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Abstract. Many machine learning algorithms lead
to solving a convex regularized risk minimization
problem. Despite its convexity the problem is often
very demanding in practice due to a high number
of variables or a complex objective function. The
Bundle Method for Risk Minimization (BMRM) is a
recently proposed method for minimizing a generic
regularized risk. Unlike the approximative methods,
the BMRM algorithm comes with convergence guar-
antees but it is often too slow in practice. We propose
a modified variant of the BMRM algorithm which de-
composes the objective function into several parts
and approximates each part by a separate cutting
plane model instead of a single cutting plane model
used in the original BMRM. The finer approximation
of the objective function can significantly decrease
the number of iterations at the expense of higher
memory requirements. A preliminary experimental
comparison shows promising results.

1. Introduction

Learning predictors from data is a standard ma-
chine learning task. A large number of such learn-
ing tasks are translated into a convex regularized risk
minimization problem

w∗ = arg min
w∈Rn

F (w) :=
λ

2
‖w‖2 +R(w) . (1)

The objective F : Rn → R, called regularized risk,
is a sum of the quadratic regularization term 1 and a
convex empirical riskR : Rn → R. The scalar λ > 0
is pre-defined regularization constant and w ∈ Rn
is a parameters vector to be learned. The quadratic

1We assume the most frequently used quadratic regularizer
for simplicity but the proposed method can be used for any con-
vex regularizer, e.g. L1-norm.

regularization terms serves as a mean to constraint
the space of solutions in order to improve generaliza-
tion. The empirical riskR evaluates a match between
the parameters w and given set of training examples.
The empirical risk R is most often defined as a sum
of loss functions evaluated for all training examples.

A list of learning algorithms which are in their
core solvers of (1) is long, e.g. SVM classifi-
cation and regression, logistic regression, maximal
margin structured output classification, SVM for
multi-variate performance measure, novelty detec-
tion, learning of Gaussian processes to name the
most popular.

Using off-the-shelf solvers to tackle practical in-
stances of the minimization problem (1) is not fea-
sible. The difficulty stems from the risk term R
which is often complex non-differentiable function
whose evaluation is expensive. A huge afford has
been put to development of specialized algorithms
tailored to particular instances of (1). Recently a
generic solver, named Bundle Method for Risk Min-
imization (BMRM), has been proposed in [3]. The
BMRM algorithm replaces the risk R by its cutting
plane approximation which is build in an iterative
fashion. The BMRM algorithm is highly modular
and was proved to converge in O(1ε ) to an ε-optimal
solution [3].

In this paper, we propose a modified variant of
the BMRM, called P-BMRM, which uses P > 1
cutting plane models to approximate the risk R in-
stead of a single one as the original BMRM. Higher
number of cutting plane models allows to obtained
finer approximation of the risk which in turn can
decrease the number of iterations. Importantly, up-
dating P cutting plane models, which needs to be
done in each iteration, has exactly the same compu-
tational complexity as updating a single cutting plane
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model of the original BMRM. On the other hand, the
P-BMRM requires P times more memory for stor-
ing the cutting planes as compared to the original
BMRM. The P-BMRM algorithm can be efficiently
parallelized by computing and storing each of the P
cutting plane models on a separate computer.

We experimentally evaluate the P-BMRM on two
maximal margin classifier learning problems using
real-life data. We show that P-BMRM algorithm sig-
nificantly reduces the number of iterations if com-
pared to the standard BMRM algorithm 2.

The paper is organized as follows. Section 2 gives
an overview of the original BMRM. Section 3 pro-
vides a brief description of the online SGD algo-
rithm. The proposed P-BMRM algorithm is given
in Section 4. Section 5 reports empirical results and
Section 6 concludes the paper.

2. Bundle Method for Regularized Risk Min-
imization

BMRM [3] is a generic optimization method
for solving the regularized risk minimization prob-
lem (1) What makes the optimization difficult is
the risk R(w) being the part of the objective of
the problem (1). The risk R(w) is typically non-
differentiable function whose evaluation is expen-
sive. The core idea behind the BMRM is to replace
the complex risk R(w) by its simpler cutting plane
model Rt(w). The cutting plane model

Rt(w) = max
i=0,...,t−1

[
R(wi) + 〈R′(wi),w −wi〉

]
(2)

is defined as a point wise maximum over t linear
under-estimators, so called cutting planes. R′(wi) ∈
∂wiR(wi) is an arbitrary sub-gradient of R at point
wi. The i-th cutting planeR(wi)+〈R′(wi),w−wi〉
is a linear lower bound of the risk function R(w)
which is tight at the point wi. The cutting plane ap-
proximation is illustrated in Figure 1. With this ap-
proximation, one can replace the original problem (1)
by a simpler reduced problem

wt = arg min
w∈Rn

Ft(w) :=
λ

2
‖w‖2 +Rt(w) . (3)

The reduce problem objective Ft(w) is obtained
from the original problem objective F (w) by replac-
ing the risk R(w) with its cutting plane approxima-
tion Rt(w) while the regularizer is kept unchanged.

