priori ordered measurements and known joint probability density
functions can be overcome. We propose a learning algorithm, called WaldBoost, which handles
the evaluation time vs. error rate trade-off during the learning, which integrates the AdaBoost
learning algorithm for measurement selection and ordering and the joint probability density
estimation, with the optimal SPRT decision strategy.

The WaldBoost algorithm is tested on the face detection problem. The reached detection
results are superior to the state of the art methods in the average evaluation time and comparable
in the detection rates.

Next, we show how existing (slow) binary decision algorithms can be approximated by a (fast)
trained WaldBoost classifier. The WaldBoost learning is used to minimise the decision time of
the emulated algorithm while guaranteeing predefined approximation precision. Moreover, we
show that the WaldBoost algorithm together with bootstrapping is able to efficiently handle
an effectively unlimited number of training examples provided by the implementation of the
approximated algorithm.

Two interest point detectors, the Hessian-Laplace and the Kadir-Brady saliency detectors,
are emulated to demonstrate the approach. Experiments show that while the repeatability and
matching scores are similar for the original and emulated algorithms, a 9-fold speed-up for the
Hessian-Laplace detector and a 142-fold speed-up for the Kadir-Brady detector is achieved. For
the Hessian-Laplace detector, the achieved speed is similar to SURF, a popular and very fast
handcrafted modification of Hessian-Laplace; the WaldBoost emulator approximates the output
of the Hessian-Laplace detector more precisely.

Finally, an on-line learning version of the WaldBoost algorithm is proposed. On-line boosting
allows to adapt a trained classifier to changing environmental conditions or to use sequentially
available training data. Yet, two important problems in the on-line boosting training remain
unsolved: (i) classifier evaluation speed optimisation and, (ii) automatic classifier complexity
estimation. We show how the on-line boosting can be combined with Wald’s sequential decision
theory to solve both of the problems.

The properties of the proposed on-line WaldBoost algorithm are demonstrated on a visual
tracking problem. The complexity of the classifier is changing dynamically depending on the
difficulty of the problem. On average, a speedup of a factor of 5-10 is achieved compared to the
non-sequential on-line boosting.

Acknowledgments

I would like to express my thanks to my colleagues at Center for Machine Perception who I had
the pleasure of working with. My special thanks go to Prof. Václav Hlaváč for maintaining such
a high quality workplace with such a pleasant atmosphere. It was pleasure for me to work and
study in his group.

I am greatly indebted to my advisor Jiřı́ Matas for his unflagging enthusiasm, enormous pa-
tience, for all the theoretical knowledge and critical view on research he shared with me, and for
all his support.

I thank to Prof. Mirko Navara, Alexander Shekhovtsov and Ondra Drbohlav for their helpful
comments on the thesis manuscript, and to Michal Perd’och, Ondra Chum, Štěpán Obdržálek,
and Zdeněk Kálal for their help with my conference and journal papers.

I also would like to thank to may family and to my friends for all their support that made it
possible for me to finish this thesis.

For his limitless and unconditioned support of all sentient beings I would like to thank to lama
Ole. I wish all good I gained on both professional and personal levels during my PhD studies
may help other beings to reach happiness and to avoid suffering.

I gratefully acknowledge the support of European Commission project FP6-IST-027113 eTRIMS,
the Grant Agency of the Czech Technical University under project CTU 0307313, and STINT
Foundation project Dur IG2003-2 062.

Contents

1 Introduction 2
1.1 Motivation and Goals of the Thesis . 3
1.2 Contributions of the Thesis . 3
1.3 Structure of the Thesis . 4
1.4 Authorship . 5

2 Problem Formulation 6

3 State of the Art 9
3.1 Being Sequential . 9
3.2 Learning to be Sequential . 13
3.3 Relation of the Thesis to the State of the Art 16

4 Preliminaries 17
4.1 AdaBoost . 17

4.1.1 AdaBoost Learning . 18
4.1.2 Re-weighting . 19
4.1.3 Training Error Upper Bound . 20
4.1.4 Domain-Partitioning Weak Classifiers 20
4.1.5 Training Convergence . 22

4.2 Sequential Analysis . 22
4.2.1 Sequential Probability Ratio Test (SPRT) 22

5 WaldBoost 25
5.1 Difficulties with SPRT . 25
5.2 SPRT for non i.i.d. Samples . 25

5.2.1 Likelihood Ratio Estimation with AdaBoost 26
5.3 WaldBoost . 27

5.3.1 Classification . 27
5.3.2 Learning with Bootstrapping . 28

5.4 Implementation Details . 30
5.4.1 Importance Sampling . 30
5.4.2 Balancing the positive and negative weights 30
5.4.3 Non-symmetric Wald Decisions . 30

vii

Contents

6 Fast Face Detection 32
6.1 WaldBoost Applied to Face Detection . 32
6.2 Experiments . 38

6.2.1 Application Speed Optimisation . 44
6.3 Summary . 44

7 Learning Fast Emulators of Binary Decision Processes 48
7.1 Learning Interest Point Detectors — State of the Art 48
7.2 Emulating a binary-decision black box algorithm with WaldBoost 49
7.3 Emulated scale invariant interest point detectors 50
7.4 Experiments . 51

7.4.1 Hessian-Laplace emulation . 51
7.4.2 Fast saliency detector . 58

7.5 Summary . 62

8 On-line WaldBoost 64
8.1 On-line Boosting for Feature Selection . 64
8.2 On-line WaldBoost . 65
8.3 Experiments . 66
8.4 Summary . 67

9 Conclusions 68

Bibliography 70

Keywords: sequential decision making, AdaBoost, sequential probability ratio test, Wald-
Boost, machine learning, face detection, interest point detection, tracking

viii

Commonly used symbols

Sequential Decision Making
x . X a classified object
y . F�1, �1K object class label
Ξ � Fξ1, ξ2, . . . ; ξi�X � XiK a set of ordered measurement functions ξi

x1, x2, . . . ;xi . Xi measurements on the object x, outputs of the measure-
ment functions ξi

S�X � F�1, �1K a sequential decision strategy
St�X1 � . . . � Xt � F�1, �1,]K a decision function
] “still undecided” output
T̄S,y average evaluation time of a sequential strategy S for the

class y
αS , βS false negative and false positive rate of a strategy S
α, β user defined upper bounds on the false negative and the

false positive rate
S� SPRT sequential decision strategy
Rt likelihood ratio on t measurements
A,B SPRT decision thresholds

AdaBoost
T training set
m size of the training set
H set/class of weak classifiers
h<tA�X � R selected weak classifier
ft<xA�X � R strong classifier response
Ht<xA�X � F�1, �1K strong classifier classification
wt<iA,wt weight of i-th sample, weight vector in training round t
T number of training rounds, length of the AdaBoost clas-

sifier
K number of bins in a weak classifier

WaldBoost
P sample pool
N sample pool size
θ
<tA
A , θ

<tA
B decision thresholds for classifier length t

γ final threshold

1

1 Introduction

The thesis connects these two lines of research – the machine learning theory driven by Bayesian
risk minimisation and the sequential hypothesis testing. The result of this fusion is a learning
algorithm which produces a sequential classifiers. As shown in the thesis, this fusion also leads
naturally to a learning algorithm which can process large training sets effectively. The usefulness
of the proposed algorithm is demonstrated on several practical problems.

A common formulation of the pattern recognition problem is that of finding a decision strategy
which minimises the Bayesian risk. However, to be able to use the Bayesian formulation, the
statistical model has to be fully defined, i.e. the necessary probabilities have to exist and be
known. Often our knowledge of the problem is not sufficient to directly minimise the Bayesian
risk and the necessary model parameters or a discriminative decision strategy need to be learned.

In supervised learning, some parameters of the statistical model are unknown. The learning
algorithm is provided with a training set and the task is to find a decision strategy or the unknown
model parameters. Ideally, the learning should minimise the risk, however this is impossible.
Instead, the learning task often reduces to training error minimisation with some regularisation,
which guarantees generalisation properties of the decision strategy.

In many practical problems, the classification error of the learned decision strategy is only one
of the characteristics of a learning algorithm. For instance, when the training data are available
progressively, i.e. not all at once, the ability of the learning algorithm to update the decision
strategy incrementally is necessary [25, 87, 84]. Also, some learning algorithms are more robust
in the presence of outliers in training data [22, 20, 60]. In medical applications, the cost of
measurements is not negligible, differs among measurements, and has to be considered. A
strategy which can use this information will be preferred [14]. When a very large training set
is available, the ability to process it effectively with limited memory resources is valuable [77].
Sometimes, the measurement cost is negligible, learning is run only once and thus can take quite
a long time, but the evaluation speed of the classifier is critical [81].

In this thesis we focus on the problem of learning fast classifiers, especially in the context
of computer vision. The importance of the evaluation speed in computer vision applications
has been understood for a long time. Various code optimisations, hardware implementations,
or architecture changes have been proposed in the literature to speed up existing algorithms. A
more systematic interest has emerged in computer vision literature recently [81, 62, 5, 7, 34, 10],
in particular with connection to the fast object detection problem.

The problem of fast sequential decision-making have been studied in statistical hypothesis
testing theory. In classical hypothesis testing a decision strategy is based on a fixed number
of observations (measurements). The necessary number of observations is determined by the
required probability of error of the test. However, the required sample size could be very large

2

1.1 Motivation and Goals of the Thesis

which is impractical in many applications. Imagine for instance a situation where one needs to
open half of tins in a freight to verify that the shipment is not spoilt.

In the 1940’s, Abraham Wald published his theory of sequential hypothesis testing [83]. In
his formulation, the number of observations is not determined in advance of the experiment but
depends on the observations made during the test. A sequential test takes the observations one
by one and when the required decision precision is attained, the test is terminated. On average,
fewer number of observations is needed to attain the required error rates. Wald formulated
the sequential hypothesis testing problem and found an optimal solution for it – the sequential
probability ratio test (SPRT).

Sequential analysis has been further developed and enriched and is now used as a basic and
well known tool in statistics [72]. Nevertheless, its applicability to computer vision problems is
not always straightforward due to its underlying assumptions. The SPRT is based on measure-
ments that are drawn independently from a known distribution. In computer vision problems the
measurements are usually correlated and the distributions are complex and difficult to estimate
or parametrise.

1.1 Motivation and Goals of the Thesis

The thesis was originally motivated by the latest progress in the development of fast algorithms
for object detection. Several authors showed that building a real-time detector is possible with
partially automatic learning algorithms with only small manual intervention to the training pro-
cedure. Here we aim at developing an automatic training procedure which avoids those manual
tunings. Especially, we are interested in formalisation of the training problem with time-to-
decision vs. precision trade-off and optimal or near-optimal solutions to it.

Another goal of the thesis is to emphasise the importance of the classifier evaluation time
as an optimisation parameter for training algorithms. It is clearly observable in many areas of
computer vision research that an algorithm is valued more if it is not only precise but if it is fast
as well. We would like to stress the lack of theory in this field and encourage others to explore
this important problem.

1.2 Contributions of the Thesis

This thesis contributes to state of the art of learning a sequential classifier.

The WaldBoost algorithm. As the main contribution, we show in Chapter 5 how Wald’s
sequential probability ratio test (SPRT) and the AdaBoost learning algorithm can be combined
into a single learning algorithm, called WaldBoost, with several favourable properties. First,
the learned classifiers are sequential in evaluation which allows fast classification. Second, the
WaldBoost overcomes limitations of SPRT to (i) a priori selected and ordered measurements,
and (ii) class-conditionally independent measurements or known measurement joint probability
density functions. Third, the WaldBoost learning is naturally suitable for very large training sets
due to its combination with bootstrapping technique. Finally, even though the learned sequential

3

1 Introduction

strategy is built greedily by the AdaBoost algorithm, and hence is not optimal, the experiments
on different problems show WaldBoost’s ability to find very effective strategies.

Fast face detection. We apply the WaldBoost algorithm to the face detection problem in
Chapter 6. Our solution can be viewed as a principled way to build a close-to-optimal “cas-
cade of classifiers” [81]. The face detection problem is used to demonstrate the properties and
useful settings of the WaldBoost learning. The experiments show competitiveness of the Wald-
Boost learning to the state of the art algorithms in detection rates and superior performance in
evaluation speed.

Speeding up binary decision processes by emulation. As another contribution, we
show in Chapter 7 how existing (slow) binary decision algorithms can be approximated by a
(fast) trained WaldBoost classifier. Two interest point detectors, the Hessian-Laplace and the
Kadir-Brady saliency detectors, are emulated to demonstrate the approach. Experiments show
that while the repeatability and matching scores are similar for the original and emulated al-
gorithms, a 9-fold speed-up for the Hessian-Laplace detector and a 142-fold speed-up for the
Kadir-Brady detector is achieved. For the Hessian-Laplace detector, the achieved speed is sim-
ilar to SURF, a popular and very fast handcrafted modification of Hessian-Laplace; the Wald-
Boost emulator approximates the output of the Hessian-Laplace detector more precisely.

On-line learning with WaldBoost. Finally, we propose an extension of the WaldBoost al-
gorithm to the on-line learning. Two important problems unsolved so far in the on-line boosting
training are treated by the approach: (i) classifier evaluation speed optimisation and, (ii) auto-
matic classifier complexity estimation. We show how the on-line boosting can be combined with
Wald’s sequential decision theory to solve both of the problems.

1.3 Structure of the Thesis

In Chapter 2 we formalise the problem of learning with time-to-decision parameter for two-
class classification. The state of the art methods related to the problem defined are reviewed in
Chapter 3. Then, two main building blocks of the proposed WaldBoost algorithm, the AdaBoost
algorithm and the sequential probability ratio test (SPRT) are described in Chapter 4. The main
result of the thesis, the WaldBoost algorithm, is presented in Chapter 5. Then, two applica-
tions of the WaldBoost algorithm to the face detection in Chapter 6 and to algorithm speedup
by emulation in Chapter 7 are described and experimental evaluation is discussed. Finally, an
extension of the proposed algorithm to the on-line learning is presented in Chapter 8. The thesis
is concluded in Chapter 9.

4

1.4 Authorship

1.4 Authorship

I hereby certify that the results presented in this thesis were achieved during my own research in
cooperation with my thesis advisor Jiřı́ Matas, published in [73, 74, 50, 30, 75] and with Helmut
Grabner and Horst Bischof, published in [30].

5

2 Problem Formulation

In this chapter we formulate the learning task for the two-class sequential classification prob-
lem. Unlike standard learning algorithms, we consider classifier evaluation speed as a parameter
optimised in learning.

In standard two-class sequential classification problem, an ordered set of measurement func-
tions Ξ � Fξ<1A, ξ<2A, . . . , ξ<MA; ξ<iA�X � XiK on an object x . X is given. The outputs of the
measurement functions ξi are measurements xi, i.e. values of some measurable quantities of the
object x. The task is to determine object’s unknown class y . F�1, �1K based on measurements
xi.

To classify object x, a sequential decision strategy S�X � F�1, �1K is adopted. The strategy
S is evaluated as a sequence of decision functions St�X1 � X2 � . . . � Xt � F�1, �1,]K. Besides
deciding to one of the two classes �1 and �1, the decision functions may also return the ’]’ sign,
which stands for “still undecided”. The decision functions St are evaluated one by one until a
decision is reached. Note that in order to evaluate St, only measurement functions ξ1, . . . , ξt

have to be evaluated. This is in contrast to fixed sample size tests where all measurements are
taken in advance.

The precision of a sequential decision strategy S is characterised by strategy’s false negative
rate αS and false positive rate βS

αS � P <S � �1iy � �1A , (2.1)

βS � P <S � �1iy � �1A . (2.2)

The number of measurements needed by a sequential strategy S to reach a decision is a ran-
dom variable. We will denote this number by NS . Depending on the class y, the average
evaluation time of the strategy S is then defined as

T̄S,�1 � E�NSi � 1� and T̄S,�1 � E�NSi � 1�. (2.3)

It depends on both the adopted strategy and the object class y, since for each class the strategy
may need different number of measurements on average to reach the decision.

Definition 1. A sequential decision strategy S� is said to be evaluation-time-optimal if for a
given distribution p<x1, x2, . . . , yA and all sequential decision strategies S

<αS� 3 αSA , <βS� 3 βSA � <T̄S�,�1 2 T̄S,�1A , <T̄S�,�1 2 T̄S,�1A
Wald in his work [83] showed that the sequential probability ratio test (SPRT), described in

more detail in Chapter 4, is an evaluation-time-optimal sequential decision strategy, i.e. for

6

given αS� , βS� it is the fastest strategy on average. However, the decision functions St in SPRT
are based on the likelihood ratio

Rt �
p<x1, . . . , xtiy � �1A
p<x1, . . . , xtiy � �1A . (2.4)

This is easy to evaluate when the measurements are independent since p<x1, . . . , xtiy � cA �
êt

i�1 p<xiiy � cA.
Learning problem formulation. Nevertheless, in many practical problems the measurements

are dependent. Also the densities are not known and their estimation quickly becomes intractable
even for moderate t. Thus, SPRT becomes difficult to evaluate. To overcome this difficulty we
formulate the following learning problem, where α̂S and β̂S are empirical estimates of the false
negative and the false positive errors of a strategy S computed on a training set and T̂S,y is an
empirical estimate of the average evaluation time.

Two-class Sequential Classification Learning Problem

Given:

• a training set T � F<x1, yiA, . . . , <xm, ymA;xi . X , yi . F�1, �1KK
• an unordered set (class) of measurement functions

Ξu � Fξ1, ξ2, . . . , ξM ; ξi�X � XiK
• two values α, β such that 0 2 α, β 2 1

The objective:
Out of all sequential strategies S trained on T using ordered measurement functions
from Ξu and fulfilling

α̂S 2 α , (2.5)

β̂S 2 β , (2.6)

find a strategy SL such that

T̂SL,y 2 T̂S,y for y . F�1, �1K. (2.7)

The learning objective is thus to find the decision functions SL
t such, that the learned se-

quential strategy fulfilling the required conditions (2.5) and (2.6) on the strategy error rates and
minimises the evaluation time. Note, that this also incorporates a search for ordering of the set
of measurement functions Ξu.

It is also necessary to study the generalisation properties of the learned strategy in terms of
both the error rates and the evaluation time. The proposed learning algorithm mostly relies on

7

2 Problem Formulation

the generalisation properties of SPRT and the AdaBoost algorithm for evaluation speed and error
generalisation respectively. Moreover, the learning is organised so that the training set is split
into training and validation parts to avoid biased estimates.

8

3 State of the Art

In this chapter we review previous work on sequential classification and learning of sequential
classifiers. We start by giving an overview of methods for sequential decision making which do
not comprise any learning and we use this overview to show various solutions to the problem
but also different problem formulations used. Then, the learning methods related to the learning
problem formulation introduced in Chapter 2 are described and their relation to the proposed
solution is discussed.

