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Abstract

Discriminative methods for learning structured output classifiers have been gain-
ing popularity in recent years due to their successful applications in fields like com-
puter vision, natural language processing or bio-informatics. Learning of the struc-
tured output classifiers leads to solving a convex minimization problem which is
not tractable by standard algorithms. A significant effort has been put to develop-
ment of specialized solvers among which the Bundle Method for Risk Minimization
(BMRM) [Teo et al., 2010] is one of the most successful. The BMRM is a simpli-
fied variant of bundle methods well known in the filed of non-smooth optimization.
The simplicity of the BMRM is compensated by its reduced efficiency. In this pa-
per, we propose several improvements of the BMRM which significantly speeds up
its convergence. The improvements involve i) using the prox-term known from the
original bundle methods, ii) starting optimization from a non-trivial initial solution
and iii) using multiple cutting plane model to refine the risk approximation. Ex-
periments on real-life data show that the improved BMRM converges significantly
faster achieving speedup up to a factor of 10 compared to the original BMRM.
The proposed method has become a part of the SHOGUN Machine Learning Tool-
box [Sonnenburg et al., 2010].

1 Introduction

Learning predictors from data is a standard machine learning task. A large number of such
tasks are translated into a convex quadratically regularized risk minimization problem

w∗ = arg min
w∈Rn

F (w) :=

[
λ

2
‖w‖2 +R(w)

]
. (1)

The objective F : Rn → R, referred to as the regularized risk, is a sum of the quadratic reg-
ularization term and a convex empirical risk R : Rn → R. The scalar λ > 0 is a pre-defined
constant and w ∈ Rn is a parameter vector to be learned. The quadratic regularization
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term serves as a mean to constraint the space of solutions in order to improve general-
ization. The empirical risk evaluates a match between the parameters w and training
examples. The risk is often given as a sum of convex functions ri : Rn → R, i.e., the risk
reads

R(w) =
m∑
i=1

ri(w) .

This paper proposes efficient optimization algorithm for the instances of the learning prob-
lem (1) when evaluation of the functions ri(w) and their sub-gradients r′i(w) ∈ Rn is
expensive, yet tractable.

In particular, our research was motivated by real-life applications of the Structured Out-
put Support Vector Machine (SO-SVM) classifier, learning of which has been formulated
by [Tsochantaridis et al., 2005] as follows. Given a training set of examples of input-output
pairs {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m, assumed to be i.i.d. from an unknown p.d.f.
P (x, y), we want to learn a parameter vector w ∈ Rn of a linear classifier

h(x;w) = arg max
y∈Y
〈w,Ψ(x, y)〉 , (2)

where Ψ : X × Y → Rn is a fixed mapping from the input-output space onto the space of
parameters. The ultimate goal is to find the paramaters w which minimize the expected
risk Ep(x,y)[`(y, h(x;w))] for a given loss function ` : Y × Y → R. The problem (1) was
shown to be a good proxy for the minimization of the expected risk which is not possible
due to unknown P (x, y). The function ri(w) is set to be a convex approximation of the
loss `(yi, h(xi;w)) which reads

ri(w) = max
y∈Y

[`(yi, y) + 〈w,Ψ(xi, y)−Ψ(xi, yi)〉] . (3)

By Danskin’s theorem the sub-gradient of ri(w) can be computed as r′i(w) = Ψ(xi, ŷi)−
Ψ(xi, yi), where

ŷi = arg max
y∈Y

[`(yi, y) + 〈w,Ψ(xi, y)〉] . (4)

Evaluation of ri(w) as well as r′i(w) is often expensive due to huge size of the output set
Y , e.g. Y can be a set of all segmentations of an input image x ∈ X . We refer to the
problem (1) with the risk R(w) defined by (3) as the SO-SVM learning problem. The
SO-SVM learning problem can be transformed to the equivalent quadratic program with
the number of constraints linearly proportional to the number of classifier outputs |Y|.
Hence, using exisitng off-the-shelf solvers is not feasible.