2Note, that the StructSVM, which is the state-of-the-art
solver for structured output SVM solver, is just a special instance
of the BMRM.

w0w1

R(w)

R2(w)

w2

R(w1) + 〈R′(w1), w − w1〉R(w0) + 〈R′(w0), w − w0〉

Figure 1. A convex function R(w) can be approximated
by a collection of linear under-estimators (cutting planes).

Algorithm 1 BMRM
Require: ε, a function pointer R(w), a function

pointer R′(w)
1: Initialization: w ← 0, t← 0
2: repeat
3: t← t+ 1
4: Compute R(wt), R

′(wt)
5: Update Rt(wt)
6: Solve wt ← arg minFt(w)
7: εt ← F (wt)− Ft(wt)
8: until εt ≤ ε

Algorithm 1 shows a pseudo-code of the standard
BMRM. It can be proved [3], that for arbitrary ε > 0,
the BMRM returns a solution vector wt satisfying
F (wt) ≤ F (w∗) + ε after at most O(1ε ) iterations.

The BMRM algorithm typically requires few hun-
dred iterations to converge. The evaluation of the risk
R(w) and its sub-gradient R′(w) required in step
4 is very often the most expensive part of the algo-
rithm. If the risk R(w) is additively decomposable
(which is the case in most situations) the step 4 can be
efficiently parallelized. The parallel BMRM [3] dis-
tributes the computations over P threads (or comput-
ers) but the number of iterations remains the same.
In this paper we propose a modified BMRM algo-
rithm which can be not only efficiently parallelized
but which also decreases the number of iterations.

3. Stochastic Gradient Descent

In this section we describe the Stochastic Gradi-
ent Descent (SGD) algorithm which is a popular ap-
proximate solver of the problem (1). We use the
SGD algorithm as a competing method for the pro-
posed solvers. The SGD is a simple on-line algo-
rithm which often reaches sufficiently good solution
if its learning rate (i.e. the free parameter of the
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SGD) is chosen properly. Unlike the precise meth-
ods, the SGD does not provide any certificate of op-
timality for the computed solution and hence it lacks
a good stopping condition.

The SGD assumes that the risk R is additively de-
composable, i.e. R(w) =

∑m
i=1 ri(w). For exam-

ple, ri(w) can be a loss for a predictor with parame-
ters w incurred on i-th example coming from a train-
ing set {(x1, y1), . . . , (xm, ym)}. Starting from an
initial guess w0 ∈ Rn, the SGD applies the follow-
ing update rule

wt+1 = wt − αtgt , where (4)

gt = λwt + r′t(wt) , (5)

t is the iteration counter, αt is a prescribed learn-
ing rate and r′t(wt) is a sub-gradient of rt(w) at
point wt. During one pass through the training ex-
amples the SGD update rule (4) is applied m times
which is approximately as expensive as one iteration
of the BMRM algorithm. In practice, a fixed num-
ber of passes through the training examples is used
as a “stopping condition” of the SGD algorithm. The
convergence speed crucially depends on setting the
learning rate αt. Following [1], we set the learning
rate to

αt =
λ−1

t0 + t
(6)

where t0 is a positive constant its value is tuned on a
small portion (e.g. 10%) of training examples.

4. Proposed P-BMRM

In this section we propose a modified BMRM
which uses P > 1 cutting plane models to approxi-
mate the riskR(w) instead of the single cutting plane
model as in the standard BMRM. We call the pro-
posed method P-BMRM.

We assume that the risk can be decomposed into
P > 1 terms

R(w) =
P∑
p=1

R(w, p). (7)

We propose to approximate each of the P terms by
its own cutting plane model

Rt(w, p) = max
i=0,...,t−1

[〈ai,p,w〉+ bi,p] , ∀p, (8)

where

ai,p = R′(wi, p), (9)

bi,p = R(wi, p)− 〈wi, R
′(wi, p)〉. (10)

R(w , 1)

R(w , 2)
R(w , 3)

R(w ) = R(w , 1) +R(w , 2) +R(w , 3)

Figure 2. The figure illustrates how is the risk R(w) (up-
per figure) decomposed into a sum of functions R(w, p),
p = 1, . . . , P , (lower figure) each of which is approxi-
mated by its own cutting planes (dashed lines).