3.1 Being Sequential

The history of the formulation of a classification task with time-to-decision vs. precision trade-
off dates back to 1940’s to Wald’s sequential analysis [83]. However, the problem of sequential
decision making is inherent in many other old problems like the Twenty questions game [1] or
medical diagnoses. People have intuitively understood the advantages of the sequential architec-
ture and have been using such architectures implicitly or explicitly with or without theoretical
justification or optimality of their solution. The optimisation problem with time-to-decision vs.
precision trade-off can be posed variously, so different formulations of the problem have arisen.
We will first describe the sequential methods which do not learn the sequential strategy.

Wald’s sequential analysis. Instead of using a fixed set of measurements for finding the
optimal decision, Wald formulated a sequential classification task. The goal is to optimise the
number of measurements taken, given an upper bound on the quality of the attained solution, i.e.
to find an evaluation-time-optimal decision strategy.

Wald was motivated by the demands for more efficient sampling inspection procedures during
World War II. A typical application in his research was the freight inspection: Given a large
freight containing one brand of goods, the test needs to be performed to decide whether the
quality of the goods in the freight is above some threshold and so it can be accepted, or whether
to reject it. The test has to be designed so that the number of tested items in the freight is
minimised and the errors of accepting a third-rate freight and rejecting a good-quality freight are
small.

To this end, he devised a theory for sequential hypothesis testing – sequential analysis. In
particular, he found an evaluation-time-optimal solution to the sequential two-class classification
problem – the sequential probability ratio test (SPRT). The SPRT is used in the thesis and it will
be described in more detail in Chapter 4.

9

3 State of the Art

fast low resolution
tracker

slow high precision tracker

intermediate tracker

target configuration

full configuration space

Figure 3.1: Incremental focus of attention (IFA) architecture for tracking [80].

However, SPRT was developed under certain assumptions which do not need to hold gener-
ally. The SPRT is based on measurements that are drawn independently from a known distribu-
tion with unknown parameter. Although this is often the case in statistical problems, in computer
vision applications the measurements are usually correlated and the distributions are complex
and difficult to estimate. Due to these preconditions, Wald’s results are directly applicable to
the computer vision problems rather rarely [49, 58]. Nevertheless, the SPRT has been applied to
e.g. classifying examinees in a variable-length computerised classification test (CCT) [79] and
is widely used for the quality control. The sequential analysis has been further developed and
enriched [72] and is now used as a basic and well known tool in statistics.

Incremental Focus of Attention (IFA) architecture. Increasing processing power had
allowed increasingly more tasks to be solved in (or close to) real-time using classical non-
sequential methods. However, in tracking the amount of processed data was still unmanage-
able for both fast and precise localisation. To handle this problem, Toyama [80] proposed an
IFA framework (see Figure 3.1), which combines several tracking algorithms in a layered ar-
chitecture to flexibly trade the precision for robustness and speed. The tracking algorithms are
organised into layers by their accuracy and speed – the higher the layer, the more accurate and
slower algorithm it contains. During tracking, the layers are applied sequentially starting with
the lowest one. Application of each layer incrementally focuses the search space using increas-
ingly more complex algorithms. The IFA architecture leads not only to fast and accurate tracker
but was shown to increase the robustness as well. Nevertheless, the framework does not give
any advice on how to treat the speed vs. precision trade-off systematically and a particular
architecture is highly dependent on constructor’s design choices.

Similar architecture has been used by Rowley [65] in his neural network-based rotationally in-
variant face detector. He trained a two-layered detector with one layer reducing the search space

10

3.1 Being Sequential

by determining the in-plane rotation and the other layer containing a frontal face vs. background
classifier.

Coarse-to-fine hierarchical visual selection. Geman et al. [5, 16] studied theoretically
a related problem of sequential classification and pose estimation. This problem can be split into
two: (i) classification to object vs. non-object class, and (ii) estimating the pose of the object.

To solve the classification problem, object class characteristic co-occurrences (arrangements)
of features are tested. Increasing the size of the arrangements decreases probability of their
appearance for the non-object class. Setting the arrangement tests to have zero false negative
rate, the false positive rate decreases with increasing size of the tested arrangement.

Object parameters space is assumed to be hierarchically organised, like in the case of the
space of object shifts and rotations. To find the true parameters value, the arrangements are
found such that the parameter space is incrementally pruned. The strategy can be represented
as a tree with splits leading either to another test on a parameters subspace or directly to the
“non-object” decision.

Geman et al. showed empirically that the probability of the non-object class really decreases
exponentially. For the parameters estimation part they prove that the best strategy in terms of
mean computation is coarse-to-fine, meaning that the strategy should use the most generic tests
covering whole space first and proceed in the order of test un-specificity to certain subset of
parameters.

One disadvantage of the approach is that all the features have to be evaluated at all positions
first, before testing the arrangements. Later, we will see approaches which amortise this com-
putational burden in a better way (e.g. the work of Viola and Jones discussed below). Also the
construction of such hierarchical strategies is not easy. In their paper on face detection [16],
Fleuret and Geman present a method for constructing such detector, however the approach is
rather heuristic, e.g the tests are “forced” to “spread out” over the image, so that they are not all
focused on small image area. Also, in their face detection application their false positive rate is
higher than that of Rowley [64]. One possible explanation could be that the feature/test selection
scheme is too weak.

An application of the hierarchical framework of Geman et al. can be found in [66]. The
framework is used to build a hierarchical SVM face detector. Nevertheless, the results are far
from real-time even for 384�288 images and the results are reported only for false positive rates
which are very high compared to other approaches.

Sequential multi-class classification. In the sequential multi-class classification, the
task is to effectively discriminate the right class out of many. In this context, the efficiency
of the classification has been studied by Baker and Nayar [2]. Their pattern rejection theory
is similar to the Fisher’s discriminant analysis (FDA). Given labelled data, projection vectors
(called rejectors) are computed to discriminate the classes the best. In contrast to FDA, the pro-
jections are designed to allow quick elimination (rejection) of maximum number of classes. The
projections are constructed and applied sequentially, i.e. the data projected to one vector are

11

3 State of the Art

(a) (b) (c) (d) (e)

pass routetest node
terminate and
return current
result

decide to negative
class

decide to positive
class

Figure 3.2: Sequential strategies taxonomy. Strategies represented as decision trees: (a) Wald’s
SPRT, (b) hierarchical visual selection scheme, (c) multi-class rejectors, (d) anytime
algorithms, (e) cascaded classifier.

binned and a next-stage rejector is constructed independently for each bin for the classes falling
to that bin only.

Anytime algorithms. A different view on sequential classification can be found in so called
anytime algorithms [12]. These algorithms are designed to provide some solution anytime they
are interrupted. Instead of directly minimising the evaluation time, the goal is to provide the
most accurate result in a given time. Such algorithms are used in artificial intelligence for agent
action planning [6], in planning of medical treatment procedures [14], but a classical example is
also the Newton-Raphson iteration applied to finding the square root of a number.

The anytime formulation may seem to be more relevant for the real-time application design
(cf. agent planning example). However, there are many problems where a low error decision
is needed and the task is to deliver it as fast as possible, while the intermediate solutions are
not very useful. For instance in the face detection application in Chapter 6, a solution with
high false positive rate would require correspondingly higher effort of subsequent processing
(e.g. face recognition or human-computer interaction) so it is not that valued as a slightly slower
solution but with only few false positives.

Taxonomy of sequential strategies. A variety of sequential strategies is summarised in
Figure 3.2. Each sequential strategy can be represented as a decision tree. Wald’s SPRT forms
a spruce-like tree with two possible decisions at each node and one “continue” branch leading
to another test (Figure 3.2a). In hierarchical visual selection of Geman et al. (Figure 3.2b) the
process incrementally refines the estimate of the object pose, while allowing early decisions
to the non-object class. The multi-class sequential classification of Baker and Nayar can be
represented as a (full or partial) tree with decisions made only at leaf nodes. The test nodes

12

3.2 Learning to be Sequential

are constructed to reduce the depth of the tree (Figure 3.2c). Anytime algorithms produce the
optimal solution only when all the tests are performed, but they may be interrupted at any tree
level (Figure 3.2d). In the next section a simplified version of the spruce-like tree called cascade
(Figure 3.2e) is discussed in more detail. In cascaded classifiers the decision to positive class
is postponed until the lowest tree level. A simplified IFA architecture (without backward links)
can be also represented by this type of decision tree.

The number of examined tree levels is often linked to the computational complexity of the
sequential strategy. Often, the cost of the tests in the nodes is not the same. A good strategy
is to use cheap and fast tests in the top nodes and increase their power and complexity at lower
levels [80, 5, 14, 81]. When all the tests have the same complexity, their are ordered by their
discriminability [2, 5, 80].

3.2 Learning to be Sequential

Not surprisingly, the increased interest in learning sequential strategies is correlated with in-
creasing processing power of computers and especially with increased interest in image and
video processing. Whereas Wald’s motivation to speed up the classical statistical decision meth-
ods was due to new demands of World War II, today’s development is motivated by real-time
performance requirements on applications processing images and large datasets. The classical
learning algorithms do not optimise the evaluation time and thus new learning techniques need
to be developed. Surprisingly, not many learning methods for sequential classification can be
found in literature.

Learnable decision lists. In 1987, Rivest [61] studied learnability of decision lists in the
context of Boolean functions. The decision lists are shown to be a generalisation of decision
trees and CNF (class of formulae in conjunctive normal form) and DNF (class of formulae in
disjunctive normal form). They can be seen as a cascaded classifier (see Figure 3.2e) with
early decision either to the positive or to the negative class in each layer. Rivest showed that
the decision lists are polynomially learnable, i.e. they can be learned in polynomial time with
respect to the training set size and the size of the elementary test set. However, Rivest did not
study the efficiency of evaluation of the learned lists.

Cascaded face detection. Probably the most influential work on training sequential clas-
sifiers is the cascaded face detector by Viola and Jones [81]. They used the brute force search
for face detection illustrated in Figure 6.1 and still were able to achieve real-time performance
(i.e. millions of classifications per second). The speed of their classifier can be attributed to (i)
sequential design of the cascaded classifier, (ii) efficiently evaluated Haar-like features (measure-
ments), (iii) the measurement selection and combination into stage classifiers by the AdaBoost
algorithm, and (iv) the bootstrapping technique used to explore large training set.

A cascade, as defined in [81], is an ordered set of classifiers (stages) of increasing complexity,
each rejecting a fraction of negative samples while retaining majority of the positive ones (see
Figure 3.3). An image sub-window is passed to the first stage classifier and if it is not rejected it

13

3 State of the Art

AB classifier #1 AB classifier #2 AB classifier #T

background background background

faceimage
sub-window

Figure 3.3: The cascaded classifier of Viola and Jones [81] for face detection. The layers (stages)
contain increasingly more complex AdaBoost classifiers.

is passed to the second stage, third stage, etc. It is classified as a face if it passes without rejection
all the stages. The cascaded structure allows fast decisions by quick rejection of dominating but
simple background examples (only stages of low complexity are applied) and by concentrating
the computational power to the more difficult but rare ones.

A modification of the bootstrapping technique [77] is used to collect training samples for
the stage classifier learning. To train the t-th stage classifier, only samples which have passed
through the previous stages 1, . . . , t � 1 are used. It allows to train on large training sets by
repeated pruning and re-sampling of the sample set.

The stage classifiers are trained using the AdaBoost algorithm [18]. The early stages use very
short classifiers, the later increasingly more complex ones.

The idea of the classification cascade is not new. Some references have been already cited
in the previous section. As pointed out by Schneiderman [70], the principle has been used
already in the 1970’s for automatic target recognition [4]. Also the approach of Rivest [61]
can be interpreted as a cascade learning approach. However, the work of Viola and Jones in a
sense culminated the effort by combining the long-studied cascaded approach with an automatic
training algorithm and demonstrated its strength on a non-trivial face detection task.

Variants of cascaded classifier. The cascade learning algorithm as proposed by Viola and
Jones left some space for improvement. In fact, although they proposed an automatic training
procedure for cascade building, the cascade structure of their best reported detector was partially
manually tuned. Most of the papers building on the Viola and Jones approach focus on improv-
ing the sequential design of the classifier and its training, yet there have been many other papers
improving other aspects of the detector (e.g. [45, 24, 56, 23]).

One often mentioned inefficiency of the original cascaded structure is that it starts to train
each stage from scratch without taking into account the output of the previous stages. It can be
overcome by so called boosting chain architecture – by incrementally training a “monolithic”
classifier with bootstrapping, with several early decision thresholds at the positions of original
stage splits [86, 85, 32, 7, 10]. This architecture change have been shown to decrease the eval-
uation time substantially, since much shorter stage was required to improve the output of the
previous ones.

Grossmann [32], in order to optimise further the cascade training parameters, proposed to
learn a monolithic classifier first and to find the decisions thresholds ex post, creating a boost-

14

3.2 Learning to be Sequential

ing chain-type classifier. He did not use the bootstrapping to explore the large training set and
the training algorithm requires the a priori probability of the positive class to be known – how-
ever, it is not even constant in many applications. His approach is not compared properly with
other methods and he shows only small improvement in the evaluation speed on the expense
of decreased detection accuracy. Yet, the evaluation speed is considered to be an optimisation
parameter of the thresholds search algorithm.

Luo [47] expects the cascade stages to be trained and proposes an algorithm for optimising
the stage rejection thresholds. Nevertheless, the evaluation speed is not a part of the optimisation
and only the false positive and false negative rates are optimised.

A more complex approach to the cascade optimisation is taken in the Soft Cascade algo-
rithm [7]. First, a relevant set of weak classifiers (see Chapter 4 for detailed explanation of
the AdaBoost algorithm) is found by greedily adding weak classifiers as in AdaBoost, incre-
mentally extending the training set by the most difficult samples (bootstrapping) and potentially
removing old weak classifiers if it results in a drop in the classification error. The training al-
gorithm then optimises almost all boosting chain parameters. Given the required detection rate,
the false positive rate and the time-to-decision are minimised by re-ordering the weak classifiers
and finding the rejection thresholds. The algorithm produces state-of-the-art results in the error
rates, however the evaluation speed achieved is rather low compared to other methods. It is not
clear whether it is caused by more difficult training data or by the algorithm itself.

Another approach to cascade optimisation was proposed by Brubaker et al. [10, 9, 76]. In the
original Viola and Jones cascade training algorithm the expected stage error rates and the number
of stages are fixed in advance such that the desired overall error rates are reached. Brubaker et
al. propose a cascade indifference curve framework for better planning of the stage goals during
the training. However, their ROC results are not good enough and even the speedup reached is
rather low. So they propose to use recycling (boosting chain) and retracing (thresholds are added
even into the stage ensembles) and CART-based weak classifiers. Combined together, a state of
the art performance is reached in both the error rates and the evaluation speed.

Learning a sequential support vector machine (SVM) classifier. The SVM learning
is known to produce a classifier with good generalisation properties. However, it is slow to eval-
uate since the number of support vectors needed for a precise decision boundary representation
can be very high and each support vector is a multi-dimensional vector for which a dot product
needs to be computed with the tested image.

The number of support vectors can be reduced using the Reduced Set Vector Machine (RVM)
algorithm [71]. Moreover, RVM provides a hierarchy of classifiers of increasing complexity.
Both properties have been used to train a sequential face detector in [62]. They used a favourable
property of the RVM hierarchical classifier that the first Reduced Set Vector is the most discrim-
inative one, the second discriminates the samples misclassified by the first one, etc. The RVM
classifier was sequentialised by estimating rejection thresholds for all classifier lengths. The
approach has been further accelerated by using the integral image representation in [59].

The sequential RVM approach uses conceptually different view of sequential classifier learn-
ing from that of Viola and Jones. Instead of combining weak but fast classifiers to increase their

15

3 State of the Art

accuracy, an optimal classifier is found by SVM, approximated by RVM and sequentialised to
make it fast. The training is faster, globally optimal and fully automatic.

It is difficult to compare these approaches, however the reported speeds and accuracy results
speak for the Viola and Jones approach. What is probably an important factor slowing down the
RVM classifier is the complexity of the elementary tests – one dot product in a high dimensional
space must be computed. Even if this computation is approximated using the integral image
representation, the tests are still much more complex than those of Viola and Jones.

In principle, the sequential SVM should reach better classification rates. However, the detec-
tion rates in [62, 59] are reported only for very high false positive rates (0.001% per sub-window)
which is more than what is required in a real application.

Literature review for Other sequential task formulations. We are interested mainly
in binary classification problems without hierarchical parameter space and the evaluation is not
terminated suddenly from outside. There has been an intensive research on learning sequential
hierarchical classifiers for multi-pose face detection [43, 36, 85, 35]. A good state of the art
overview can be found in [34]. An overview on learning anytime algorithms can be found
in [14]. SVM based approach for visual selection was proposed in [40].

3.3 Relation of the Thesis to the State of the Art

In Chapter 5 we propose a novel learning algorithm called WaldBoost for solving the two-class
sequential classification learning problem defined in Chapter 2. In contrast to RVM, the Wald-
Boost algorithm retains the greedy learning of the Viola and Jones cascaded classifier learning.
It uses the results of Wald and builds a boosting chain-type classifier. Compared to the Viola and
Jones approach and its variants, the WaldBoost algorithm can be seen as a theoretically justified
cascaded classifier. The evaluation time is an optimisation parameter of the learning process. In
contrast to learning algorithms of Brubaker [10] and Bourdev [7] we do not post-optimise the
trained classifier and still show competitive results.

16

4 Preliminaries

The proposed WaldBoost algorithm which will be described in detail in Chapter 5 builds on
properties of two algorithms. It uses the AdaBoost algorithm to select and order the measure-
ments and Wald’s sequential probability ratio test (SPRT) to find the decision thresholds. In
this chapter, these two algorithms are explained in detail – Section 4.1 gives an overview of the
AdaBoost algorithm and Wald’s theoretical results are described in Section 4.2.

4.1 AdaBoost

The name “AdaBoost” comes from “adaptive boosting”. Boosting techniques allow to combine
so called “weak classifiers” into a “strong classifier” and thus boost their performance. One of
the most popular boosting techniques, the AdaBoost algorithm, was proposed by Freund and
Schapire [21]. Its predecessors [67, 19, 8] needed an upper bound on the weak classifiers errors
over training set weightings to be known to be able to combine them into a strong classifier. The
AdaBoost avoids this weakness (the upper bound is often not know in practice) by adapting to
actual errors of weak classifiers measured on the training set.

AdaBoost selects and combines weak classifiers1 h<tA�X � R into a single ensemble by
combining their responses into a sum

fT <xA � T

é
t�1

h<tA<xA . (4.1)

For a binary-classification problem the final class is given by

HT <xA � sign<fT <xAA . (4.2)

The weak classifiers could be very simple decision functions (e.g. if an email contains the
word “Viagra” classify it as a spam) or could themselves be already quite strong classifiers (e.g.
a SVM classifier). The only requirement for AdaBoost to converge to a reasonable classifier
(see the explanation below) is that the selected weak classifiers are better than a chance on a
weighted training set, i.e. they perform better than random guessing.