Currently used approaches for the SO-SVM learning involve approximative on-line algo-
rithms and precise methods. The approximative methods are often fast, especially at early
optimization stages, but have no clear stopping condition. Moreover, the approximative
methods require educated setting of the learning rate and they are sensitive to improperly
scaled data. The prominent representatives of the approximative methods are variants of
the Stochastic Gradient Descent algorithm [Bordes et al., 2009, Shwartz et al., 2007].
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The precise methods, on the other hand, are slower but provide theoretically grounded
stopping condition based on the optimality certificate. Currently the most popular precise
solver is the Bundle Method for Risk Minimization (BMRM) proposed by [Teo et al., 2010].
The strongest sides of the BMRM are its simplicity, generality and modularity. The BMRM
can be readily applied to an arbitrary instance of the problem (1) requiring only an oracle
which evaluates the risk and its sub-gradient. That is, to use it for the SO-SVM learning
one only needs to implement evaluation of (3) and (4). The BMRM has been proved to con-
verge at most in O(1

ε
) iterations. [Joachims et al., 2009] proposed a variant of the column

generation algorithm solving “1-slack” reformulation of the quadratic program equivalent
to the SO-SVM learning problem. The solver was implemented in the popular StructSVM
package1 for several instances of SO-SVM classifier including the Hidden Markov Models
or Context Free Grammars. Though discovered independently, the StructSVM solver is
exactly the same as the instance of the BMRM for the SO-SVM learning.

The BMRM is a simplified variant of bundle methods which are standard tools in
non-smooth optimization [Lemaréchal et al., 1995]. The simplicity of the BMRM is com-
pensated by its reduced efficiency. In this paper, we propose several improvements of the
BMRM which significantly speeds up its convergence. The first improvement is in using
the prox-term, known from the original bundle methods, which has a significant stabilizing
effect on the convergence. The second improvement is to start optimization not from a
scratch, but to enforce the use of e.g. previous solution from the validation cycle or a
solution found by a few passes of an approximate on-line algorithm. This improvement
cannot be used without the first one, due to the lack of prox-term in original BMRM.
The third improvement, independent to the first two, proposes usage of a multiple cut-
ting plane model for the risk instead of a single cutting plane model as in the original
BMRM. The multiple cutting plane model offers finer approximation without increasing
the computational time required to computed the model.

The paper is organized as follows. In Section 2 we outline the standard bundle methods,
their relation to the BMRM and the source of inefficiency of the BMRM. Section 3 describes
the proposed improvements. Experimental evaluation is given in Section 4 and Section 5
concludes the paper.

2 Bundle methods

Let us assume for a moment a special variant of the problem (1) without the regularization
term, i.e. λ = 0, then the problem becomes

w∗ ∈ arg min
w∈Rn

R(w) . (5)

Thanks to its convexity, the risk R(w) can be approximated by its cutting plane (CP)
model

Rt(w) = max
i=1,...,t

[
R(wi) + 〈R′(wi),w −wi〉

]
, (6)

1http://svmlight.joachims.org/svm_struct.html
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where w1, . . . ,wt are the points at which the risk R(w) is sampled and R′(wi) ∈ Rn,
i = 1, . . . , t, denote sub-gradients computed at these points. The CP model Rt(w) is a
piece-wise linear under-estimator of the risk R(w) which is tight at the points w1, . . . ,wt.
Figure 1 illustrates the CP approximation on a simple function.

The cutting plane algorithm [Cheney and Goldstain, 1959] is a simple iterative pro-
cedure which exploits the CP model to solve the problem (5). Starting from an initial
solution w1 ∈ Rn, the CP algorithm computes the new iterates by solving the reduced
problem

wt+1 = arg min
w∈Rn

Rt(w) . (7)

It is well known that the iterates generated by the CP algorithm show a strong zig-zag
behavior, especially at the early iterations when the CP model is inaccurate, and that the
CP algorithm converges very slowly.

The bundle methods [Lemaréchal, 1978] refine the CP algorithm by adding a quadratic
prox-term to the reduced problem, i.e. the next iterate becomes

wt+1 = arg min
w∈Rn

[
Rt(w) + αi‖w −w+

i ‖2
]
, (8)

wherew+
i is the prox-center and αi is the prox-term penalty parameter. If the improvement

in the objective value is sufficiently large, i.e. if R(wt) − R(wt+1) ≥ γt holds, the prox-
center is updated to w+

t+1 = wt+1. Otherwise, the prox-center is unchanged w+
t+1 = w+

t .
The prox-term reduces influence of the inaccurate CP model by constraining the distance
between consecutive iterates, thereby removing the detrimental zig-zag behavior of the CP
algorithm. The bundle method is controlled by two rules. The first rule defines the minimal
decrease threshold γt and, the second rule sets the prox-term penalty αt. The two rules have
a significant impact on the convergence of the bundle method [Lemaréchal et al., 1995].
The bundle methods are known to converge significantly faster than the CP algorithm.

[Teo et al., 2010] adopted the original bundle methods for the specific problem (1)
whose objective already contains a quadratic term. In particular, they propose to replace
the problem (1) by the following reduced problem

wt+1 = arg min
w∈Rn

Ft(w) :=

[
λ

2
‖w‖2 +Rt(w)

]
. (9)

The reduced problem objective Ft(w) is obtained from the primal problem objective F (w)
by replacing the risk R(w) with its CP model Rt(w) while the quadratic regularization
term is unchanged. Hence, the regularization term serves as a natural prox-center. This
is an elegant solution because it avoids designing rules for the updates of the prox-center
penalty and the sufficient decrease threshold which are needed in the standard bundle
methods. The method is termed the Bundle Methods for Risk Minimization (BMRM).

Starting from an initial guess w1 ∈ Rn, the BMRM iteratively solves the reduced
problem (9) and uses the new iterate wt+1 to update the CP model (6) which becomes
progressively more accurate. This process is repeated until a gap between the primal
and the reduced objective gets below a prescribed ε > 0, i.e., until F (wt+1)− Ft(wt+1) ≤
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w0w1

R(w)

R2(w)

w2

R(w1) + 〈R′(w1), w − w1〉R(w0) + 〈R′(w0), w − w0〉

Figure 1: A convex function R(w) can be approximated by a collection of linear under-
estimators (cutting planes).

ε|F (wt+1)| holds, which implies that new iterate wt+1 is ε-optimal solution of (1) satisfying
F (wt+1)(1 − ε) ≤ F (w∗). It can be proved [Teo et al., 2010], that for an arbitrary ε > 0
the ε-optimal solution is obtained after at most O(log2 λ + C

λε
) iterations, where C is a

problem dependent constant which does not depend on λ and ε.

The simplicity of the BMRM algorithm is compensated by a reduced efficiency com-
pared to the original bundle methods. The prox-term penalty is in the BMRM replaced by
a fixed regularization parameter λ. Hence, for low values of λ the influence of the quadratic
term is weak and the BMRM becomes closer to the CP algorithm, i.e. it exhibits a zig-zag
behavior and very slow convergence. The detrimental effect of a low λ is also seen from
the upper bound on the maximal number of iterations O(log2 λ+ C

λε
).

Efficiency of the BMRM algorithm thus depends on the overall number of iterations and
the per iteration complexity. The per iteration time is typically dominated by computation
of the risk value R(wt) and its sub-gradient R′(wt) while solving the reduced problem is
cheap. The number of iterations the BMRM needs to converges strongly depends on the
regularization constant λ. The quadratic regularizer λ

2
‖w‖2 only helps to avoid over-fitting

but it also speeds up the optimization. The quadratic term effectively constraints the space
of the parameters (this can be easily shown formally). For higher values of λ the effect of
the regularizer is stronger and, consequently, the BMRM needs less iterations to converge.
On the other hand, for lower λ the iterates generated by the BMRM exhibit a strong
zig-zag behavior resulting in unacceptably high number of iterations.