There are many variants of AdaBoost for various weak classifier domains – discrete, real-
valued, multi-class, ranking scores, ... In the thesis the real-valued version is used [68]. Thus
the strong classifier response function fT is a sum of real-valued responses of weak classifiers
h<tA. For other variants see e.g. [68, 22].

1Versions of AdaBoost for other weak classifiers do exist. Here we limit the explanation to the real-valued ones.

17

4 Preliminaries

Algorithm 1 Real AdaBoost Learning
Given: T � F<x1, y1A, . . . , <xm, ymAK;xi . X , yi . F�1, �1K,

set/class H � Fhj ;hj �X � RK of weak classifiers

Initialise weights w1<iA � 12m for i � 1, . . . ,m
For t � 1, ..., T :

1. Choose a hypothesis h<tA
. H and its parameters minimising training error upper bound

2. If the hypothesis error εt �
m

è
i�1

wt<iAJyi h sign<h<tA<xiAAK 3 122 then stop

3. Update weights

wt�1<iA � wt<iA exp<�yih
<tA<xiAA

Zt

where Zt is a normalisation factor chosen so that wt�1 sums to 1 over i � 1, . . . ,m

Output the final classifier:

fT <xA � T

é
t�1

h<tA<xA
where the class membership is given by Ht � sign<fT A.

4.1.1 AdaBoost Learning

where I�p� returns 1 when the predicate p is true and 0 otherwise
AdaBoost is a greedy learning algorithm [68, 18]. Its structure is shown in Algorithm 1.

An input to the algorithm is a labelled training set T � F<x1, y1A, . . . , <xm, ymAK with samples
belonging to either positive, yi � �1, or negative class, yi � �1. Another input is a set (or class)
H of classifiers from which AdaBoost selects the weak classifiers.

The algorithm maintains a vector of training sample weights wt. The weights encode dif-
ficulty of the samples for the greedily constructed strong classifier. At the beginning, all the
samples are considered to be equally difficult, so the weights are initialised by a uniform distri-
bution.

The AdaBoost learning runs in a loop. In each iteration, one weak classifier is added to the
final ensemble and the weights are updated. In the weak classifier error computation, JpK returns
1 when the predicate p is true and 0 otherwise. The learning is stopped when the error of the
best weak classifier from the set H is equal or worse than random guessing. In this case, the
upper bound on the training error of the final classifier could not be improved anymore. Another
common stopping criterion is the number of weak classifiers combined, T , or the cross-validated
performance on a validation set.

The output of the learning loop is a classifier response function fT which linearly combines
the selected weak classifiers h<tA and which minimises the training error on the training set T .

18

4.1 AdaBoost

t � 0 t � 1 t � 39

Figure 4.1: Training sample weights evolution. The weights are initialised uniformly over the
training set (blue - positive, red - negative class). In the first step a weak classifier
(linear perceptron) is found and the weights of incorrectly (correctly) classified sam-
ples are increased (decreased). After 39 weak classifiers the weights of the most
difficult samples are the highest.

For binary-classification problems the class membership is given by the sign<�A function on the
strong classifier response function fT .

Next, the re-weighting scheme, the weak classifier selection and properties of the algorithm
are discussed in detail.

4.1.2 Re-weighting

The AdaBoost re-weighting scheme adapts the weights depending on the classification output
of the selected weak classifier. For each training sample xi its old weight wt<iA is multiplied by
an exponential factor to get an updated weight wt�1<iA. Note that

exp<�yih
<tA<xiAA J 0 1, yi � sign<h<tA<xiAA

1 1, yi h sign<h<tA<xiAA (4.3)

Thus the weights of correctly classified samples are decreased while the weights of incorrectly
classified ones are increased. This way, the learning focuses on more difficult samples. An
example of this effect is shown in Figure 4.1 where a simple two-class problem is treated by
combining outputs of linear perceptrons (class H).

Another effect of the re-weighting scheme is a “classification independence” of consecutively
selected weak classifiers (see Figure 4.2). For a weak classifier h<tA selected in t-th step, the
re-weighting ensures [68] that

εt�1
t �

m

é
i�1

wt�1<iAJyi h sign<h<tA<xiAAK � 1
2 , (4.4)

where εt�1
t is a weighted error of h<tA measured on the weights wt�1.

19

4 Preliminaries

Figure 4.2: Classification independence of consecutively selected weak classifiers. Blue dots
show the weighted errors of selected weak classifiers in step t and the green arrows
indicate the error of the same weak classifier on the updated weights wt�1.

The weak classifier h<tA is therefore equivalent to a random guess on the weights wt�1 and
so h<t�1A has to classify correctly different training samples in order to be selected [68]. This
property is useful when thinking of AdaBoost as a feature or measurement selector as we will
do in Chapter 5.

4.1.3 Training Error Upper Bound

To find a weak classifier in each step and to find its parameters, the AdaBoost uses the following
theorem.

Theorem 1 (Schapire and Singer [68]). Assuming the re-weighting scheme from Algorithm 1,
the following bound holds on the training error of HT

1
m
iFi � HT <xiA h yiKi 2 T

ë
t�1

Zt (4.5)

Thus instead of minimising the training error directly, the upper bound is minimised greedily.
In each step t, the weak classifier and its parameters are chosen such that

Zt �

m

é
i�1

wt<iA exp<�yih
<tA<xiAA (4.6)

is minimised. Since Zt 0 1 when εt 0 0.5, the upper bound is decreased in each step.

4.1.4 Domain-Partitioning Weak Classifiers

The weak classifiers class H used throughout the thesis return their confidence based on a par-
titioning of the feature response domain [68]. Each weak classifier h<xA . H is linked to one
feature q<xA�X � R and operates on its response. Each weak classifier partitions the feature

20

4.1 AdaBoost

Figure 4.3: The domain-partitioning weak classifier. The response of feature q<xA on object x
is partitioned into bins j � 1, . . . ,K. The leftmost and the rightmost bins cover
the respective half-spaces. In each bin j, the response of the weak classifier h<xA
is computed from the sum of positive (W j

�
) and negative (W j

�
) weights of training

samples falling into the bin. To avoid numerical problems, a smoothing factor ε is
used [68].

response domain into disjoint blocks X1, . . . , XK covering the whole domain, and outputs one
real number for each block. So, it returns one of K numbers αj depending on which block a
tested sample falls in. Examples of such weak classifiers are decision trees whose leaves de-
fine the partitioning or simple interval-based partitioning classifiers (see Figure 4.3) used in the
thesis where the partitioning corresponds to uniform-width interval bins.

The values of αj are found by minimising Zt in equation (4.6). Let us define

W j
b � é

i�xi.Xj,yi�b

wt<iA j � 1, . . . ,K; b . F�1, �1K , (4.7)

a sum of the weights of samples from class b falling into j-th bin Xj . Then equation (4.6) can
be rewritten to

Zt � é
j

é
i�xi.Xj

wt<iAe�yiαj (4.8)

� é
j

>W j
�
e�αj �W j

�
eαjC (4.9)

and using simple calculus this is minimised when

αj �
1
2 ln

\̂W j
�

W j
�

]_ . (4.10)

The stronger the response the more different are the sums W j
�

and W j
�

, and its sign corre-
sponds to the class with dominating weights in the bin. When plugged back to equation (4.9) we
get

Zt � 2é
j

p
W j

�
W j

�
. (4.11)

21

4 Preliminaries

Clearly this is smaller the more the multiplicands differ and is minimised when the sum of the
weights of “misclassified” class in each bin is minimal. Thus, the criterion used by the AdaBoost
algorithm – minimisation of εt – minimises also the training error upper bound.

In practice, very small or even zero W j
�

and W j
�

may lead to numerical instability. To avoid
these numerical problems, Schapire and Singer [68] proposed to use a smoothing coefficient ε
in bin’s response computation

αj �
1
2 ln

\̂W j
�
� ε

W j
�
� ε

]_ . (4.12)

They show that it only slightly weakens the upper bound when ε @ 12<2KA and they recommend
to set ε � 12m. In the following, we are using this smoothed version of domain-partitioning weak
classifiers.

4.1.5 Training Convergence

An important property for the WaldBoost algorithm proposed in Chapter 5 is the asymptotic con-
vergence of the AdaBoost algorithm. As shown in [22], choosing a weak classifier minimising
the upper bound (4.5) in each cycle of the AdaBoost learning converges asymptotically to

lim
T��

fT <xA � 1
2 log

P <y � �1ixA
P <y � �1ixA . (4.13)

Note that the strong classifier’s response is asymptotically proportional to the likelihood ratio.
We will use this convergence property later when the AdaBoost is combined with the SPRT in
the WaldBoost algorithm in Chapter 5.

4.2 Sequential Analysis

The sequential decision-making theory was developed by Wald [83] as a statistical tool for se-
quential hypothesis testing. Motivated by the quality control problem where one does not want
to check all items in a freight to say if it fulfils a required quality criteria but wants to decide
as soon as possible, he formulated a two-class sequential classification task. He proved that
evaluation-time-optimal (see Definition 2) solution to this classification problem is the sequen-
tial probability ratio test.

4.2.1 Sequential Probability Ratio Test (SPRT)

Let x . X be an object characterised by its class (hidden state) y . F�1, �1K. The class is not
observable and has to be determined based on successive measurements x1, x2, . . . ;xi . X. Let
the joint conditional density p<x1, . . . , xtiy � cA of the sequence of measurements x1, ..., xt be
known for c . F�1, �1K and for all t.

SPRT is a sequential strategy S� (see Chapter 2 for the definition), which is defined as:

S�

t �

bhhhhfhhhhd
�1, Rt 2 B
�1, Rt 3 A
], B 0 Rt 0 A

(4.14)

22

4.2 Sequential Analysis

where Rt is the likelihood ratio

Rt �
p<x1, ..., xtiy � �1A
p<x1, ..., xtiy � �1A . (4.15)

The constants A and B are set according to the required error of the first kind α and error of the
second kind β. Optimal A and B are difficult to compute in practice, but tight bounds are easily
derived.

Theorem 2 (Wald). The value of A is upper bounded by <1 � βA2α and the value of B is lower
bounded by β2<1 � αA.
Proof. For each sequence of measurements <x1, . . . , xtA, for which SPRT returns the class �1
we get from (4.14) and (4.15)

p<x1, . . . , xtiy � �1A 3 A � p<x1, . . . , xtiy � �1A . (4.16)

Since this holds for all sequences of measurements classified to class �1 (S�
� �1), summing

over these sequences

P FS�
� �1iy � �1K 3 A � P FS�

� �1iy � �1K . (4.17)

The term on the left side is the probability of correct classification of an object from the class �1
and is therefore 1 � β. The term on the right side is the probability of incorrect classification of
an object from the class �1, and is equal to α. After this substitution and rearranging, we get the
upper bound on A. Repeating this derivation with samples classified by SPRT to �1, the lower
bound on B is derived.

In practical applications, Wald suggests to set the thresholds A and B to their upper and lower
bound respectively

A�
�

1 � β
α

, B�
�

β
1 � α

. (4.18)

The effect of this approximation on the test error rates was summarised by Wald in the fol-
lowing theorem.

Theorem 3 (Wald). When A� and B� defined in (4.18) are used instead of the optimal A and B,
the real error probabilities of the test change to α� and β� for which

α� � β�
2 α � β . (4.19)

Proof. From Theorem 2 it follows that

α�

1 � β�
2

1
A�

�
α

1 � β
, and (4.20)

β�

1 � α�
2

1
B�

�
β

1 � α
. (4.21)

Multiplying the first inequality by <1�β�A<1�βA and the second by <1�α�A<1�αA and summing
both inequalities, the result follows.

23

4 Preliminaries

This result shows that at most one of the probabilities α and β can be increased and the other
has to be decreased by the approximation.

Theorem 4 (Wald). SPRT (with optimal A and B) is evaluation-time-optimal sequential strat-
egy.

Proof. The proof is complex. We refer the interested reader to [83].

Wald analysed SPRT behaviour when the upper bound A� and B� is used instead of the optimal
A and B. He showed that the effect on the speed of evaluation is negligible.

24

5 WaldBoost

In this chapter we describe the main result of the thesis – the WaldBoost algorithm. It is a learn-
ing algorithm for addressing the two-class sequential classification learning problem formulated
in Chapter 2. In contrast to the SPRT proposed by Wald, the WaldBoost sequential strategy is
not based on randomly selected i.i.d. measurements but the measurements are selected during
the learning phase together with the decision thresholds. This scenario reflects the fact that in
many computer vision problems the measurements taken cannot be assumed i.i.d. and thus the
densities required by the SPRT are difficult (or even impossible) to compute. The WaldBoost
overcomes this limitation of the SPRT by combining it with the AdaBoost algorithm.

5.1 Difficulties with SPRT

Wald in his work [83] considers mainly classical statistical hypothesis testing problems where
the measurements are i.i.d., i.e. sampled randomly from some distribution. In this case it is
easy to compute the likelihood ratio Rt in equation (4.15) since the required densities can be
computed incrementally from one-dimensional probability density functions as

p<x1, . . . , xtiy � cA � t

ë
q�1

p<xqiy � cA . (5.1)

Wald only mentions the situation of dependent measurement by noting that the theory is still
valid only the densities have to be known.

In computer vision problems, the measurements are often dependent (e.g. pixel intensities
in the image). By taking more and more dependent measurements a direct multi-dimensional
density estimation becomes quickly intractable. In the following we show how to estimate the
likelihood ratio Rt in this situation.

In the non i.i.d. case also the ordering of the measurements matters. This is again a property
not studied originally by Wald. Thus, to compute the likelihood ratio Rt one has to select and
order the measurements and to estimate the class probability densities.

5.2 SPRT for non i.i.d. Samples

As noted, the SPRT can still be used for dependent measurements if the likelihood ratio Rt

from equation (4.15) can be estimated. To this end, we propose to use the AdaBoost algorithm
for measurement selection and ordering and for the conditional density estimation. Next, we

25

5 WaldBoost

propose an approximation for the likelihood ratio estimation for statistically dependent mea-
surements. The proposed algorithm, WaldBoost, which combines SPRT and AdaBoost is de-
scribed in Section 5.3. Some other related topics and implementation details are discussed in
Section 5.4.

5.2.1 Likelihood Ratio Estimation with AdaBoost

The likelihood ratio (4.15) computed on the outputs of weak classifiers found by AdaBoost has
the form

Rt<xA � p<h<1A<xA, ..., h<tA<xAiy � �1A
p<h<1A<xA, ..., h<tA<xAiy � �1A , (5.2)

where h<iA<xA was substituted for xi. Nevertheless, the outputs of the weak classifiers cannot
be treated as statistically independent. To avoid the computation of Rt<xA involving a high-
dimensional density estimation we propose to approximate the tests (4.14) by similar tests on
the value of the strong classifier response ft<xA which are much simpler to evaluate.

To derive the proposed approximation we use the asymptotic property (4.13) which can be
rewritten using the Bayes formula to the form

lim
t��

ft<xA � �1
2 log R<xA � 1

2 log
P <�1A
P <�1A . (5.3)

Thus, in the asymptotic case the strong classifier response is a monotonic function of the like-
lihood ratio. Thresholding the likelihood ration R<xA on the value A is therefore equivalent to
thresholding the strong classifier response on some value θ

<tA
A . Similarly, for the threshold B on

R<xA there exists a threshold θ
<tA
B on ft<xA. Knowing the thresholds θ

<tA
A and θ

<tA
B , the sequential

decision strategy would become

St �

bhhhhhfhhhhhd
�1, ft<xA 3 θ

<tA
B

�1, ft<xA 2 θ
<tA
A

], θ
<tA
A 0 ft<xA 0 θ

<tA
B ,

(5.4)

which is easy to evaluate. Note that the inequalities are inverted since ft<xA is proportional to
�Rt<xA.

The thresholds θ
<tA
A and θ

<tA
B could be computed directly by expressing R<xA from equa-

tion (5.3). However, the a priori probabilities would need to be known. Also, the thresholds
would only hold for the asymptotic case. Instead we do estimate the thresholds in each training
step.

To derive a procedure for finding the decision thresholds θ
<tA
A and θ

<tA
B similar argumentation to

that of proof of Theorem 2 will be used. The full derivation is shown only for θ
<tA
A , the derivation

for θ
<tA
B is analogous.

Let us denote
D�

t � Fx�Rt<xA 3 AK (5.5)

26

5.3 WaldBoost

Algorithm 2 WaldBoost Classification

Given: h<tA, θ
<tA
A , θ

<tA
B , γ (t � 1, . . . , T)

Input: a classified object x.
For t � 1, . . . , T (SPRT execution)

If ft<xA 3 θ
<tA
B , classify x to the class �1 and terminate

If ft<xA 2 θ
<tA
A , classify x to the class �1 and terminate

end
If fT <xA 1 γ, classify x as �1. Classify x as �1 otherwise.

the set of samples decided as negative when t weak classifiers have been measured. Since the
condition Rt<xA 3 A holds for all samples from D�

t , also the following condition holds

é
x.D�

t

p<h<1A, . . . , h<tAiy � �1A 3 A é
x.D�

t

p<h<1A, . . . , h<tAiy � �1A . (5.6)

The term on the left side is the probability of correct classification of an object from the class �1
using t weak classifiers. Let us denote this probability as 1�βt. The term on the right side is the
probability of incorrect classification of an object from the class �1 using t weak classifiers and
will be denoted by αt.

Using the equivalent definition of the set D�

t with the strong classifier response ft<xA instead
of the likelihood ratio Rt<xA

D�

t � Fx� ft<xA 2 θ
<tA
A K (5.7)

a search for θ
<tA
A can be performed on ft<xA such that condition (5.6) is fulfilled. This search is

much simpler than the search with the definition (5.5) of D�

t , since it is over a one-dimensional
space of the strong classifier response only. For each threshold value both βt and αt are estimated
and condition (5.6) is tested.

Among the thresholds fulfilling (5.6), the highest value of θ
<tA
A and the lowest value θ

<tA
B are

taken to allow maximum number of samples to be rejected and accepted and thus to maximise
the decision speed of the classifier.

5.3 WaldBoost

The classification and the training parts of the proposed WaldBoost algorithm are described
in this section. Moreover, we show how specific properties of some decision tasks lead to a
simplification of the algorithm.

5.3.1 Classification

The WaldBoost classification procedure is summarised in Algorithm 2. The input to the algo-
rithm is a learned set of weak classifiers (measurements for SPRT) and the decision thresholds
θ
<tA
A and θ

<tA
B . The classification executes the SPRT test (5.4) via a trained strong classifier fT

with a sequence of thresholds θ
<tA
A and θ

<tA
B . If ft exceeds the respective threshold, a decision

27

5 WaldBoost

Algorithm 3 WaldBoost Learning with Bootstrapping
Input:

• sample pool P � F<x1, y1A, ..., <xN , yNAK; xi . X , yi . F�1, 1K,

• set of features F � FqsK,

• desired final false negative rate α and false positive rate β,

• the number of iterations T .

Set A � <1 � βA2α and B � β2<1 � αA
Sample randomly the initial training set T � F<x1, y1A, ..., <xm, ymAK from the pool P
Initialise weights w1<xi, yiA � 12m
for t � 1, ..., T

1. Find h<tA by AdaBoost using F and T and add it to the strong classifier ft � ft�1 � h<tA

2. Find decision thresholds θ
<tA
A and θ

<tA
B for ft on P using R̂t (equation (5.8))

3. Throw away samples x from P for which ft<xA 3 θ
<tA
B or ft<xA 2 θ

<tA
A

4. Sample new training set T from the updated pool P

end
Output: Ordered set of weak classifiers Fh<tAKT

t�1 and the decision thresholds θ
<tA
A and θ

<tA
B

is made. Otherwise, the next weak classifier is computed. If a decision is not made within T
cycles, the input is classified by thresholding fT on a value γ specified by the user.

For practical reasons, only limited number of weak classifiers is used, which implies trun-
cation of the sequential test. Wald [83] studies the effect of truncation of the sequential test
procedure, however, his derivations hold only for cases where i.i.d. measurements are taken.
For that case, he shows how the effect of truncation on the false negative and false positive rates
of the test declines with number of measurements taken. In our implementation, the final thresh-
old is left unspecified. It is used to control the false positive and the false negative rate in the
application. It is also used in a ROC curve generation in the experiments.

5.3.2 Learning with Bootstrapping

WaldBoost learning is summarised in Algorithm 3. The input of the learning algorithm is a pool
of positive and negative samples P , a set of features F - the building blocks of the classifier,
the bounds on the final false negative rate, α, and the false positive rate, β, and the number
of training steps T . The output is an ordered set of weak classifiers h<tA, t . F1, . . . , T K (i.e.
measurements) and a set of SPRT thresholds θ

<tA
A , θ

<tA
B defining the decision function St in the

two-class sequential classification problem defined in Chapter 2 for all lengths t � 1, . . . , T .

28

5.3 WaldBoost

The user-defined upper bounds on error rates determine the two thresholds A and B (equa-
tion (4.18)) used by the SPRT-based sequential strategy (equation (4.14)). The upper bounds α
and β could be related to the final false positive and detection rates in the Viola-Jones cascade
building [81]. Unlike Viola-Jones, no stage false positive and detection rates are required as
input, only the final ones are needed.

The algorithm starts by sampling a small random training set T out of much larger sample
pool P , i.e. m @ N . It is used for the weak classifier selection, which is by far the most time
consuming operation in the learning process, to keep the speed and memory requirements of the
training process acceptable. On the other hand, the training set size m has to be chosen so that
it represents the problem at hand sufficiently.

The training then runs in a loop. The training set T is used for training the best weak classifier
(Step 1) using standard AdaBoost approach as described in Chapter 4.1. As in the AdaBoost
algorithm, a vector of sample weights wt is initialised uniformly and the samples are re-weighted
at each iteration.

Then, the SPRT thresholds θ
<tA
A and θ

<tA
B are found (Step 2), as described in Section 5.2.1. The

strong classifier response function ft is needed for each sample to estimate the likelihood ratio.
This response has to be computed anyway later in Step 4 for the whole pool, so it is also used for
the threshold estimation without affecting the efficiency of the learning. Using the larger pool
robustifies the estimation, since most of the decisions are made at the tails of the distributions
where only few samples are available. The thresholds are applied directly to the strong classifier
response function ft (not to the likelihood ratio as in SPRT) and are set to �� if no appropriate
threshold was found in the training iteration.

The training set is updated in steps 3 and 4 using the bootstrapping technique [77]. Based
on the extended strong classifier and the found decision thresholds, the sample pool is pruned
(Step 3). Only samples not decided yet are kept in the pool. Then, a new training set is sampled
from the updated pool (Step 4). Steps 3 and 4 are similar to the bootstrapping in the cascade
building procedure [81] where the training set is updated after each stage classifier (consisting
of several weak classifiers) is trained.

As the training process prunes repeatedly the sample pool P using bootstrapping, little care
has to be taken when estimating the likelihood ratio for θ

<tA
A and θ

<tA
B estimation. As the pool

changes, direct density estimation gives p<ft<xAiy � C,� tA instead of desired p<ft<xAiy � CA,
where C . F�1, �1K and the term “� t” stands for the condition that the sample has not been
decided up to training step t.

Using Bayes formula on p<ft<xAiy � C,� tA we get

R̂t<xA � p<ft<xAiy � �1,� tAp<� ti � 1A
p<ft<xAiy � �1,� tAp<� ti � 1A (5.8)

which gives the correction factor p<�ti�1A
p<�ti�1A for the likelihood ratio estimation on a bootstrapped

validation set. The rest of the threshold search is the same as described in Section 5.2.1.

29

5 WaldBoost

5.4 Implementation Details

Now, several implementation issues will be discussed.

5.4.1 Importance Sampling

The bootstrapping (steps 3 and 4 in Algorithm 3) was originally proposed by Sung and Pog-
gio [77] to handle large training datasets during learning. A classifier is first trained on a training
set of a manageable size. It is then extended by collecting new samples misclassified by the cur-
rent classifier, and the classifier is re-trained. Later, Viola and Jones [81] used re-sampling of
the training set instead of extending, keeping the training set size the same during the learning.

The sampling strategy was shown to influence significantly both the training process and
the final classifier [39]. The authors of [39] propose a new sampling strategy, quasi-random
weighted sampling + trimming (QWS+), using the sample weights given by the AdaBoost re-
weighting scheme. They show that QWS+ is superior to the commonly used uniform sampling
(each sample has the same weight) for training an AdaBoost classifier.

In Section 6.2 the uniform and QWS+ samplings are compared in the WaldBoost framework
and it is shown, that QWS+ improves significantly the efficiency of the WaldBoost learning,
confirming the findings of [39].

5.4.2 Balancing the positive and negative weights

To avoid numerical problems with too small weights of positive samples we keep constant the
ratio of positive and negative weights in the training set. This is equivalent to adding a constant-
output weak classifier to the ensemble at each training iteration, so only the strong classifier
response is biased by a constant. Since the decision thresholds are found irrespective of the
response bias, the performance of the algorithm is not affected.

5.4.3 Non-symmetric Wald Decisions

The SPRT sequential strategy (4.14) and its corresponding WaldBoost strategy (5.4) are sym-
metric, i.e. early decisions are allowed to both the positive and the negative class. However, for
many learning tasks a non-symmetric version of the strategy fits better.

In the face detection task discussed in Chapter 6, the positive class (faces) is difficult to collect.
The number of collected positive samples is usually just enough for a representative training
set. When being further pruned by early decisions, the learning would start to overfit to few
remaining difficult samples. On the other hand, the negative samples are easy to collect and
the negative class (background) is very large and complex and difficult to represent by a small
training set. To use this complex class for learning efficiently, it is better to processed iteratively
by deciding easy samples quickly and concentrating on the difficult ones.

In our interest point detection application of WaldBoost in Chapter 7, an arbitrary number of
both positive and negative samples is available for bootstrapping. However, if positive samples
were bootstrapped, i.e. early positive classification was allowed in equation (5.4), all early

30

5.4 Implementation Details

positive decisions would have a confidence close to θ
<tA
B and precise localisation via the non-

maximum suppression algorithm would not be possible.
In both cases, the WaldBoost training task can be specified in the following way. Let the

required false positive rate β be set to zero and the required false negative rate α to some small
constant. In this setting, equations (4.18) reduce to

A �
1 � 0

α
�

1
α

, B �
0

1 � α
� 0 (5.9)

and the SPRT strategy (4.14) becomes

S�

t �

bhhhhfhhhhd
�1, Rt 2 0
�1, Rt 3 12α
], 0 0 Rt 0 12α .

(5.10)

Since Rt is always positive, the algorithm will never make an early decision to the positive class.
The only allowed decision is to the negative class.

A learning process with β � 0 will not bootstrap the positive samples in the sample pool but
will bootstrap the negative ones. Such initialisation thus leads to the exploration of the negative
class using bootstrapping while working with a small and mostly unchanging positive sample
pool. The detection rate of the final classifier is assured to be 1 � α while the false positive rate
is progressively reduced by each training cycle.

The WaldBoost decision strategy (5.4) then becomes

St �

bhhfhhd
�1, ft<xA 2 θ

<tA
A

], θ
<tA
A 0 ft<xA .

(5.11)

When evaluated, the classifier thus makes early decisions only to the negative class. Everything
what passes though all the decisions is classified to the positive class or a simple threshold γ
can be used on the strong classifier response function as in Algorithm 2. The responses of the
classifier are distinguishable for the non-maximum suppression algorithm by their fT value.

For the non-symmetric sequential strategy (5.11) the average evaluation time under the posi-
tive class, T̄S,�1, is approximately T since all the weak classifiers need to be evaluated and only
false negative decisions reduce the time slightly. The strategy is thus characterised by its error
rates, αS and βS and the average evaluation time under the negative class, T̄S,�1.

31

6 Fast Face Detection

In this chapter, the WaldBoost learning framework is applied to the face detection problem. It is
an example of application where the classification is repeated many times in a limited amount
of time. Thus a single classification needs to be fast. The face detection problem is also used
to demonstrate different properties of the WaldBoost algorithm and to show how to choose the
learning parameters.

The scanning-window approach to the face detection adopted in the following experiments is
illustrated in Figure 6.1. A detection window is swept over the image at varying scales and a face
vs. background classifier is applied for each window position and scale. The final detections
are merged from different scale sweeps. The task of the classifier is to distinguish between a
face (positive class) and a general background (negative class) sub-image at current scanning
position.

Relevant state of the art methods are discussed and compared to the WaldBoost detector at the
end of Section 6.2.

6.1 WaldBoost Applied to Face Detection

First, details of the training setup are described, then the test protocol is defined and, finally, test
results presented. In the following experiments the non-symmetric version of WaldBoost is used
as discussed in Section 5.4.3, to explore the large and complex negative class and to preserve the
hard-collected positive samples.

Sample Pool

The positive sample pool for the experiments was created by downloading 11349 cropped faces
from an early version of the Betaface project web page1. The set contains images of human faces
in approximately frontal view with aligned eye positions and a small surrounding of the head
visible. The size of images is 100�100. Some of the images are at the edge of what one would
call a frontal face. Our experience from annotating frontal faces in images is that when context is
available, people perceive faces as frontal even in the cases where cropped faces alone look non-
frontal. Since miss-detection of such faces is often perceived as a failure, all the downloaded
faces are kept for training. Generally, the training set is rather difficult and challenging.

To avoid overfitting to the fixed eyes position, the images are further synthetically rotated in
the range <�5X,�5XA. The face bounding box is slightly reduced by the rotation but still captures

1http://www.betaface.com

32

6.1 WaldBoost Applied to Face Detection

Figure 6.1: The scanning window approach to face detection. A detection window is swept
through the image and an object vs. background classifier is evaluated at each posi-
tion and scale.

enough edges typical for frontal faces (chin, cheeks, fringe and ears). Figure 6.2 shows random
examples of synthetically rotated positive samples in the Betaface dataset.

As discussed later in Section 6.1, the evaluation of used Haar-like features is sensitive to
rounding errors. Keeping the sizes of the training images all the same, the classifier would overfit
to typical rounding errors for the given size. Since the detection process runs over different
scales, this overfitting may hurt the performance significantly. Thus, each training image is put
into the sample pool randomly scaled down with minimal size 24�24 pixels.

To further increase the robustness and to increase the number of positive samples, horizontally
mirrored versions of positive samples are put into the pool.

Negative sample pool was created from more than 3000 images not containing faces from the
non-skin database [37]. A manual database inspection was needed since the original dataset is
quite imprecise and contains faces (and also skin-colour). From this set of images about 190
millions of sub-windows were collected to the negative sample pool. The negative samples are
used in their original sub-window resolution.

The collected sample pool represents the face class under a wide range of acquisition condi-
tions. The positive samples include images with various lighting conditions, facial expression,
skin colour, background or age. The negative samples contain images of natural scenes, offices,
man-made objects, or animals. The idea is to train a general purpose WaldBoost face detector
working almost anywhere (e.g. as a part of a camera software). Obviously, when the application
area of the detector is known, the respective positive and negative samples could be collected,
making the training task more focused and simpler.

33

6 Fast Face Detection

1

Figure 6.2: Random examples of positive samples from the Betaface dataset used for training
the WaldBoost classifiers.

..... -1

..... +1

Figure 6.3: Haar-like features. Each feature is parametrised by its type, size and position in the
scanning window. To evaluate a Haar-like feature, sums of pixel intensities over the
white and black sub-rectangles are computed (see equation (6.1)).

Features and Weak Classifiers

We use the Haar-like feature set proposed by Viola and Jones [81] plus the center-surround
feature proposed by Lienhart [45]. The six used types of features are shown in Figure 6.3, right.
Each features is parametrised by its position in the scanning window (red rectangle in Figure 6.3,
left), its size and type. This parametrisation gives 26,136 features for a 24�24 window.

The feature response is computed as

q<xA � @èi.Wq
x<iAiWqi �

èi.Bq
x<iAiBqi E 2σw (6.1)

where x<iA is the pixel intensity at pixel i, Bq and Wq are the black and white regions of feature
q, and σw is the standard deviation of pixel intensities in the scanning window. The sums and σw

can be computed in a constant time independently of the feature size using the integral image
representation [69, 81].

34

6.1 WaldBoost Applied to Face Detection

In training, each feature is linked to one domain-partitioning weak classifier (see Figure 4.3).
The leftmost and the rightmost bins are found to contain 5 % of the training samples each and
the remaining interval is partitioned into 8 equally wide bins.

In spite of the feature response normalisation by their area, the response varies slightly de-
pending on the feature alignment with the pixel grid and the window size. Also σw is more noisy
for smaller windows. To reduce these effects, only rather small number of weak classifier bins
is used and scaled versions of training samples are introduced to the sample pool as discussed
earlier.

Other features like LBP [56, 23], histograms of gradients [11] or granular features [34] could
be used in the same framework and different types of weak classifiers like decision trees [10] or
RBF units [60] could be examined. Although they would influences the performance ([10, 44]),
the main focus of the thesis is on the sequential architecture. To make all the experiments
comparable and transparent neither we do enhance the feature set nor do we introduce another
weak classifiers.

Test Set

The WaldBoost detector was tested on the MIT+CMU dataset [64] consisting of 130 images
containing 507 labelled faces. The dataset contains images of varying quality, resolution and
scene types. The set is very challenging as also hand-drawn and playing card faces, Start Trek
masks, not fully frontal faces and one very schematic drawing on a complex background are
present.

To avoid comparison on difficult hand-drawn faces for which the detector was not trained,
many authors reported their results on a subset of the MIT+CMU dataset of their choice. This
makes direct comparison of the methods reported in literature difficult. Here we use the full set
for better comparability with future methods.

Another problem is a possible overfitting to the MIT+CMU dataset. Since all the detectors
are trained using different training set, it is not clear how they would generalise to another data.
To avoid this problem, we do some cross-validation tests and train a cascaded detector similar
to [81].

Test Protocol

The most common measure of a face detector’s performance is the receiver operating charac-
teristic (ROC) curve. In ROC the detection rate is plot against the number of false positives.
However, there is no agreement in literature how to decide which reported detection is correct
and which one to count as a false positive. Most of the papers do not describe the used method-
ology.

Here, a simple procedure to distinguish true positives from false positives adopted. A detec-
tion is considered to be correct if its size is in the range of 50 % – 150 % of the ground truth
bounding box and their centres are not further than 30 % of the ground truth bounding box size.
When two detections fulfil this criterion, only one is considered to be good, the other is counted
as a false positive.

35

6 Fast Face Detection

R
dc r

R dc
d

o

1
r
R

2

2

r+R

Figure 6.4: The non-maximum suppression algorithm scheme for two detections.

Another detector quality compared in the experiments is the evaluation speed, T̄S,�1 (see
equation (2.3)). It is computed as an average number of weak classifiers (i.e. features or
measurements) evaluated on a given dataset per scanning window position. Note, that due to
non-symmetric problem formulation only the average evaluation time for class �1 is used.

For all experiments the WaldBoost detector is applied at minimal scale 24�24 pixels. To
detect faces at different scales, the detector is repeatedly scaled up with 1.25 scale factor. The
scanning window is shifted by 1/24 of its size in both horizontal and vertical directions.

Non-Maximum Suppression

The non-maximum suppression (NMS) algorithm is an important part of the detection process as
it influences the detection results. The classifier needs to be robust to small variations in position
and scale and thus it does not produces a single peak around each detection but rather a cluster
of detections. NMS merges these multiple detection into one.

There exist a wide range of NMS algorithms (e.g by designed heuristics [64, 82], by Mean-
Shift [26] or by avoiding NMS at all [40]), but the most common way is to use some overlap
measure on detections, group those with overlap higher than some threshold and keep only the
detection with maximal response fT in each group (or the average). When the overlap measure
is computed efficiently and detections are kept in KD-tree structure, this approach is able to
handle even high number of detections like in Chapter 7.

A possible overlap measure is the bounding rectangles overlap. However, this measure is not
center-symmetric, making certain overlaps more important than the others. Moreover, it be-
comes complicated when in-plane rotated detections are considered. Computing the overlap of
circles inscribed to the bounding boxes does not have these problems. However, it involves go-
niometric functions which are computationally demanding. To avoid the goniometric functions,
we propose a linear approximation to the circles overlap.

The overlap computation is schematically shown in Figure 6.4. Each detection is represented
by a circle inscribed to the corresponding scanning window (Figure 6.4, left). For two such
circles, let us denote the radius of the smaller circle as r, the radius of the bigger one as R, and
the distance of the circle centres as dc. Exact overlap can be easily computed in two cases. First,

36

6.1 WaldBoost Applied to Face Detection

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

d
c

ov
er

la
p

linear approx.
circ. overlap

linear approximation

−15 −10 −5 0 5 10 15
5

10

15

ra
di

us

center distance

exact circle overlap

−15 −10 −5 0 5 10 15
5

10

15

ra
di

us

center distance

(a) (b)

Figure 6.5: The proposed non-maximum suppression overlap measure is compared to the exact
circle overlap. (a) Both measures are shown for four circles radius ratios (from
bottom 1:2, 3:4, 7:8 and 1:1) as a function of circle centers distance, dc. (b) Black
dots show scanning window neighbouring positions (in radius-distance space) with
overlap higher than a fixed threshold (0.4). The red circle marks the central position
for which the neighbourhood is computed.

when the circle centres coincide, the overlap is o � r22R2. It equals to one for two circles of the
same radius and decreases as the radiuses become different. Second, when two circles have just
one point in common (dc � r �R), the overlap is zero. These two situations are marked by blue
dots in Figure 6.4, right. Linear interpolation (blue solid line in Figure 6.4, right)

o �
r2

R2
@1 � dc

r �R
E (6.2)

is used to approximate the overlap between these two states.
The proposed overlap measure approximation is compared to the exact circle overlap in Fig-

ure 6.5. The left plot shows the difference of the measures for several circle radii ratios (multiple
plots) as a function of the centres distance, dc. One interesting property of the proposed approx-
imation is that it penalises off-center position of the smaller circle fully contained in the bigger
one. The exact circle overlap can not distinguish these situations.