The BMRM algorithm (see Algorithm 1) typically requires few hundred iterations to
converge. The evaluation of the risk R(w) and its sub-gradient R′(w) required in step 4
is very often the most expensive part of the algorithm.
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Algorithm 1 BMRM

Require: ε, a function pointer R(w), a function pointer R′(w)
1: Initialization: w ← 0, t← 0
2: repeat
3: t← t+ 1
4: Compute R(wt), R

′(wt)
5: Update Rt(wt)
6: Solve wt ← arg minFt(w)
7: εt ← F (wt)− Ft(wt)
8: until εt ≤ ε

3 Improved BMRM

In this section, we propose three speed improvements of the original BMRM which signif-
icantly improve its convergence. First, we propose to use the prox-term in the definition
of the reduced problem. Its strength is adaptively adjusted in order to avoid the zig-zag
behavior of the BMRM. Second, we propose to start the optimization from an approximate
solution found by an on-line algorithm. As the third improvement, we propose to approxi-
mate the risk by the multiple cutting plane model instead of the single cutting plane model
used by BMRM. These improvements are detailed in the following sections.

3.1 Prox-BMRM

As the first improvement, we propose to integrate a quadratic prox-term to the objective
of the reduced problem in order to prevent the zig-zag behavior of the BMRM. This
modification, which we call Prox-BMRM, returns the BMRM algorithm closer to its roots,
i.e. to the original bundle methods. The difference when compared to the classical bundle
methods is that we do not approximate the quadratic regularizer and we propose new rules
for adjusting the prox-term penalty and the minimal improvement threshold.

The main motivation is to prevent overly big changes of the solution vector by requiring
that the euclidean distance between two consecutive iterates ‖wt+1−wt‖ is not larger than
some reasonably chosen constant K > 0. To this end, we endow the objective function of
the reduced problem by a prox-term, i.e. the modified objective of the reduced problem
becomes

Ft(w, α) :=

[
λ

2
‖w‖2 +Rt(w) + α‖w −wt‖2

]
, (10)

where α ≥ 0 is the prox-term penalty. Similarly to the original BMRM, the Prox-BMRM
computes the new iterate by minimizing the reduced objective (10) with the value of α set
adaptively. The optimization schema is described in Algorithm 2.

In each iteration, the Prox-BMRM first tries to compute new iterate by minimizing
the reduced objective with the prox-center penalty α used in the previous step (line 3).
If the new iterate sufficiently improves the primal objective, i.e. the primal objective
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Algorithm 2 Prox-BMRM

Require: ε > 0, T > 0, K > 0 , w1 ∈ Rn

1: Set α1 = 0 and γt =∞
2: repeat
3: Solve the reduced problem

wαt
t+1 = arg min

w∈Rn
Ft(w, αt)

4: if F (wt)− F (wαt
t+1) ≥ γt then

5: accept the solution and set:

wt+1 = wαt
t+1

αt+1 = αt

γt+1 = γt

6: else
7: Find the minimal α̂ ∈ {0, 1, 2, 4, . . .} such that ‖wα̂

t+1 −wt‖ ≤ K , where

wα
t+1 = arg min

w∈Rn
Ft(w, α)

8: Set wt+1 = wα̂
t+1, αt+1 = α̂ and

γt+1 =
F (wα̂

t+1)

T
− Ft(w

0
t+1)

T (1− ε) (11)

9: end if
10: until F (wt+1)− Ft(w0

t+1) ≤ ε · |F (wt+1)|

value decreases by more than γt (line 4), the solution is accepted and the setting of the
penalty αt as well as the minimal improvement threshold γt are unchanged (line 5). If the
improvement is not sufficient the prox-term penalty is tuned to guarantee that the distance
between the previous and the new iterate is not higher than the constant K (line 7). At
the same time, the minimal improvement threshold is set to a new value γt+1 according
to formula (11). It is easy to show that if the improvement in all following iterations is
not less than γt+1 (i.e. condition on line 4 holds) then the stopping condition is satisfied
after at most T iterations. In turn the prox-center penalty is readjusted not later than
after T iterations. To sum up, the Prox-BMRM guarantees in each iteration that either
the primal objective is sufficiently improved or the new iterate is not overly far from the
previous one. We will experimentally show that this strategy avoids the zig-zag behavior
and it significantly decreases the number of iterations needed to converge to the ε-optimal
solution.
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Compared to the original BMRM, the proposed Prox-BMRM introduces an additional
overhead because the solution of the reduced problem can be required several times in a
single iteration. The overhead is not dramatic, moreover, it can be significantly reduced
by using several tricks. First, in the search for α on line 7 one should use the fact that
‖wα1