In Figure 6.5b the neighbourhoods for a fixed overlap threshold are depicted for both mea-
sures. Due to aforementioned property of the proposed approximation, top and bottom ends of
the neighbourhood (large scale difference) are more narrow. Otherwise, both measures create
similar size of the neighbourhood.

37

6 Fast Face Detection

Training Process Details

The size of the training set T is set to 10,000 in the experiments. One half of the training
set contains positive samples, the other half contains the negative ones. QWS+ and uniform
sampling are compared in following experiments.

In the training and evaluation the sub-windows with standard deviation of pixel intensities
below five are not considered. Since the standard deviation needs to be computed in advance to
evaluate any feature, this test has no slow-down effect on the evaluation. Nevertheless, it avoids
the feature response normalisation to emphasise the noise in these uniform intensity patches
which would make them sometimes look as a face.

As discussed in Section 5.4.2, the sum of the weights of positive and negative samples is kept
in constant ratio 1:1 during the training.

6.2 Experiments

Several experiments were conducted to provide better insight into the WaldBoost learning. Also
a comparison to the state of the art algorithms is presented to demonstrate capabilities of the
WaldBoost algorithm.

False positive and false negative rates in training. Setting different α parameter for
training results in different training process characteristics. As shown in Figure 6.6a, the negative
samples are pruned exponentially in the number of training steps. With decreasing α, the number
of steps needed for successful classification of the whole negative sample pool increases. Note
that when only a small fraction of the negative sample pool is available, the training is switched
to build a monolithic classifier (i.e. the decision thresholds are set to ��).

Figure 6.6b shows the evolution of the false negative rate during training. The increase of the
false negative rate is also exponential in the number of steps, up to the allowed limit defined by
the value of α.

Attained false negative rate. The detection rates attained in the detection experiments do
not need to be the same as the rates prescribed to the learning algorithm. There are several
factors influencing the results. First, the statistics of the training set and the test set need not be
the same. For example, consider a detector trained for human faces which is run on a dataset
of hand-drawn faces or on a dataset with a special illumination. This factor usually lowers
the detection rates. Second, in the scanning window detection process, the classifier is given
multiple chances to detect a face at neighbouring positions due to its robustness to small shift
and scale changes. Due to this robustness, the attained detection rate may be higher than 1 � α.
Third, the non-maximum suppression algorithm is designed mainly to reduce the false positive
rate by merging multiple detections, however for two close detections or for a very strong false
positive vs. weaker true positive, the correct detection may be suppressed.

To avoid these influences of the detection process on the reached rates, the following experi-
ment was conducted. To compare the attained false negative rate with the required false negative

38

6.2 Experiments

0 50 100 150 200 250
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

training step (t)

ne
g.

 p
oo

l f
ra

ct
io

n

α=0.001
α=0.02
α=0.05
α=0.1

0 50 100 150 200 250

0.1

2

5

10

training step (t)

fa
ls

e
ne

ga
tiv

e
ra

te
 (

%
)

α=0.001
α=0.02
α=0.05
α=0.1

(a) (b)

Figure 6.6: Pruning of the negative sample pool during training.

rate α, we run a 5-fold cross-validation on the positive sample pool. So, 4/5 of the positive sam-
ples are used in training and the rest is used for validation. In the validation test the cropped faces
are used directly, which avoids the multiple detections problem and the NMS algorithm. The
test was performed for α � 0.1, 0.05, 0.02 and 0.01. The length of the classifiers was T � 100.

The average reached false negative rates and their standard deviation are shown in Table 6.7.
While the reached rates are slightly biased but close to expected values for α � 0.1, 0.05 and
0.02, the learning clearly reached its limits with α � 0.001. What happened is that the number of
positive samples in the pool was not sufficient to provide stable statistics in threshold estimation.
The statistics are estimated at the tail of the distribution where very few samples fall, resulting
in unreliable estimates.

For comparison, the false negative rates computed on the MIT+CMU dataset are shown in the
last column of Table 6.7. Note that these numbers are computed during detection. The definition
of bounding boxes differs slightly in both sets, so computing the false negative rate directly on
the cropped faces results in very high false negative rates. The false negative rates are reported
for final threshold γ � �� and correspond to the top-most point on the ROC curve in Figure 6.9
(indicated by a horizontal line). Clearly, the detection process and different test set statistics
influence the rates significantly.

QWS+ vs. uniform sampling. In Step 4 of the WaldBoost learning algorithm (Algo-
rithm 3) a new training set T is sampled from the sample pool P . As discussed in Section 5.4.1,
the sampling algorithm influences the training process and the final classifier. Figure 6.8 depicts
a comparison of two WaldBoost detectors, one using the uniform sampling and the other using
the quasi-random weighted sampling + trimming (QWS+) to sample the training set. The re-
sults confirm the conclusions from [39]. The QWS+ sampling selects better samples resulting
in stronger weak classifiers which are combined into faster classifier with lower false positive

39

6 Fast Face Detection

α mean(FN) std(FN) MIT+CMU
0.1 11.23 0.67 7.9
0.05 6.22 0.49 6.1
0.02 2.99 0.29 5.5
0.001 1.30 0.28 5.1

Figure 6.7: 5-fold cross-validation false negative rate results (in percents) on the Betaface
dataset for classifiers of length T � 100 and varying α parameter. The last column
reports the false negative rates attained on the MIT+CMU dataset (cf. the horizontal
lines in Figure 6.9.

0 200 400 600 800 1000
65

70

75

80

85

90

95

100

de
te

ct
io

n
ra

te
 (

%
)

number of false positives

QWS+ (2.05)
uniform (2.32)

Figure 6.8: Comparison of QWS+ and uniform sampling of the training set T from the sam-
ple pool P . ROC computed on the MIT+CMU dataset for classifiers trained with
α � 0.1 and T � 500. The evaluation speed, T̄S,�1, for each method is shown in
parentheses. The horizontal lines show the reached detection rate without applying
the final threshold γ � ��.

40

6.2 Experiments

0 50 100 150 200 250 300
75

80

85

90

95

100

de
te

ct
io

n
ra

te
 (

%
)

number of false positives

α=0.1 (2.22)
α=0.05 (2.51)
α=0.02 (3.32)
α=0.001 (8.95)

Figure 6.9: ROC on MIT+CMU dataset for WaldBoost detectors trained for four values of the
α parameter.

rates. Learning with QWS+ needs only 73 steps to prune the whole negative sample pool while
the learning with uniform sampling needs more than 200 steps.

Comparison of the trained classifiers on MIT+CMU. The classifiers trained with differ-
ent false negative rate requirements are compared on the MIT+CMU dataset in Figure 6.9. With
decreasing value of the α parameter the ROC curve improves and the detection speed decreases.
At some point, here for α � 0.001, no more significant improvement is gained due to limitations
of the power of selected features and the training set used, and only the speed is affected. The
classifier trained with α � 0.02 reaches both, good detection rates and the evaluation speed, and
is thus used in the following comparisons.

WaldBoost vs. cascade. The algorithm from [82] was used to train a cascaded classifier
on the same training data as the WaldBoost classifier. The first seven stage classifiers are build
with the number of weak classifiers fixed (2, 10, 25, 25, 50, 50, 50). Next seven stages are
trained by an automatic threshold search with allowed stage false negative rate 0.001 and al-
lowed stage false positive rate 0.5. When the negative sample pool is pruned to a too small set
for bootstrapping, the remaining samples are used to train the last monolithic stage. The final
cascade consists of 15 stages and 2187 weak classifiers (which is comparable to the WaldBoost
classifier containing 2000 weak classifiers).

The number of weak classifiers in the first seven stages is not optimal for our problem. These
lengths were manually tuned for a different training set in [82]. Nevertheless, a comparison of
the true positive rates of the first stages in our cascade with results in [82] shows that our training

41

6 Fast Face Detection

0 50 100 150 200 250 300
65

70

75

80

85

90

95

100

de
te

ct
io

n
ra

te
 (

%
)

number of false positives

WaldBoost (3.32)
cascade (25.16)

Figure 6.10: WaldBoost and cascaded detector comparison on the MIT+CMU dataset. The
WaldBoost classifier with α � 0.02 and T � 2000 is compared to cascaded classifier
trained according to [82] with 15 stages and 2187 weak classifiers. The evaluation
speed, T̄S,�1, for each method is shown in parentheses.

dataset is more difficult (lower true positive rates are reached). Thus the manual tuning would
not probably lead to a faster classifier than TS � 8 reported in [82].

The results in Figure 6.10 show that both methods produce classifiers with similar detection
rates, however the WaldBoost classifier is 7.5� faster without any manual tuning.

Comparison to the state of the art. The performance of face detectors is commonly
compared on the MIT+CMU dataset using the ROC curve. Since Viola and Jones paper [81],
some of the authors report also the average evaluation time, TS . Table 6.1 summarises available
results of the most successful methods from recent years.

Most of the methods extended the original idea of the cascaded classifier by introducing var-
ious classifier architecture improvements [42, 85, 47, 10, 7], some introduced stronger features
or weak classifiers [85, 70, 10], and some introduced a different organisation of the cascade
evaluation implementation [70]. Each detector was trained on different training set of varying
difficulty, so a direct and fair comparison is difficult and a commentary is necessary. Here we
try to discuss on different aspects of the compared methods and to explain the observed results.

Compared to the original Viola and Jones results [81, 82], the WaldBoost algorithm improves
the evaluation speed and detection rates especially for smaller false positive rates (Viola and
Jones (2004)a). Although the better detection rates are caused probably by using a more difficult
training set and by using strong weak classifiers (cf. the comparison of WaldBoost and cascaded
classifier above), still the evaluation speed improvement is significant. The WaldBoost rates are

42

6.2 Experiments

even slightly better than the weighted classifier (Viola and Jones (2004)b) which evaluates three
cascaded classifiers and requires a consensus of two to report a detection.

Li and Zhang’s FloatBoost algorithm [42] was aimed at minimising the number of weak clas-
sifiers needed in the cascade. It allows to optionally remove already added weak classifiers if
it reduces the training error. The parentheses around the evaluation time in the table indicate
that the speed was measured in another FloatBoost implementation [86]. The better selection of
weak classifiers improved the rates compared to Viola and Jones but decreased the evaluation
speed significantly. The WaldBoost detector outperforms the FloatBoost in both detection rates
and speed.

Schneiderman [70] also built a cascaded classifier but his first stage classifier used so called
“feature-centric” evaluation – feature evaluations are re-used across multiple scanning windows.
Besides evaluation speedup, this brings implicitly contextual information at the feature level.
He also used different, more powerful features. Due to this improvements his detection rates
are significantly better than that of WaldBoost detector2. However, Schneiderman reported run
time which is even longer than that of Viola and Jones in spite of more powerful computer
used. Using the WaldBoost algorithm instead of the cascade training could possibly improve
this inefficiency.

In their work [85], Wu et al. proposed a nesting structure classifier (see the boosting chain
architecture in Section 3.2) which is half the way between the cascaded classifier and fully
sequential WaldBoost classifier. The used Haar-like features and the domain-partitioning weak
classifiers implementation are comparable to ours. Although the average evaluation time is not
reported, their implementation is able to detect even in-plane and out-of-plane rotated faces
in several frames per second. Together with their further work [34] this is probably the best
published (multi-view) face detector. The WaldBoost detector has similar detection rates for
small false positive rates but is worse for higher false positive rates.

Luo [47] optimised the detection rate and the false positive rate of a cascade trained by Viola
and Jones algorithm. His rates are higher than that of Viola and Jones but still below the rates
reached by WaldBoost. Luo did not report the average evaluation time. However, since his main
objective was the error rates minimisation, the average evaluation time is likely to be higher than
that of Viola and Jones.

The SoftCascade algorithm by Bourdev and Brandt [7] optimises all the parameters of the
boosting chain-type classifier (i.e. selected weak classifiers, false positive and false negative
rates and speed). Nevertheless, both reported detectors achieved much higher average evaluation
times than other methods. The decrease in the detection rates for the faster of the detectors
indicate that with higher evaluation speed the rates would be much lower. The reached rates are
only slightly higher that that of the WaldBoost detector.

The experiments in Brubaker et al. [10] showed that a sequential classifier can greatly improve
the average evaluation speed while preserving the detection rates. The first detector in the table
uses discrete weak classifiers and by several automatic sequentialising steps its speed is reduced
to TS � 8 which is comparable to manually tuned Viola and Jones cascade. The detection rates

2Images with hand-drawn faces were removed from the test in [70]. The detection rates on the full dataset would
be probably slightly lower.

43

6 Fast Face Detection

of the Brubaker’s detector are slightly better but still lower than the WaldBoost rates. To increase
the accuracy, a stronger CART-based weak classifier is introduced. The weak classifier uses two
Haar-like features, so it is slower to evaluate. Using this weak classifiers, the rates improved
even above the WaldBoost detection rates. Since the weak classifiers are more complex but
stronger, the evaluation speed of the final detector is hard to predict.

State of the art comparison summary. Although a common test set used for face detectors
comparison is available, it is non-trivial to judge various methods based purely on their ROC
performance. In practice, the training set, weak classifiers used, details of the classifier’s archi-
tecture, but also the implementation skills play some role. Taking as many of these influences
into account, we tried to comment on the results reached by different methods. In spite of the
lack of a clear face detection benchmark settings, the WaldBoost algorithm was shown to gain
competitive detection rates and to be superior in the reached average evaluation time. Examples
of detections on the MIT+CMU dataset are shown in Figure 6.11. An on-line accessible demo
of the detector is available at http://cmp.felk.cvut.cz/demos/FaceDetection/.

6.2.1 Application Speed Optimisation

The speed of the face detection application depends highly on the average evaluation time T̄S,�1.
However, when comparing run-times of different detectors, the comparison can be easily dom-
inated by the detector’s implementation overhead. The code optimisation offers plentiful op-
portunities for speedup. Apart from optimising the data structures, using integers instead of
doubles when possible, playing with the compilation flags, ... two speed up techniques used in
our application are worth mentioning.

First, the whole classifier evaluation is a sequence of feature evaluations followed by a de-
cision test. Both operations are very simple. Adding few more auxiliary operations for each
features evaluation, like a function call, may spoil the running time completely. Thus we au-
tomatically convert each detector into a fully linear code without any loops, function calls or
unnecessary ifs. This expansion assures that the most demanding operations are the feature
evaluation, the weak classifier evaluation and the decision tests. In our case, the expansion re-
vealed that the auxiliary operations in the non-linear implementation needed about the same time
as the classifier evaluation itself.

Another factor influencing highly the speed of the application is the number of sub-windows
examined. The number of sub-windows depends on the minimal detectable scale and the amount
of shift and scale change in the sub-window sweep. For applications like human-computer
interface, where a single high-resolution face is expected, increasing the smallest detectable
face size increases the speed by a factor of 2–10.

6.3 Summary

In this chapter, the WaldBoost learning framework has been applied to the face detection prob-
lem. It has been shown, how the training with different parameters influences the resulting
classifier. A comparison to the cascaded classifier demonstrated the WaldBoost learning ability
to reduce the average evaluation time while keeping the detection rates high. The WaldBoost

44

6.3 Summary

Fa
ls

e
po

si
tiv

es

D
et

ec
to

r
T̄

S
,�

1
1

2
6

9
10

26
31

39
41

46
50

57
65

77
78

95

V
io

la
an

d
Jo

ne
s

(2
00

4)
a

[8
2]

8
–

–
–

–
76

.1
–

88
.4

–
–

–
91

.4
–

92
.0

–
92

.1
92

.9

V
io

la
an

d
Jo

ne
s

(2
00

4)
b

[8
2]

3*
8

–
–

–
–

81
.1

–
89

.7
–

–
–

92
.1

–
93

.1
–

93
.1

93
.2

L
ia

nd
Z

ha
ng

(2
00

4)
[4

2]
(1

8.
9)

–
–

–
–

83
.6

–
90

.2
–

–
–

–
–

–
–

–
–

Sc
hn

ei
de

rm
an

(2
00

4)
[7

0]
n/

a
–

–
89

.7
–

–
–

–
–

–
95

.7
–

–
–

–
–

–

W
u

et
al

.(
20

04
)[

85
]

n/
a

–
–

–
–

90
.1

–
–

–
–

–
–

94
.5

–
–

–
–

L
uo

(2
00

5)
[4

7]
n/

a
–

–
86

.6
–

87
.4

–
90

.3
–

–
–

91
.1

–
–

–
–

–

B
ou

rd
ev

(2
00

5)
a

[7
]

37
83

.6
85

.6
90

.9
91

.9
–

93
.5

–
–

94
.3

–
–

–
–

–
–

–

B
ou

rd
ev

(2
00

5)
b

[7
]

25
–

–
–

–
–

–
91

.7
92

.1
–

–
92

.7
–

–
92

.9
–

–

B
ru

ba
ke

re
ta

l.
(2

00
8)

a
[1

0]
8

–
–

81
.7

–
85

.8
–

88
.8

–
–

90
.1

90
.1

–
90

.3
–

90
.5

90
.9

B
ru

ba
ke

re
ta

l.
(2

00
8)

b
[1

0]
n/

a
–

–
89

.1
–

89
.5

–
91

.3
–

–
91

.9
91

.9
–

92
.1

–
92

.1
92

.3

W
al

dB
oo

st
3.

32
77

.5
81

.5
87

.4
87

.5
88

.2
90

.3
90

.5
90

.7
90

.7
91

.1
91

.1
91

.3
91

.9
92

.1
92

.1
92

.5

Ta
bl

e
6.

1:
St

at
e

of
th

e
ar

tc
om

pa
ri

so
n.

T
he

ta
bl

e
su

m
m

ar
is

es
de

te
ct

io
n

ra
te

s
of

th
e

st
at

e
of

th
e

ar
tm

et
ho

ds
on

th
e

M
IT

+C
M

U
da

ta
se

t
as

a
fu

nc
tio

n
of

th
e

nu
m

be
ro

ff
al

se
po

si
tiv

es
.W

he
n

av
ai

la
bl

e,
th

e
av

er
ag

e
ev

al
ua

tio
n

tim
e,

T̄
S
,�

1
,i

s
sh

ow
n.