t+1−wt‖ > ‖wα2
t+1−wt‖ holds for any α1 < α2 which follows from the strict-convexity

of the quadratic prox-term. In addition, the search can start from the previous value
αt instead of always going sequentially form α = 0. Second, one can significantly speed
up solving the reduced problem by using the worm start strategy. Third, the stopping
condition on line 10, which also requires solving the reduced problem with α = 0 to get
lower bound on the optimum, does not need to be evaluated in every iteration. It turns out
to be sufficient to evaluate the stopping condition only when the α readjusting takes place
as it requires solving the reduced problem anyway. With these tricks implemented, we
observed that the reduced problem is solved on average 2-3 times instead of 1 times which
constitutes a neglectable increase of computation time. This increase is amply compensated
by the reduced number of iterations.

Besides the precision parameter ε, the Prox-BMRM algorithm requires setting of the
initial solution w1 and two constants: K which is the maximal distance between two
consecutive iterates and T which is the maximal number of iterations without readjusting
the prox-center penalty α. An efficient and simple way to find a non-trivial initial solution,
i.e. ‖w1‖ > 0, is discussed in the next section. We found that setting T = 100 and
K = 0.01‖w1‖ worked consistently well in all our experiments.

Algorithm 2 reduces the solution of (1) to a sequence of problems (10). The problem (10)
is equivalent to the following quadratic program (QP):

wt+1 = arg min
w∈Rn

[
λ

2
‖w‖2 + αt‖w −wt‖2 + ξ

]
(12)

s.t. ξ ≥ a>i w + bi, i = 0, . . . , t− 1

where ai is a sub-gradient R′(w) and bi = R(wi)− 〈wi, R
′(wi)〉. In practice, the number

of cutting planes t required by Algorithm 2 to converge is usually much lower than the
dimension n of the parameter vector w ∈ Rn. Thus one can benefit from solving the
reduced problem (9) in its dual formulation. Let A = [a0, . . . ,at−1] ∈ Rn×t be a matrix,
whose columns are sub-gradients and let b = [b0, . . . , bt−1] ∈ Rt be a column vector. Then
using the Wolfe duality, one can derive the Lagrange dual of (12) which reads as follows

βt ∈ arg max
β∈Rt

[
− 1

2(λ+ 2αt)
β>A>Aβ + β>

(
b+

2αtA
>wt

λ+ 2αt

)
+
αtλw

>
t wt

λ+ 2αt

]
(13)

s.t. ‖β‖1 = 1, β ≥ 0 .

The primal solution can be obtained analytically by wt+1 = 2αtwt−Aβ
λ+2αt

. Note that since the
last term in (13) does not depend on β, we are solving the quadratic program of exactly
the same form as in standard BMRM [Teo et al., 2010].
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3.2 Initialization by on-line methods and warm start

The on-line algorithms show fast convergence in the early optimization stages but then
it takes long time before they get to a close vicinity of the optimal solution. It is a
straightforward idea to refine the imprecise solution obtained by an on-line algorithm by
a precise method or to reuse solution that was found previously, e.g. in validation stage.
To this end we use the following two strategies.

The first strategy is to use on-line algorithm. Particularly, we use a variant of the
Stochastic Gradient Descent algorithm [Bordes et al., 2009]. We run 10 passes of the SGD
algorithm and keep track of the minimal value of the primal objective F (w). Finally,
we take the SGD solution with the minimal objective value as the initial point of the
Prox-BMRM algorithm.

The second strategy is to reuse previously obtained solutions. For example during
validation stage, one typically needs to train the classifier with several values of regulariza-
tion constant λ ∈ Λ, where Λ = {λ1, λ2, . . . , λn}. Since the BMRM converges quickly with
higher values of λ it is straightforward to exploit the ordering on Λ, e.g. λ1 > λ2 > · · · > λn.
With such constellation it is obvious that one can use the solution vector wλi obtained
for λi as an initial solution for computing wλi+1 with λi+1. Experimental evaluation shows
that this strategy leads to even bigger speedups (up to approximately 10 times faster
convergence), especially for lower values of regularization constant λ.

3.3 P-BMRM

As the third improvement, we propose to uses P > 1 cutting plane models to approximate
the risk R(w) instead of the single cutting plane model as in the original. We call the
proposed method P-BMRM.

We assume the risk to be decomposed into P > 1 terms

R(w) =
P∑
p=1

R(w, p)

For example, one can evenly split the m training examples into P groups and then we set

R(w, p) =
∑
i∈Ip

ri(w) ,

where I1, . . . , IP are mutually disjoint sets and I1 ∩ · · · ∩ IP = {1, . . . ,m}.
We propose to approximate each of the P partial risks R(w, p) by its own cutting plane

model
Rt(w, p) = max

i=1,...,t
[R(wi, p) + 〈R′(wi, p),w −wi〉]

where R′(wi, p) denotes a sub-gradient of R(wi, p) at wi. The cutting plane model of the
risk R(w) is then

Rt(w) =
P∑
p=1

Rt(w, p). (14)

9



R(w , 1)

R(w , 2)
R(w , 3)

R(w ) = R(w , 1) +R(w , 2) +R(w , 3)

Figure 2: The figure illustrates how is the risk R(w) (upper figure) decomposed into a sum
of functions R(w, p), p = 1, . . . , P , (lower figure) each of which is approximated by its own
cutting planes (dashed lines).

We denote (14) as P-cutting plane model. Note that for P = 1, the P-cutting plane
model (14) reduces to the original model (6). It is immediately seen that the P-cutting
plane model (14) preserves the crucial properties of the original model, i.e., Rt(w) is a
lower bound of R(w) which is tight at the points wi, i = 1, . . . , t. Figure 2 illustrates the
idea.

The P-BMRM is obtained just by substituting the P-cutting plane model for the original
cutting plane model (6) in the definition of the reduced problem (9).

The updating of the P-cutting plane model has the same computational complexity
as in the original BMRM. The higher accuracy is compensated by increase in memory
requirements due to storing P times more cutting planes. The associated reduced problem
can be expressed as the equivalent QP. In its dual form the QP has P constraints instead
of a single one as in the original BMRM. However, the constraints are decoupled which
allows using of sequential minimal solvers. The QP task is very similar to the one used in
standard BMRM.

4 Experiments

In this section we experimentally evaluate the proposed improvements of the BMRM. We
use three different instances of the SO-SVM learning as benchmarks. In particular, we
consider the problem of learning the OCR classifier, the facial landmark detector and
segmentation of car number plate images. We used the standard MNIST database for the
OCR problem while the data for the last two problems originate from real life applications.
We first briefly describe the benchmarks and then we present the evaluation.
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Table 1: The table shows validation risks for all benchmarks as function of λ. The test
risk is computed for the classifier with the minimal validation risk. For the OCR the risk
is the classification error. For the face landmark detection the risk is the mean deviation
of the estimated landmark positions where 100 corresponds to the distance between the
center of eyes and the mouth. For the license plates the risk corresponds to the percentage
of incorrectly segmented columns of the input image.

Benchmark 1: OCR — MNIST

λ = 103 λ = 102 λ = 101 λ = 100 tst

val 0.0864 0.0740 0.0708 0.0720 0.0704

Benchmark 2: Facial landmark detection

λ = 104 λ = 103 λ = 102 λ = 101 tst

val 11.03 6.36 5.46 5.80 5.46

Benchmark 3: License plate segmentation

λ = 105 λ = 104 λ = 103 λ = 102 tst

val 22.22 13.16 7.02 4.61 4.21

4.1 OCR

As the first benchmark we consider the optical character recognition (OCR) problem. We
use the MNIST database2 composed of labeled examples of handwritten numerals. The
classifier input x is a gray scale image 28 × 28 pixels large. The classifier output y is a
digit name, i.e. y ∈ Y = {0, . . . , 9}. We model each class by a single template image wy ∈
R28×28, y ∈ Y . As the scoring function of the classifier (2) we use 〈w,Ψ(x, y)〉 = 〈x,wy〉.
The parameter vector w ∈ Rn has dimension n = 7, 840 resulting from a column-wise
concatenation of 10 templates wy, y ∈ Y , represented themselves as columns vectors. We
use the standard classification 0/1-loss defined to be `(y, y′) = 1 for y 6= y′ and `(y, y′) = 0
otherwise. With these definitions the classifier (2) becomes an instance of a linear multi-
class SVM classifier.