T
he

W
al

dB
oo

st
cl

as
si

fie
rw

as
tr

ai
ne

d
fo

rα
�

0.
02

an
d

T
�

20
00

.

45

6 Fast Face Detection

Figure 6.11: Examples of WaldBoost detections on the MIT+CMU dataset.

46

6.3 Summary

detector has been compared to the state of the art methods with competitive results and superior
evaluation times.

47

7 Learning Fast Emulators of
Binary Decision Processes

We show, how the WaldBoost algorithm can be used for speeding up existing binary decision
processes, such as detectors or two-class classifiers. The WaldBoost algorithm produces a fast
and accurate approximation of the original process. The approach is successfully demonstrated
on two commonly-used interest point detectors. Nevertheless, the approach is general and is
applicable to other areas, e.g. edge detection.

For the problem of efficient approximation, the speed of the trained classifier becomes im-
portant – a property directly optimised by very few machine learning methods. The WaldBoost
learning algorithm was adopted as it handles the precision-speed trade-off automatically and
produces an efficient sequential classifier minimising the decision time while guaranteeing the
predefined emulation precision. The user influences the emulation process by defining suitable
feature sets from which the emulator is built and by specifying constraints on the classifier’s
precision.

One uncommon feature of our setting is the training set size. Since our objective is to learn an
emulator of an existing binary-decision process, labelled training samples are obtained by run-
ning the process on unlabelled data. If unlabelled data are easily accessible, which is common,
a training set of arbitrary size can be collected at effectively zero cost. The speeding up problem
thus becomes a problem of learning the algorithm’s outputs on a very large training set while
optimising the classification speed.

We demonstrate the framework by emulating two interest point detectors, Hessian-Laplace [55]
and Kadir-Brady saliency detector [38]. The Hessian-Laplace is a state-of-the-art detector of
blob-like structures. Moreover, a handcrafted simplified version of Hessian-Laplace called
SURF [3], designed for maximum speed, is available for comparison. The Kadir-Brady de-
tector incorporates entropy measure to find salient regions which has been successfully used in
several recognition tasks [15, 88].

7.1 Learning Interest Point Detectors — State of the Art

There has been much work on the general interest point detection problem [53]. To our knowl-
edge, learning techniques have been applied only to parameter tuning, not to the whole process
of interest point detector design. Lepetit and Fua [41] treated interest points matching as a clas-
sification problem, learning the descriptor. Rosten and Drummond [63] used learning techniques
to find parameters of a hand-designed tree-based Harris-like corner classifier. Their motivation
was to speed-up the detection process, but the approach is limited to the Harris corner detection.
Martin et al. [48] learned a classifier for edge detection, but without considering the decision

48

7.2 Emulating a binary-decision black box algorithm with WaldBoost

"Black Box"

Vision

Algorithm
output

binary

imagesimages

Bootstrap management

Image pool

data request

sample?

training
Wald decision

Emulator
samples labels

Training

Set Learning

WaldBoost

Figure 7.1: The proposed learning scheme.

time and with significant manual tuning. They tested a number of classifier types with the con-
clusion that a boosted classifier was comparable in performance to other classifiers and was
preferable for its low model complexity and low computational cost.

The most closely related approach to our method is that of Dollár et al. [13] who use learning
techniques to train an edge detector. The paper shows impressive examples of applications of
such detector. Nevertheless, Dollár et al. were primarily concerned with the accuracy of the
detector and did not consider speed. There has also been significant interest in speeding up
various interest point detectors manually, i.e. without training. Grabner et al. proposed a fast
version of the SIFT detector [31] and Bay et al. proposed a fast approximation-based interest
point detector called SURF [3].

7.2 Emulating a binary-decision black box algorithm with
WaldBoost

The main idea of the proposed approach is to look at an existing algorithm as a black box
performing some useful binary decision task. The black box algorithm is run on a large dataset
of images which provides almost unlimited number of training samples which are used to train a
sequential classifier emulating the black box algorithm behaviour. The user’s optimisation effort
is thus transformed into a much simpler task of finding a suitable set of features which are used
in the WaldBoost training.

The main components of the proposed learning system are shown in Figure 7.1. The black
box algorithm provides positive and negative outputs that form a labelled training set. The
WaldBoost learning algorithm (see Chapter 5) builds a classifier sequentially and when new
training samples are needed, it bootstraps the training set by running the black box algorithm on
new images. Only the samples undecided by the current classifier are used for further training.
The result of the process is a WaldBoost sequential classifier which emulates the original black
box algorithm.

49

7 Learning Fast Emulators of Binary Decision Processes

The training loop uses the fact that the black box algorithm can provide practically unlimited
number of labelled training samples. Note that this is in contrast to commonly used human
labelled data which are difficult to obtain. The bootstrapping technique [78] is used to effectively
update the training set.

In the context of fast black box algorithm emulation, what distinguishes training for different
algorithms is the feature set F (see Algorithm 3). A suitable set has to be found for every
emulated algorithm. The set F can be very large and does not need to be homogeneous, i.e. it
may contain Haar-like features [81], LBP [56, 23], histograms of gradients, etc. The WaldBoost
algorithm selects a suitable subset while optimising the time-to-decision. WaldBoost minimises
the average number of evaluated measurements which is the same as minimisation of time-to-
decision only when computational complexity of the different types of features is (roughly) the
same. The condition is satisfied by the feature set F adopted in the experiments.

7.3 Emulated scale invariant interest point detectors

In order to demonstrate the approach, two similarity-invariant interest point detectors have been
chosen: (i) Hessian-Laplace [55] detector, which is a state of the art similarity-invariant detec-
tor, and (ii) Kadir-Brady [38] saliency detector, which has been found valuable for categori-
sation [15, 88], but is about 100� slower than the Hessian-Laplace detector. Binaries of both
detectors were downloaded from the web page [51]. We followed standard test protocols for
evaluation as described in [53]. Both detectors are similarity-invariant (not affine), so the de-
tection can be easily implemented by running a sequential test at each position and scale in the
scanning window approach [81].

For both detectors, the setF includes the Haar-like features proposed by Viola and Jones [81],
plus a centre-surround feature from [45], which has been shown to be useful for blob-like struc-
ture detectors [31]. Haar-like features were chosen for their high evaluation speed (due to in-
tegral image representation) and because they have a potential to emulate the Hessian-Laplace
detections [31]. The only difference to the original Viola and Jones feature set is that the fea-
ture response is not normalised by a window standard deviation since the intensity contrast is
important for both Hessian-Laplace and Kadir-Brady detectors.

For the entropy-based Kadir-Brady saliency detector emulation, however, the Haar-like fea-
tures were not sufficiently accurate. To overcome this we introduced “variance” features based
on the integral images of squared intensities. They are computed as an intensity variance in a
given rectangle.

The input to the non-maximum suppression differs from that obtained in the original detec-
tors. Instead of having a real-valued feature response over whole image, sparse responses are
returned by the WaldBoost detector. The accepted positions get the real-valued confidence value
fT , but the rejected positions have the “confidence” ft around the θ

<tA
A value depending on the

time t when they have been rejected. These values are incomparable, thus a typical quadratic
interpolation and a local maximum search cannot be applied. Instead, the non-maximum algo-
rithm described in Section 6.1 is used.

50

7.4 Experiments

7.4 Experiments

Two detectors are emulated in the experiments: Hessian-Laplace [55] and Kadir-Brady [38]
saliency detector. The Hessian-Laplace detector’s simplicity allows easier analysis of obtained
results. The Kadir-Brady detector incorporates entropy measure to find salient regions. It per-
forms rather poor in classical repeatability tests [53] but has been successfully used in several
recognition tasks. However, its main weakness for practical applications is its very long compu-
tation time in order of minutes per image. Standard versions of the detectors provided by their
authors were downloaded from the interest point detection web page [51].

To collect positive and negative samples for training, an emulated detector is run on a set of
images of various sizes and content (nature, urban environment, hand drawn, etc.). To create
the sample pool we used 1300 images randomly chosen from the non-skin image database in-
troduced in [37]. The detector assigns a scale to each detected point. Square patches of the size
twice the scale were used as positive samples. Negative samples were collected from the same
images at positions and scales not covered by positive samples.

The size of the training set T was 10,000 (half positive and half negative samples) in all
experiments. The training set was sampled from the pool P by the quasi-random weighted
sampling + trimming method (QWS+) [39]. The QWS+ sampling has been shown to reduce
the variance of hypothesis error estimate and to improve the classifier performance compared
to other sampling strategies. Moreover, with QWS+ sampling, AdaBoost performance becomes
relatively insensitive to the training set size.

7.4.1 Hessian-Laplace emulation

The Hessian-Laplace detector was used with threshold 1000 to generate the training set. The
value was empirically chosen to achieve similar number of detections as in [53]. The same
threshold was used throughout all the experiments for both learning and evaluation.

The detector has been assessed in standard tests proposed by Mikolajczyk et al. [53]. The
ground truth is given by a homography between the first and the other images in the sequence.
The tests are based on two measures: (i) the repeatability measure, (ii) the matching score.

(i) Repeatability measure. To assess the quality of an interest point detector in varying
acquisition conditions of the same scene the repeatability measure is used [53]. The measure
is defined for two sets of elliptical regions – one set for one image. It is computed as the
ratio between the number of region-to-region correspondences and the smaller of the number
of regions in the pair of images. The mutual correspondence of two regions is claimed when
the overlap error is smaller than some threshold. The measure takes into account several other
technical issues such as uniqueness of matches and is fully defined by a Matlab script [51]. In all
experiments, the overlap error threshold is fixed to 40 % as in most of the experiments in [53].

(ii) The matching score test aims at predicting performance of the detectors in matching
and correspondence finding applications. The matching score, defined in [53], is the number of
correct matches divided by the smaller number of correspondences in the common part of the
two images. A pair of elliptical regions is counted as a correct match if (1) their overlap error is
smaller than 40 %, and (2) their descriptors are sufficiently similar (for details, see [53]).

51

7 Learning Fast Emulators of Binary Decision Processes

0 20 40 60 80 100
0

2

4

6

8

10

α=0.4
α=0.2
α=0.1
α=0.05
α=0.02T̄

S
∗

classifier length (T)
1 1.5 2 2.5

0

500

1000

1500

#c
or

re
sp

on
de

nc
es

scale change

HL
WB α=0.4
WB α=0.2
WB α=0.1
WB α=0.05
WB α=0.02

1 1.5 2 2.5
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

scale change

(a) (b) (c)

α 0.02 0.05 0.1 0.2 0.4
]det 11472 9427 7106 4203 2624

threshold 500 1000
]det 3549 2207

(d) (e)

Figure 7.2: Selecting the false negative rate α. (a) The average evaluation speed for several
values of α. All compared detectors are able to achieve similar number of corre-
spondences (b) and repeatability score (c) – measured for T � 20 for all detectors on
the BOAT sequence. (d) The number of detections of the WaldBoost emulator on the
first image from the BOAT sequence as a function of the α parameter, (e) the number
of detections of Hessian-Laplace as a function of the final threshold.

Selection of the false negative rate α. The value of α balances the trade-off between Wald-
Boost detector speed and precision. Figure 7.2a-c shows performance of the detector for several
α values on the BOAT sequence. The value of α also significantly influences the number of
detections before the final thresholding by γ (Figure 7.2d).

For a certain range of α values, it is possible to set the final threshold γ (see Algorithm 2)
to reach the number of correspondences similar to that of the emulated detector (Figure 7.2b).
With such threshold γ, the repeatability and the number of correct correspondences is almost
identical for all tested values of α throughout the test sequence (Figure 7.2c).

Increasing α leads to faster evaluation (Figure 7.2a) but also to fewer detections (Figure 7.2d)
before imposing the final threshold γ. In some applications it may be useful to produce more
detections by changing the γ threshold.

Similarly to the original detector, the WaldBoost emulator imposes a threshold on the classifier
response. We set α to 0.2 as a compromise: the classifier is already very fast (see Table 7.1) and
yet the user can still control the number of detections by changing the γ threshold similarly to
the original detector (Figure 7.2e). Thus the value α � 0.2 is used in all following experiments.
The final threshold γ is the same in all experiments and is set empirically so that the detector
produces similar number of detections as the original Hessian-Laplace detector.

Classifier length. Empirically we set the length of the classifier to T � 20 (number of weak
classifiers). Longer classifiers slow down the evaluation (see Figure 7.2a) and do not bring
significant improvement in performance.

52

7.4 Experiments

BOAT EAST SOUTH

1 1.5 2 2.5
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

scale change

HL
WB
SURF

1 1.5 2 2.5
0

500

1000

1500

#c
or

re
sp

on
de

nc
es

scale change

HL
WB
SURF

1 1.5 2 2.5
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

scale change

HL
WB
SURF

1 1.5 2 2.5
0

200

400

600

800

#c
or

re
sp

on
de

nc
es

scale change

HL
WB
SURF

BIKES TREES

2 3 4 5 6
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

increasing blur

HL
WB
SURF

2 3 4 5 6
0

100

200

300

#c
or

re
sp

on
de

nc
es

increasing blur

HL
WB
SURF

2 3 4 5 6
0

20

40

60

80

100
re

pe
at

ab
ili

ty
 %

increasing blur

HL
WB
SURF

2 3 4 5 6
0

500

1000

1500

#c
or

re
sp

on
de

nc
es

increasing blur

HL
WB
SURF

GRAFFITI WALL

20 30 40 50 60
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

view angle

HL
WB
SURF

20 30 40 50 60
0

200

400

600

800

1000

1200

#c
or

re
sp

on
de

nc
es

view angle

HL
WB
SURF

20 30 40 50 60
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

view angle

HL
WB
SURF

20 30 40 50 60
0

200

400

600

#c
or

re
sp

on
de

nc
es

view angle

 HL
WB
SURF

LEUVEN UBC

2 3 4 5 6
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

decreasing light

HL
WB
SURF

2 3 4 5 6
0

100

200

300

400

500

#c
or

re
sp

on
de

nc
es

decreasing light

HL
WB
SURF

60 70 80 90 100
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

JPEG compression %

HL
WB
SURF

60 70 80 90 100
0

200

400

600

800

1000

#c
or

re
sp

on
de

nc
es

JPEG compression %

HL
WB
SURF

Figure 7.3: Repeatability comparison of the Hessian-Laplace detector, its WaldBoost emulation
and the SURF detector on Mikolajczyk’s dataset.

53

7 Learning Fast Emulators of Binary Decision Processes

BOAT EAST SOUTH

1 1.5 2 2.5
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

scale change

 HL
WB
SURF

1 1.5 2 2.5
0

500

1000

#c
or

re
ct

 m
at

ch
es

scale change

HL
WB
SURF

1 1.5 2 2.5
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

scale change

HL
WB
SURF

1 1.5 2 2.5
0

200

400

600

800

#c
or

re
ct

 m
at

ch
es

scale change

HL
WB
SURF

BIKES TREES

2 3 4 5 6
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

increasing blur

HL
WB
SURF

2 3 4 5 6
0

50

100

150

200

250

#c
or

re
ct

 m
at

ch
es

increasing blur

HL
WB
SURF

2 3 4 5 6
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

increasing blur

 HL
WB
SURF

2 3 4 5 6
0

200

400

600

800

1000

#c
or

re
ct

 m
at

ch
es

increasing blur

HL
WB
SURF

GRAFFITI WALL

20 30 40 50 60
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

view angle

HL
WB
SURF

20 30 40 50 60
0

200

400

600

800

#c
or

re
ct

 m
at

ch
es

view angle

HL
WB
SURF

20 30 40 50 60
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

view angle

HL
WB
SURF

20 30 40 50 60
0

200

400

600
#c

or
re

ct
 m

at
ch

es

view angle

HL
WB
SURF

LEUVEN UBC

2 3 4 5 6
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

decreasing light

HL
WB
SURF

2 3 4 5 6
0

100

200

300

400

#c
or

re
ct

 m
at

ch
es

decreasing light

HL
WB
SURF

60 70 80 90 100
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

JPEG compression %

HL
WB
SURF

60 70 80 90 100
0

200

400

600

800

1000

#c
or

re
ct

 m
at

ch
es

JPEG compression %

HL
WB
SURF

Figure 7.4: Matching score comparison of the Hessian-Laplace detector, its WaldBoost emula-
tion and the SURF detector on Mikolajczyk’s dataset.

54

7.4 Experiments

−100 −50 0 50 100
−4

−2

0

2

4

feature response

h(t
)

0 20 40 60 80 100

−4

−2

0

2

feature response

h(t
)

Figure 7.5: Top row. First centre-surround and variance feature found in WaldBoost Hessian-
Laplace (left) and Kadir-Brady (right) emulated detectors. The background image
is visualised as E<ixi � 127.5iA and E<xiA respectively, where E<A is the average
operator and xi is the i-th positive training example. Bottom row. Bin responses in
the corresponding domain-partitioning weak classifiers (see Figure 4.3).

Repeatability. The repeatability measure of the trained WaldBoost detector has been com-
pared with the original Hessian-Laplace detector on standard image sequences with variations
in scale and rotation, blur, affine deformation, light change and JPEG compression from [54].
The results are shown in Figure 7.3. The WaldBoost detector achieves similar repeatability and
number of correspondences as the original Hessian-Laplace detector.

Matching score. For the same sequences, the matching score of the Hessian-Laplace detector
ant its WaldBoost emulator is shown in Figure 7.4. The WaldBoost detector achieves slightly
better matching score than the original algorithm.

Speed. The WaldBoost classifier evaluates on average 1.7 features per examined position and
scale. Unsurprisingly, this is much less than any reported speed for face detection [73]. The
evaluation times are compared in Table 7.1. The WaldBoost emulator is about nine times faster
than the Hessian-Laplace detector with a rather careful design [52].

Classifier structure. The Hessian-Laplace detector finds blob-like structures. The structure
of the trained WaldBoost emulation should reflect this property. As shown in Figure 7.5, the
first selected weak classifier is of the centre-surround type and gives high responses to blob-
like structures with high contrast between central part and its surrounding (the feature value is
average intensity in the central part minus average intensity in the surrounding part).

Coverage. The output of the trained WaldBoost emulation of Hessian-Laplace is compared
to the original algorithm in Figure 7.6a. As in the repeatability experiment two sets of detections
are compared – the original detections and the WaldBoost emulator detections (with γ � ��).
Since the comparison works on a single image, the ground truth transformation matrix is identity.

The white circles show the original detections with a correspondence found among the Wald-
Boost detections. The black circles show the original detections not found by WaldBoost. Note
that most of the missed detections have a correct detection nearby, so the corresponding image

55

7 Learning Fast Emulators of Binary Decision Processes

(a) (b)

< 40% > 40%overlap error

scale
normalisation

(c) (d)

Figure 7.6: Comparison of the outputs of the original and WaldBoost-emulated (a) Hessian-
Laplace and (b) Kadir-Brady saliency detectors. The white circles show repeated
Hessian-Laplace detection. The black circles highlight the original detections not
found by the WaldBoost detector. Note that for most of missed detections there is
a nearby detection on the same image structure. The accuracy of the emulation is
80 % for Hessian-Laplace and 90 % for Kadir-Brady saliency detector. Note that
the publicly available Kadir-Brady algorithm does not detect points close to image
edges. (c) Missed Hessian-Laplace detections (left) and manually found correspond-
ing WaldBoost detections (right). (d) They are not found as correspondences, be-
cause Mikolajczyk’s overlap function prefers smaller detections (see the discussion
in the text).

structure is actually found. The percentage of repeated detections of the original algorithm is
80 %.

The WaldBoost detector may seem to miss consistently the large regions. Figure 7.6c shows
manually selected WaldBoost regions close to the original detections – the “tree blob” is in
fact detected. The real problem is in the way the correspondence overlap is computed. To
compute the overlap of two detected points, Mikolajczyk [53] first normalises their scale to 30
pixels. This way, the problem of unnecessary large regions which would almost always have
large overlaps is avoided. However, as shown in Figure 7.6d, this normalisation returns small
overlap when large regions are only slightly misplaced. This problem is general and appears in

56

7.4 Experiments

0 50 100 150 200 250 300 350
0

20

40

60

80

100
re

pe
at

ab
ili

ty
 %

rotation (degrees)

HL
WB

0 50 100 150 200 250 300 350
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

rotation (degrees)

HL
WB

(a) (b)

0.5 1 1.5 2
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

scale

HL
WB

0.5 1 1.5 2
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %
scale

HL
WB

(c) (d)

Figure 7.7: Rotation and scale invariance of the WaldBoost Hessian-Laplace emulator. Top row:
Repeatability on rotated first images from (a) BOAT, and (b) EAST SOUTH sequences
for the Hessian-Laplace detector (HL) and its WaldBoost emulator (WB). Bottom
row: Repeatability on scaled first images from (c) BOAT, and (d) EAST SOUTH se-
quences.

all region detection papers which use the Mikolajczyk’s repeatability measure. To conclude, the
real emulation accuracy is in fact higher than 80 %.

Rotational invariance. One of the properties of the emulated Hessian-Laplace detector which
should be preserved is its rotational invariance. A learning approach can achieve rotational in-
variance with non-rotationally invariant features by introducing synthetically rotated positive
samples into the training set. The results in Figure 7.7 (top row) show that the rotational in-
variance is preserved even without introducing synthetic training samples. This is probably a
consequence of the large training pool which is available. Instead of introducing rotated sam-
ples synthetically, the statistics are covered by collecting huge number of samples.

Scale invariance. Similarly, the detector invariance to scale changes has been tested. The em-
ulated detector achieves similar scale invariance as the original algorithm as shown in Figure 7.7
(bottom row).

Comparison to SURF. The WaldBoost emulator has been compared with the SURF detec-
tor [3] which is a simplification of the Hessian-Laplace detector, manually designed for maxi-
mum speed. The SURF is commonly used as a good compromise between speed, accuracy and
repeatability.

The comparison of the repeatability and the matching score of all three detectors is shown in
Figure 7.3 and Figure 7.4. All the detectors has been set to produce similar number of detections

57

7 Learning Fast Emulators of Binary Decision Processes

(a) (b) (c)

Figure 7.8: Comparison of Hessian-Laplace (a), its WaldBoost emulator (b) and SURF detector
(c) outputs on the first image from the BOAT sequence. WaldBoost returns simi-
lar distribution of points as the emulated Hessian-Laplace. The SURF points are
distributed differently.

on the first image of the EAST SOUTH sequence. Neither of the fast detectors approximates the
original detector perfectly. Yet, both could be said to achieve similar statistics as the original
Hessian-Laplace detector, deviating slightly at different sequences.

The evaluation speeds of the detectors are compared in Table 7.1. The WaldBoost detector
achieves similar evaluation speed as the manually tuned SURF detector. However, since most
of the computational components are the same in both detectors, the average evaluation time
T̄S,�1 � 1.7 for WaldBoost and T̄S,�1 � 3 for SURF suggests that further code optimisation of
the WaldBoost detector could lead to even faster implementation.

An important difference between the SURF detector and the Hessian-Laplace WaldBoost em-
ulator is that the first one is a simplification while the other is an emulation. The SURF produces
different set of regions compared to the Hessian-Laplace detector. This could be verified by com-
puting the coverage as in Figure 7.6. For the SURF detector only 49.7 % coverage is reached
compared to 80 % of the WaldBoost detector. The difference in detectors outputs is shown in
Figure 7.8.

7.4.2 Fast saliency detector

The emulation of the Kadir-Brady saliency detector [38] uses the same image pool for training
as the WaldBoost Hessian-Laplace emulator. The saliency threshold of the original detector was
set empirically to 2 to collect a sample pool of a reasonable size. Higher value of threshold
also helps to limit the positive examples only to those with higher saliency. As opposed to the
Hessian-Laplace emulation, where rather low threshold was chosen, it is meaningful to use only
the top most salient features from the Kadir-Brady detector since its response corresponds to the
importance of the feature.

The Haar-like feature set was extended by the “variance” feature described in Section 7.3. The

58

7.4 Experiments

Hessian-Laplace Kadir-Brady

original 0.9s 1m 48s

SURF 0.09s —

speed-up 10� —

T̄S,�1 3 —

WaldBoost 0.10s 0.76s

speed-up 9� 142�

T̄S,�1 1.7 2.2

Table 7.1: Speed comparison on the first image (850�680) from the BOAT sequence. The speed-
up on another images is similar.

training was run for T � 20 (training steps) with α � 0.2 and β � 0 as in the Hessian-Laplace
experiment.

Publicly available version of Kadir-Brady detector has several drawbacks which need to be
considered in the experimental evaluation. Due to relatively wide search for local maximum in
the scale space, no detections near the image border are found. This results in a strip around im-
age border where no detections are returned (see Figure 7.6b). Also the scale range of detections
is limited. In all following experiments, WaldBoost emulator detections are filtered by the same
restrictions for the comparison reasons. However, the WaldBoost emulator of the Kadir-Brady
detector does not have these restrictions inherently.

Repeatability and matching score. The same experiments as for the Hessian-Laplace detec-
tor have been performed. The repeatability and the matching score of the Kadir-Brady detector
and its WaldBoost emulation on BOAT and EAST SOUTH sequences are shown in Figure 7.9.
Similar performance to the Kadir-Brady detector is reached for similar number of correspon-
dences and correct matches on both sequences.

Speed. The main advantage of the emulated saliency detector is its speed. The classifier
evaluates on average 2.2 features per examined location and scale. Table 7.1 shows that the
emulated detector is about 142� faster than the original detector.

Classifier structure. Our early experiments showed that the Haar-like features are not suit-
able to emulate the entropy-based saliency detector. With the variance features, the training was
able to converge to a reasonable classifier. In fact, the variance feature is chosen for the first
weak classifier in the WaldBoost ensemble (see Figure 7.5). The bin responses of the weak
classifier show that higher variations are preferred.

Coverage. The outputs of the WaldBoost saliency detector and the original algorithm are
compared in Figure 7.6b. The coverage of original detections is 90 %.

Rotational and scale invariance. Invariance to rotation and scale changes of the WaldBoost
emulator and the Kadir-Brady detector are compared in Figure 7.11. Due to very different

59

7 Learning Fast Emulators of Binary Decision Processes

BOAT EAST SOUTH

1 1.5 2 2.5
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

scale change

Kadir
WB

1 1.5 2 2.5
0

200

400

600

800

#c
or

re
sp

on
de

nc
es

scale change

Kadir
WB

1 1.5 2 2.5
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

scale change

Kadir
WB

1 1.5 2 2.5
0

50

100

150

200

#c
or

re
sp

on
de

nc
es

scale change

Kadir
WB

BIKES TREES

2 3 4 5 6
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

increasing blur

Kadir
WB

2 3 4 5 6
0

10

20

30

40

50

#c
or

re
sp

on
de

nc
es

increasing blur

Kadir
WB

2 3 4 5 6
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

increasing blur

Kadir
WB

2 3 4 5 6
0

100

200

300

400

#c
or

re
sp

on
de

nc
es

increasing blur

Kadir
WB

GRAFFITI WALL

20 30 40 50 60
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

view angle

Kadir
WB

20 30 40 50 60
0

100

200

300

#c
or

re
sp

on
de

nc
es

view angle

Kadir
WB

20 30 40 50 60
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

view angle

Kadir
WB

20 30 40 50 60
0

20

40

60

80

100
#c

or
re

sp
on

de
nc

es

view angle

Kadir
WB

LEUVEN UBC

2 3 4 5 6
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

decreasing light

Kadir
WB

2 3 4 5 6
0

10

20

30

40

50

#c
or

re
sp

on
de

nc
es

decreasing light

Kadir
WB

60 70 80 90 100
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

JPEG compression %

Kadir
WB

60 70 80 90 100
0

100

200

300

400

#c
or

re
sp

on
de

nc
es

JPEG compression %

Kadir
WB

Figure 7.9: Repeatability comparison of the Kadir-Brady detector and its WaldBoost emulation
on Mikolajczyk’s dataset.

60

7.4 Experiments

BOAT EAST SOUTH

1 1.5 2 2.5
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

scale change

Kadir
WB

1 1.5 2 2.5
0

200

400

600
#c

or
re

ct
 m

at
ch

es

scale change

Kadir
WB

1 1.5 2 2.5
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

scale change

Kadir
WB

1 1.5 2 2.5
0

50

100

150

#c
or

re
ct

 m
at

ch
es

scale change

Kadir
WB

BIKES TREES

2 3 4 5 6
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

increasing blur

Kadir
WB

2 3 4 5 6
0

10

20

30

40

50

#c
or

re
ct

 m
at

ch
es

increasing blur

Kadir
WB

2 3 4 5 6
0

20

40

60

80

100
m

at
ch

in
g

sc
or

e

increasing blur

Kadir
WB

2 3 4 5 6
0

100

200

300

#c
or

re
ct

 m
at

ch
es

increasing blur

Kadir
WB

GRAFFITI WALL

20 30 40 50 60
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

view angle

Kadir
WB

20 30 40 50 60
0

50

100

150

200

250

#c
or

re
ct

 m
at

ch
es

view angle

Kadir
WB

20 30 40 50 60
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

view angle

Kadir
WB

20 30 40 50 60
0

20

40

60

80

#c
or

re
ct

 m
at

ch
es

view angle

Kadir
WB

LEUVEN UBC

2 3 4 5 6
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

decreasing light

Kadir
WB

2 3 4 5 6
0

10

20

30

40

#c
or

re
ct

 m
at

ch
es

decreasing light

Kadir
WB

60 70 80 90 100
0

20

40

60

80

100

m
at

ch
in

g
sc

or
e

JPEG compression %

Kadir
WB

60 70 80 90 100
0

100

200

300

#c
or

re
ct

 m
at

ch
es

JPEG compression %

Kadir
WB

Figure 7.10: Matching score comparison of the Kadir-Brady detector and its WaldBoost emula-
tion on Mikolajczyk’s dataset.

61

7 Learning Fast Emulators of Binary Decision Processes

0 50 100 150 200 250 300 350
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

rotation (degrees)

Kadir
WB

0 50 100 150 200 250 300 350
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

rotation (degrees)

Kadir
WB

(a) (b)

0.5 1 1.5 2
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

scale

Kadir
WB

0.5 1 1.5 2
0

20

40

60

80

100

re
pe

at
ab

ili
ty

 %

scale

Kadir
WB

(c) (d)

Figure 7.11: Rotation and scale invariance of the WaldBoost Kadir-Brady emulator. Top
row: Repeatability on rotated first images from (a) BOAT, and (b) EAST SOUTH

sequences for the Kadir-Brady detector (Kadir) and its WaldBoost emulator
(WB). Bottom row: Repeatability on scaled first images from (c) BOAT, and (d)
EAST SOUTH sequences.

approaches in computing the detectors responses (Haar-like features vs. entropy), the WaldBoost
emulator is not able to reach perfect rotation invariance on images rotated by 90 degrees but is
able to keep similar rotational invariance otherwise. Moreover, the feature-based approach of
the WaldBoost emulator results in slightly better scale invariance of the detector. This can be
probably explained by the instability of the entropy based Kadir-Brady detector especially at
small scales where the probabilities are difficult to estimate. It is shown also in [33] that their
difference-of-Gaussians detector is more robust to a range of transformations than the Kadir-
Brady detector.

7.5 Summary

To conclude, a general learning framework has been proposed for speeding up existing binary
decision processes by a sequential classifier which is learnt by the WaldBoost algorithm. Two
interest point detectors, the Hessian-Laplace and the Kadir-Brady saliency detector, served as
examples of emulated algorithms.

The WaldBoost emulator of the Hessian-Laplace detector was able to detect points with simi-
lar repeatability and slightly higher matching score while keeping the rotational and scale invari-

62

7.5 Summary

ance of the original detector. Moreover, the WaldBoost emulator was able to increase nine times
the speed of detection compared to the original detector. When compared to the manually tuned
SURF detector, similar repeatability, matching score and evaluation speed characteristics are
reached. However the WaldBoost detector emulates the Hessian-Laplace detector significantly
more closely.

Also, the WaldBoost training is able to emulate Kadir-Brady detector generally with similar
repeatability, matching score and robustness to rotation changes, while improving slightly its
scale invariance. But, most importantly, the decision times of the emulated detector are about
142 times lower than that of the original algorithm. That opens new possibilities for using the
Kadir-Brady detector in time sensitive applications.

The proposed approach is general and can be applied to other algorithms as well. For future
research, an interesting extension of the methodology would be to train an emulator which not
only guarantees output similar to an existing algorithm but which also possesses some addi-
tional quality like insensitivity to certain acquisition conditions (e.g. motion blur) or maximum
performance in a particular environment or task.

63

8 On-line WaldBoost

In this chapter, we introduce an on-line extension of the WaldBoost algorithm. On-line boost-
ing [25] proved its usefulness in many practical applications like object tracking [27, 87] or
background modelling [28] has been used to improve object detectors over time (e.g. [29, 84]).
The on-line WaldBoost algorithm contributes to this field by solving two important problems of
on-line learning: (i) optimisation of the classifier evaluation speed, and (ii) automatic determi-
nation of the classifier complexity necessary for given problem.

To overcome the first point, Wu and Nevatia [84] investigated to use the cascade approach in
the on-line boosting framework. However, their approach uses many heuristic decisions and is
not well founded in the theory.

All current approaches for on-line learning need the number of weak classifier to be given in
advance [57, 25]. However, in tasks where the decision problem changes over time, like in object
tracking, it is impossible to specify the classifier complexity in advance. A common approach
is to train complex classifiers which can handle all situations but this is less effective when the
task becomes easier.

Experiments on a visual object tracking task show that the on-line WaldBoost algorithm is
able to automatically adapt the classifier complexity and speed to changing problem difficulty.

8.1 On-line Boosting for Feature Selection

The goal of training in both off-line [17] and on-line [57] boosting is to minimise the training er-
ror by selecting and combining a set of “weak” classification algorithms h<tA<xA � X � F�1, �1K
into a strong classifier fT <xA1

fT <xA � T

é
t�1

αtht<xA . (8.1)

The binary classification is then based on the sign of the strong classifier response function fT .
The main differences between off-line and on-line AdaBoost training is the way the training

data are obtained and how the strong classifier is built. In the off-line training all the data
are available in advance. The on-line training uses one training sample at a time. To build a
classifier in the off-line training one weak classifier is added each training round, while in the
on-line training the strong classifier is initialised at the beginning and is updated by each training
sample.

1In this chapter we use the discrete version of AdaBoost [18] to avoid overfitting in the relatively simple classifica-
tion problem.

64

8.2 On-line WaldBoost

Evaluate
and

update
likelihood

ratio

Update
selector

#1

Estimate
impor-
tance

Update
thresholds

Update
weight

Decidable?

EXIT

Evaluate
and

update
likelihood

ratio

Update
selector

#T

Update
thresholds

Update
weight

Decidable?

EXIT

current strong classifier

Figure 8.1: Training scheme of the on-line WaldBoost algorithm.

The base for the on-line WaldBoost algorithm is the on-line boosting for feature selection
proposed by Grabner and Bischof [25]. The main idea is to perform on-line boosting on selectors
rather than on the weak classifiers directly. Each selector L keeps a set of L weak classifiers
Lt � Fht

1<xA, . . . , ht
L<xAK. The selectors are initialised with a random set of weak classifiers and

in each selector one weak classifier, h<tA, is chosen as active. To estimate the weak classifiers
error an importance (difficulty) λ of a sample is propagated during training through the set of T
selectors.

When a new training sample <x, yA, y . F�1, �1K arrives, the importance weight λ of the sam-
ple is initialised to λ � 1. The selectors are updated sequentially. In the updated selector, error
of each weak classifier is evaluated on the training sample and their error estimate is updated de-
pending on the outcome of the evaluation and the importance weight λ. The weak classifier with
the smallest estimated error is selected in the selector. Next, the corresponding voting weight
αt of the selected weak classifier and the importance weight λ of the sample are updated and
the next selector is updated. The weight λ increases if the sample is misclassified by the current
selector or decreased otherwise. Finally, a strong classifier is build as a linear combination of T
weak classifiers selected in individual selectors.

8.2 On-line WaldBoost

The proposed on-line WaldBoost algorithm combines the WaldBoost algorithm described in
Chapter 5 and the on-line boosting for feature selection from Section 8.1. The general training
scheme is shown in Figure 8.1. As in Section 8.1 the selectors are updated using the actual
training sample and its importance, the weak classifier is chosen as the classifier minimising the
estimated error in the selector, and the sample importance weight λ reflects the difficulty of the
sample. The main difference is that the training can be terminated earlier if the SPRT conditions
hold, i.e. the sample is used for updating only those selectors to which it is passed undecided.

In order to find the Wald thresholds θ
<tA
A and θ

<tA
B the likelihood ratio R̂<xA from equation 5.8

has to be estimated. In the off-line training the statistics are computed on the sample pool. The
on-line training offers an elegant way to compute an unbiased estimate of the statistics using
the given sample only. The idea is to use the current training sample first as a test sample (not
seen before) to update the SPRT statistics before it is used for updating the strong classifier.

65

8 On-line WaldBoost

(a) Frame 1 (b) Frame 400 (c) Frame 2000 (d) Frame 2759 (e) Frame 3659

Figure 8.2: Tracking of an object (1st row) and the classifier response map within the search
window (2nd row). Values equal to 0 mean early rejection, i.e. saving of the compu-
tation time.