The parameter vector has n = 7, 840 components. We train on all m = 60, 000 training
examples and we use the test part of the database for validation and testing (5, 000 examples
each).

4.2 Facial landmark detection

As the second benchmark we consider learning of a face landmark detector. We follow the
approach of [Uřičář et al., 2012] where the landmark detection is posed as an instance of
the SO-SVM classifier (2). The classifier input x ∈ X is an image 40×40 pixels large which
contains a face. The classifier outputs y = (y1, . . . , yL) ∈ Y = N 2×L which is a set of 2D
coordinates of L landmarks like corners of the eyes, corners of the mouth, tip of the nose and
the center of the face. The scoring function 〈w,Ψ(x, y)〉 of the classifier (2) is composed of

2http://yann.lecun.com/exdb/mnist/
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the appearance model and the deformation cost. The appearance model evaluates a match
between the input image x and the landmark templates put at positions y. The deformation
cost evaluates likeliness of the particular landmark configuration y and this cost decomposes
to a set of pair wise terms defined over edges of an acyclic graph. The map Ψ(x, y) is
as a column-wise concatenation of local feature descriptors of individual landmarks and
parameters of the deformation cost. We use a variant of Local Binary Patterns as the
feature descriptor. Evaluation of the classifier (2) leads to solving an instance of the
dynamic programing. The loss function measures the mean deviation between the ground
truth landmark positions y and their estimate y′, i.e. `(y, y′) = κ(y) 1

L

∑L−1
j=0 ‖yj − y′j‖,

where κ(s) is a normalization constant ensuring that the loss is scale invariant.
We trained the landmark detector from a set of m = 7, 000 images with manually

annotated landmark positions. In our experiment the number of landmarks was L = 8 and
the number of parameters w ∈ Rn to learn was n = 232, 476.

4.3 Number plate segmentation

As the third benchmark we consider segmentation of car number plate images. The clas-
sifier input x ∈ X is an image H × W pixels large which contains a number plate, i.e.
a line of text composed of a known set of characters. The columns of the input image
x are features extracted from intensity values of a corresponding column of a raw image
taken by a camera. The classifier outputs image segmentation y = (s1, . . . , sL) ∈ Y where
s = (a, k), a ∈ A is a character code and k ∈ {1, . . . ,W} is a character position. An
admissible segmentation y ∈ Y must satisfy

k(s1) = 1 ,W = k(sL) + ω(sL)− 1 ,
k(si) = k(si−1) + ω(si−1) ,∀i > 1 ,

}
(15)

where ω : A → N are widths of the characters. The constraints (15) guarantee that the
segmentation y covers the whole image x by a sequence of characters a1, . . . , aL which do
not overlap. Each character a ∈ A is modeled by a template image νa ∈ RH×ω(a). The
parameter vector w ∈ Rn to be learned is a column-wise concatenation of all templates
νa, a ∈ A. The scoring function of the classifier (2) computes the correlation between
the image x and the character templates placed one by one according to the segmentation
y ∈ Y , i.e. 〈Ψ(x, y),w〉 equals to

L(y)∑
i=1

ω(a(si))∑
j=1

〈col(x, j + k(si)− 1), col(wa(si), j)〉 ,

where col(I, i) denotes i-th column of the image I. The loss function measures the number
of incorrectly segmented columns w.r.t. to the annotated segmentation. Evaluation of the
classifier (2), as well as evaluation of ri(w) and its sub-gradient ri(w), leads to an instance
of the dynamic programming.