The probabilities p<� tiCA can be estimated by computing the portion of samples seen so far
and not decided until t-th selector. The densities p<ft<xAiy � C,� tA are estimated from
the samples which are not decided until the t-th selector only. In our implementation they are
approximated by Gaussians. Given these probabilities and α and β parameters, the thresholds
θ
<tA
A and θ

<tA
B are estimated as in Chapter 5. However, since a feature-switch in selector Ls

causes a wrong estimate of the statistics of subsequent selectors, the statistics are reseted for the
selectorsLt, t 3 s, i.e. p<ft<xAiy � C,� tA is set to the uniform distribution and p<� tiCA � 0.5
for C . F�1, �1K.

This training scheme allows for classifier speedup in both training and evaluation compared to
the original on-line boosting. Moreover, the number of selectors can be set to a high number and
the real classifier complexity (i.e. number of weak classifiers used) is controlled automatically.

8.3 Experiments

The properties of the proposed on-line WaldBoost algorithm are demonstrated on the task of
visual object tracking. It is formulated as a binary classification problem where the classifier
is used to distinguish the object from the local background [27]. To allow adaptability to the
object appearance changes, updates of the classifier are performed – here we replaced the on-line
boosting algorithm with the on-line WaldBoost algorithm. For the on-line WaldBoost classifier
T � 50 selectors were used which selects from a global feature pool of L � 250 weak classifier
corresponding to Haar-like features (same parameters as in [27]). The Wald parameters were set
to α � 0.02 and β � 0.

Figure 8.2 shows a challenging tracking sequence including appearance changes of the object
as well as object occlusions on a complex background. The second row depicts the confidence
maps of the classifier. Since we use no motion model (cf. [87]), a confidence map is computed
by evaluating the classifier at all positions within a local search region. The position of the object

66

8.4 Summary

0 500 1000 1500 2000 2500 3000 3500 4000

2

4

6

8

10

time

sp
ee

du
p

Figure 8.3: Speed-up compared to the non-sequential on-line boosting approach [27].

corresponds to the maximum in the confidence map. The values equal to zero show the positions
rejected before reaching the end of the classifier sequence.

These early decisions lead to the speed-up shown in Figure 8.3. The speed-up is calculated
as T 2T̃ , where T̃ is the average number of weak classifiers used before the decision is reached
over the whole search region. If all values are equal to zero the object is considered to be lost.
If the object is “stable” in the scene, the speed-up is continuously increasing since background
patches can be discarded early. On average, we achieved a speed-up of a factor of 5 to 10 without
suffering a loss in tracking quality, i.e. we never discard the maximum peak of the confidence
map, so the tracking results are exactly the same as reported in [27]. The same tracking results
are reached also for the other tracking sequences used in [27, 46]. However, the speed-up is not
that big, since the object and the background changes a lot. Nevertheless, in the training the
complexity of the classifier can still be determined automatically.

In general, the achieved speed-up depends on dynamically changing problem difficulty and
how often the SPRT statistics have to be reseted (e.g. at frame 2706). Further, higher values of
α lead to more speedup but having the risk of loosing the object if it changes its appearance too
fast. The achieved speed-up (3 1) can be used for instance for extending the search region to
handle faster movements or to include more degrees of freedom like scale.

8.4 Summary

In this chapter we have shown how to extend the WaldBoost algorithm to on-line learning set-
tings. The proposed on-line WaldBoost training algorithm is able to control the classifier com-
plexity depending on the problem difficulty. Moreover, the evaluation speed is increased through
the sequential nature of the classifier compared to a non-sequential on-line classifier. We tested
the on-line WaldBoost algorithm on a visual tracking problem. A significant speed-up was
reached compared to the non-sequential on-line boosting. We are confident that other appli-
cations (e.g. improving object detectors) can benefit as well. In the future work we want to
improve the statistics reseting strategy as well as to adapt the α parameter on-line.

67

9 Conclusions

In this thesis, the problem of learning sequential two-class classifiers with decision quality and
evaluation time trade-off was studied. In contrast to commonly used learning algorithms, the
time-to-decision parameter is explicitly considered in the task formulation. In the proposed
learning formulation a sequential classifier which minimises the evaluation time subject to user
defined upper bounds on the error rates is searched for.

As a solution to the formulated problem we proposed a learning algorithm called WaldBoost.
The WaldBoost learning algorithm builds on the sequential probability ratio test (SPRT). We
showed how to enlarge SPRT’s capabilities to problems with dependent measurements and how
the limitations of SPRT to a priori ordered measurements and known joint probability density
functions can be overcome by using the AdaBoost algorithm. The AdaBoost algorithm selects
and orders relevant measurements for SPRT and its properties allow simple decision thresholds
estimation.

The WaldBoost algorithm was tested on the face detection problem. On a standard dataset,
the results are superior to the state of the art methods in average evaluation time and comparable
in detection rates. In the face detection context, the WaldBoost algorithm can be also viewed as
a theoretically justifiable ”boosted cascade of classifiers” proposed by Viola and Jones [81].

Another application of the WaldBoost algorithm described in the thesis is a framework for
speeding up existing binary decision processes by learning their sequential WaldBoost emula-
tors. Two interest point detectors, the Hessian-Laplace and the Kadir-Brady saliency detector,
served as examples of emulated algorithms. The experiments show similar repeatability and
matching scores of the original and emulating algorithms. For both, the Hessian-Laplace and
the Kadir-Brady detectors, the WaldBoost emulation improved significantly the speed. The em-
ulator was nine times faster for the Hessian-Laplace detector and about 142 times faster for the
Kadir-Brady detector. In the case of the Kadir-Brady detector this speed-up opens new possibil-
ities for using the detector in time sensitive applications. For the Hessian-Laplace detector, the
achieved speed is similar to SURF, a commonly used Hessian-like fast detector; the WaldBoost
emulator approximates the output of the Hessian-Laplace detector more precisely.

The proposed emulation approach is general and can be applied to other algorithms as well.
For future research, an interesting extension of the methodology would be to train an emulator
which not only guarantees output similar to an existing algorithm but which also possesses
some additional quality like insensitivity to certain acquisition conditions (e.g. motion blur) or
maximum performance in a particular environment or task.

Finally, we have shown how to extend the on-line boosting algorithm using Wald’s sequen-
tial decision theory. The proposed on-line WaldBoost learning algorithm is able to control the
classifier complexity depending on the problem difficulty. Moreover, the evaluation speed is

68

increased through the sequential nature of the classifier. We tested the on-line WaldBoost algo-
rithm on a visual tracking problem. The evaluation speed is significantly improved compared
to the non-sequential on-line boosting while preserving the tracking capabilities. We are confi-
dent that other applications (e.g. improving object detectors) can benefit from using the on-line
WaldBoost algorithm as well.

69

Bibliography

[1] http://en.wikipedia.org/wiki/Twenty Questions, Jan 2009.

[2] S. Baker and S. K. Nayar. Algorithms for pattern rejection. In ICPR, page 869, 1996.

[3] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust fea-
tures (SURF). CVIU, 110(3):346–359, 2008.

[4] B. Bhanu. Automatic target recognition: State of the art survey. IEEE Transactions on
Aerospace and Electronic Systems, 22:364–379, 1986.

[5] Gilles Blanchard and Donald Geman. Hierarchical testing designs for pattern recognition.
Annals of Statistics, 33(3):1155–1202, 2005.

[6] Mark Boddy and Thomas L. Dean. Decision-theoretic deliberation scheduling for problem
solving in time-constrained environments. Artificial Intelligence, 67(2):245–285, 1994.

[7] Lubomir Bourdev and Jonathan Brandt. Robust object detection via soft cascade. In CVPR,
pages 236–243, 2005.

[8] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[9] S. Charles Brubaker, Jianxin Wu, Jie Sun, Matthew D. Mullin, and James M. Rehg. On
the design of cascades of boosted ensembles for face detection. Technical report, Georgia
Institute of Technology, 2005.

[10] S. Charles Brubaker, Jianxin Wu, Jie Sun, Matthew D. Mullin, and James M. Rehg. On
the design of cascades of boosted ensembles for face detection. International Journal on
Computer Vision, 77(1-3):65–86, 2008.

[11] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In
CVPR, volume 1, pages 886–893, 2005.

[12] Thomas Dean and Mark Boddy. An analysis of time dependent planning. In AAAI, pages
49–54, 1988.

[13] P. Dollár, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries. In
CVPR, 2006.

[14] S. Esmeir and S. Markovitch. Anytime induction of low-cost, low-error classifiers: a
sampling-based approach. Journal of Artificial Intelligence Research, 33:1–31, 2008.

70

Bibliography

[15] R. Fergus, P. Perona, and A. Zisserman. A sparse object category model for efficient
learning and exhaustive recognition. In CVPR, volume 1, pages 380–387, 2005.

[16] Franois Fleuret and Donald Geman. Coarse-to-fine face detection. International Journal
on Computer Vision, 41:85–107, 2001.

[17] Y. Freund and R. Schapire. A short introduction to boosting. Journal of Japanese Society
for Artificial Intelligence, 14(5):771–780, 1999.

[18] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

[19] Yoav Freund. Boosting a weak learning algorithm by majority. Information and Compu-
tation, pages 121(2):256–285, 1995.

[20] Yoav Freund. An adaptive version of the boost by majority algorithm. Machine Learning,
43(3):293–318, 2001.

[21] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. In European Conference on Computational Learning
Theory, pages 23–37, 1995.

[22] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view
of boosting. Technical report, Department of Statistics, Sequoia Hall, Stanford Univerity,
July 1998.

[23] B. Froba and A. Ernst. Face detection with the modified census transform. In AFGR, pages
91–96, 2004.

[24] B. Froba and C. Kublbeck. Robust face detection at video frame rate based on edge orien-
tation features. In AFGR, pages 327–332, 2002.

[25] H. Grabner and H. Bischof. On-line boosting and vision. In CVPR, volume 1, pages
260–267, 2006.

[26] H. Grabner, Beleznai C., and H. Bischof. Improving adaboost detection rate by wobble
and mean shift. In Computer Vision Winter Workshop, pages 23–32, 2005.

[27] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting. In
BMVC, volume 1, pages 47–56, 2006.

[28] H. Grabner, C. Leistner, and H. Bischof. Time dependent on-line boosting for robust
background modeling. In VISAPP, 2007.

[29] H. Grabner, P.M. Roth, and H. Bischof. Is pedestrian detection realy a hard task? In PETS,
2007.

[30] H. Grabner, J. Šochman, H. Bischof, and J. Matas. Training sequential on-line boosting
classifier for visual tracking. In ICPR, 2008.

71

Bibliography

[31] M. Grabner, H. Grabner, and H. Bischof. Fast approximated SIFT. In ACCV, pages I:918–
927, 2006.

[32] Eienne Grossmann. Automatic design of cascaded classifiers. Lecture notes in computer
science, 3138:983–991, 2004.

[33] J. S. Hare and P. H. Lewis. Salient regions for query by image content. In CIVR, pages
317–325, 2004.

[34] Chang Huang, Haizhou Ai, Shihong Lao, and Yuan Li. High-performance rotation invari-
ant multiview face detection. PAMI, 29(4):671–686, 2007.

[35] Chang Huang, Haizhou Ai, Yuan Li, and Shihong Lao. Vector boosting for rotation invari-
ant multi-view face detection. In ICCV, pages 446–453, 2005.

[36] M. Jones and P. Viola. Fast multi-view face detection. Technical report, Mitsubishi Eletric
Research Laboratories, August 2003.

[37] Michael J. Jones and James M. Rehg. Statistical color models with application to skin
detection. International Journal on Computer Vision, 46(1):81–96, 2002.

[38] T. Kadir and M. Brady. Saliency, scale and image description. International Journal on
Computer Vision, 45(2):83–105, 2001.

[39] Zdeněk Kálal, Jiřı́ Matas, and Krystian Mikolajczyk. Weighted sampling for large-scale
boosting. In BMVC, 2008.

[40] Christoph H. Lampert, Matthew B. Blaschko, and Thomas Hofmann. Beyond sliding win-
dows: object localization by efficient subwindow search. In CVPR, 2008.

[41] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time keypoint recognition. In
CVPR, volume II, pages 775–781, 2005.

[42] S.Z. Li and Z. Zhang. FloatBoost learning and statistical face detection. PAMI, 26(9):1112–
1123, 2004.

[43] S.Z. Li, L. Zhu, Z. Zhang, A. Blake, H. Zhang, and H. Shum. Statistical learning of multi-
view face detection. In ECCV, volume IV, pages 67–81, 2002.

[44] Rainer Lienhart, Alexander Kuranov, and Pisarevsky Vadim. Empirical analysis of detec-
tion cascades of boosted classifiers for rapid object detection. In DAGM, 2003.

[45] Rainer Lienhart and Jochen Maydt. An extended set of haar-like features for rapid object
detection. In ICIP, 2002.

[46] J. Lim, D. Ross, R. Lin, and M. Yang. Incremental learning for visual tracking. In NIPS,
volume 17, pages 793–800. MIT Press, 2005.

72

Bibliography

[47] Huitao Luo. Optimization design of cascaded classifiers. In CVPR, volume 1, pages 480–
485, 2005.

[48] D.R. Martin, C.C. Fowlkes, and J. Malik. Learning to detect natural image boundaries
using local brightness, color, and texture cues. PAMI, 26(5):530–549, 2004.

[49] Jiřı́ Matas and Ondřej Chum. Randomized RANSAC with sequential probability ratio test.
In ICCV, volume II, pages 1727–1732, 2005.

[50] Jiřı́ Matas and Jan Šochman. Wald’s sequential analysis for time-constrained vision prob-
lems. In ICRA, April 2007.

[51] K. Mikolajczyk. http://www.robots.ox.ac.uk/˜vgg/research/affine, 2008.

[52] K. Mikolajczyk. Personal communication, 2008.

[53] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,
T. Kadir, and L. Van Gool. A comparison of affine region detectors. International Journal
on Computer Vision, 65(1-2):43–72, 2005.

[54] Krystian Mikolajczyk. Detection of local features invariant to affines transformations.
PhD thesis, INPG, Grenoble, July 2002.

[55] Krystian Mikolajczyk and Cordelia Schmid. Scale and affine invariant interest point detec-
tors. International Journal on Computer Vision, 60(1):63–86, 2004.

[56] Timo Ojala, Matti Pietikäinen, and Topi Mäenpää. Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. PAMI, 24(7):971–987, 2002.

[57] N. Oza and S. Russell. Online bagging and boosting. In Artificial Intelligence and Statis-
tics, pages 105–112, 2001.

[58] Ofir Pele and Michael Werman. Robust real time pattern matching using bayesian sequen-
tial hypothesis testing. PAMI, 30(8):1427–1443, 2008.

[59] Matthias Raetsch, Sami Romdhani, and Thomas Vetter. Efficient face detection by a cas-
caded support vector machine using haar-like features. In DAGM, 2004.

[60] G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for adaboost. In Machine Learning,
volume 3, pages 287–320, 2001.

[61] Ronald L. Rivest. Learning decision lists. In Machine Learning, pages 229–246, 1987.

[62] S. Romdhani, P.H.S. Torr, B. Scholkopf, and A. Blake. Computationally efficient face
detection. In ICCV, pages II: 695–700, 2001.

[63] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection.
In ECCV, volume 1, pages 430–443, 2006.

73

Bibliography

[64] H.A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. PAMI,
20(1):23–38, 1998.

[65] H.A. Rowley, S. Baluja, and T. Kanade. Rotation invariant neural network-based face
detection. In CVPR, page 963, 1998.

[66] Hichem Sahbi. Coarse-to-fine support vector machines for hierarchical face detection.
PhD thesis, Computer Science, University of Versailles at France, April 2003.

[67] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227,
1990.

[68] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-
rated predictions. Machine Learning, pages 37(3): 297–336, 1999.

[69] Michail I. Schlesinger. Bystraja realizaciaja odnovo klassa linejnykh svjortok. Teoret. i
prikl. voprosy raspoznavanija izobrazhenij, 1991.

[70] H. Schneiderman. Feature-centric evaluation for efficient cascaded object detection. In
CVPR, volume 2, pages 29–36, 2004.

[71] B. Schölkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and A. Smola. Input
space vs. feature space in kernel-based methods. IEEE Transactions on Neural Networks,
10(5):1000–1017, 1999.

[72] David Siegmund. Sequential Analysis. Test and Confidence Intervals. Springer Series in
Statistics. Springer-Verlag, New York, NY, 1985.

[73] Jan Šochman and Jiřı́ Matas. WaldBoost - learning for time constrained sequential detec-
tion. In CVPR, volume 2, pages 150–157, 2005.

[74] Jan Šochman and Jiřı́ Matas. Learning a fast emulator of a binary decision process. In
ACCV, 2007.

[75] Jan Šochman and Jiřı́ Matas. Learning fast emulators of binary decision processes. Sub-
mitted to International Journal on Computer Vision, 2009.

[76] J. Sun, J.M. Rehg, and A. Bobick. Automatic cascade training with perturbation bias. In
CVPR, volume 2, pages 276–283, 2004.

[77] Kah Kay Sung and Tomaso Poggio. Learning human face detection in cluttered scenes. In
Computer Analysis of Images and Patterns, pages 432–439, 1995.

[78] Kah Kay Sung and Tomaso Poggio. Example-based learning for view-based human face
detection. PAMI, 20(1):39–51, 1998.

[79] N. A. Thompson. A practitioners guide for variable-length computerized classification
testing. Practical Assessment Research & Evaluation, 12(1), 2007.

74

Bibliography

[80] K. Toyama. Handling tradeoffs between precision and robustness with incremental focus
of attention for visual tracking. In AAAI Symposium on Flexible Computation in Intelligent
Systems, 1996.

[81] P. Viola and M.J. Jones. Robust real time object detection. In SCTV, 2001.

[82] Paul Viola and Michael J. Jones. Robust real-time face detection. IJCV, 57(2):137–154,
2004.

[83] Abraham Wald. Sequential analysis. Dover, New York, 1947.

[84] B. Wu and R. Nevatia. Improving part based object detection by unsupervised, online
boosting. In CVPR, pages 1–8, 2007.

[85] Bo Wu, Haizhou AI, Chang Huang, and Shihong Lao. Fast rotation invariant multi-view
face detection based on real adaboost. In FGR, 2004.

[86] R. Xiao, L. Zhu, and H.J. Zhang. Boosting chain learning for object detection. In ICCV,
pages 709–715, 2003.

[87] L. Xj, T. Yamashita, S. Lao, M. Kawade, and F. Q. Online real boosting for object tracking
under severel appearance changes and occlusion. In International Conference on Acoustics,
Speech and Signal Processing, pages 925–928, 2007.

[88] Long Zhu, Yuanhao Chen, and Alan L. Yuille. Unsupervised learning of a probabilistic
grammar for object detection and parsing. In NIPS, pages 1617–1624, 2006.

75

	phd
	thesis.pdf