We used m = 6, 788 annotated images for training and 1, 692 images for computing
validation and test error. The parameter vector w had n = 4, 059 components.
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4.4 Results

We compare the original BMRM with the proposed improved variants. We use Prox-
BMRM to denote Algorithm 2 using the single cutting plane model to approximate the
risk. The P-BMRM denotes the standard BMRM using P cutting plane models for risk
approximation. Finally, the Prox-P-BMRM denotes the algorithm combining both im-
provements together.

In all experiments, we set the precision parameter to ε = 0.01. In experiments we
have used both pure Matlab and C++ implementation of tested methods. To this end C++

implementation (from Shogun optimization toolbox [Sonnenburg et al., 2010]) was used
only on the OCR-MNIST problem. All tested method use the same code for computing
the risk value and its sub-gradient. The reduced problems are optimized by the same QP
solver (LibQP [Franc and Hlaváč, 2006]).

We have experimented with two different strategies providing initial solution to the
Prox-BMRM. In Benchmark 1 the strategy of reusing the previous solutions obtained in
validation of regularization constant was used. In Benchmarks 2 and 3 the initial solution
was obtained in a pre-training with 10 iterations of on-line learning algorithm SGD.

We learned the SO-SVM classifier for a range of regularization parameters λ on the
training set and for each classifier we computed the validation risk on the validation set.
Then the test examples were used to compute the test risk for the classifier with the
minimal validation risk. In Table 1 we report the obtained validation and test risks for all
benchmarks. Due the low precision parameter ε = 0.01 the risk values are the same for all
algorithms. The risk values differed on fourth place after the decimal point.

All tested algorithms provide the same precise classifier but they require different time
to converge. We measured the time to convergence in terms of i) the number of iterations
and ii) the wall clock time. The obtained results are summarized in Table 2. We see that
the Prox-BMRM significantly decreases the number of iterations as well as the wall clock
time compared to the original BMRM. As expected the speedup is higher for lower λ’s.
The speedup is further improved after increasing the number of CP models to P = 16 .
The improvement is best seen on the license plate benchmark where the parameters have
relatively low dimension (n = 4, 059). Using more CP models is less beneficial on the
face landmark problem where the data are high dimensional (n = 232, 476) and sparse.
The maximal speedup 9.7 was obtained on the OCR-MNIST problem for the lowest λ and
Prox-P=16-BMRM algorithm.

To show the effect of the individual improvements we plot convergence curves for the
OCR-MNIST benchmark. Figure 3(a) shows the convergence curves for the original BMRM
and the P-BMRM with increasing value of P . It is seen that the number of iterations
steadily decreases with growing number of the CP models. The optimal P depends on
the memory available and the overhead introduced by solving more complex reduced prob-
lem. We found value P = 16 to produce the best results in our experiments. Figure 3(b)
compares convergence curves for the BMRM and the Prox-BMRM. As expected the con-
vergence curve of the Prox-BMRM behaves much more reasonably compared to the BMRM
whose curves strongly fluctuates.
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5 Conclusions

In this paper we have analyzed a source of inefficiency of the BMRM and propose three
improvements which significantly speedup its convergence. The first improvement brings
the BMRM back to the classical bundle methods from which it has been derived. In
particular, we prose to use a quadratic prox-center to compensate imprecision of the cutting
plane model. In addition, the prox-center enables to start from a non-trivial initial solution
which can be found by an imprecise on-line algorithm like the SGD, or the solution found
with previous value of regularization constant λ can be readily used. Finally, we propose
to use multiple cutting plane model which allows a finer approximation the of risk term.
We evaluate the proposed improvements on one standard benchmark and two real-life
applications of the SO-SVM classifiers. The experiments show that the BMRM using the
proposed improvements converges significantly faster achieving speedup up to a factor of
9.7 compared to the original BMRM.
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λ = 1 λ = 10

λ = 100 λ = 1000

(a)

λ = 1 λ = 10

λ = 100 λ = 1000

(b)

Figure 3: Convergence curves for learning the SO-SVM classifier on the OCR-MNIST
benchmark with different values of λ. Figure (a) shows curves for the original BMRM and
the P-BMRM with different values of P. Figure (b) shows curves for the original BMRM
and the Prox-BMRM algorithm. The x-axis is the iteration counter while the y-axis shows
the relative distance of the current solution to the optimal value.
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