Algorithm 2 P-BMRM
Require: ε, routines computing R(w, p) and

R′(w, p)
1: Initialization: w ← 0, t← 0
2: repeat
3: t← t+ 1
4: Compute R(wt, p), R

′(wt, p), p = 1, . . . , P
5: Update Rt(wt, p), p = 1, . . . , P
6: Solve wt ← arg minFt(w)
7: εt ← F (wt)− Ft(wt)
8: until εt ≤ ε

The function R(w, p) represents the value of p-th
term evaluated at point w and R′(w, p) denotes a
sub-gradient ofR(w, p). Figure 2 illustrates the idea.

The cutting plane model of the risk R(w) is then

Rt(w) =

P∑
p=1

Rt(w, p). (11)

We denote (11) as P-cutting plane model. Note that
for P = 1, the P-cutting plane model (11) reduces
to the original model (2). It is seen that the P-cutting
plane model (11) preserves the crucial properties of
the original model, i.e., Rt(w) is a lower bound of
R(w) which is tight at the points wi, i = 0, . . . , t−1.

Now, we can derive the P-BMRM algorithm just
by substituting the P-cutting plane model for the
original cutting plane model (2) in the definition
of the reduced problem (3). Algorithm 2 shows a
pseudo code of the proposed P-BMRM.

The reduced problem (3) of the P-BMRM al-
gorithm required in step 6 can be equivalently ex-
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pressed as a convex quadratic program (QP)

wt = arg min
w∈RN

λ
2
‖w‖2 +

P∑
p=1

ξp

 (12)

subject to

〈ai,p,w〉+bi,p ≤ ξp, i = 0, . . . , t−1, p = 1, . . . , P.

If the dimensionality n of the parameter vector w ∈
Rn is large it is better to solve (12) in its dual form

αt = arg max
α∈Rt

[ t−1∑
i=0

P∑
p=1

αi,pbi,p

− 1

2λ
‖
t−1∑
i=0

P∑
p=1

αi,pai,p‖2
]

(13)

subject to

t−1∑
i=0

αi,p = 1, p = 1, . . . , P (14)

αi,p ≥ 0, i = 0, . . . , t− 1, ∀p (15)

The transformation of the dual solution to the primal
one is given by the following formula

w∗t = − 1

λ

t−1∑
i=0

P∑
p=1

αi,pai,p. (16)

The number of the dual variables equals to P ·twhich
is typically small as the algorithm converges after a
few iterations.

Let us briefly compare the standard BMRM and
the proposed P-BMRM algorithm. The standard
BMRM adds a single linear term to the cutting plane
model in each iteration, requiring one pass over
the whole training set. In contrast the proposed P-
BMRM algorithm adds a single linear term to each
P partial cutting plane models still requiring only
one pass over the training set and the same num-
ber of computations. As a result, the P-BMRM al-
gorithm produces much finer approximation than the
standard BMRM algorithm which leads to less iter-
ations, however, at the price of requiring P times
more memory. The proposed P-BMRM requires
O(T · P · n) memory where T is the overall num-
ber of iterations and n is the dimensionality of w.

Similarly to the original BMRM, the P-BMRM re-
mains highly modular. In order to be applied to a
particular instance of (1) it only requires two sub-
routines: one for evaluation of the risk R(w, p) and
one computing its sub-gradient R′(w, p).

5. Experiments

In this section, we compare the proposed P-
BMRM algorithm to the standard BMRM. We also
compare to the SGD algorithm being a popular rep-
resentative of the approximative methods. As bench-
mark problems we use two different instances of the
maximum margin classifier learning which both lead
to solving (1). In particular, we consider problem
learning a face landmark detector and an optical char-
acter recognition classifier described in section 5.2
and 5.3, respectively.

5.1. Maximal margin classification

Assume we are given a set of training examples
{(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m assumed to
be i.i.d. from some unknown p.d.f. p(x, y). The goal
is to learn a classifier h : X → Y which minimizes
the expected risk Ep(x,y)[`(y, h(x))] for some given
loss function ` : Y × Y → R.

Let us assume that the optimal classifier can be
approximated well by a linear classifier

ŷ = h(x;w) = arg max
y∈Y
〈w,Ψ(x, y)〉 (17)

where w ∈ Rn is a parameter vector and Ψ: X ×
Y → Rn is a known map from the input-output space
onto the parameter space. The maximum margin ap-
proach to learning the parameters w of the classi-
fier (17) from the training examples leads to the risk
minimization problem (1) with the risk set to

R(w) =
m∑
i=1

ri(w) , (18)

where

ri(w) = max
y∈Y

[
`(yi, y)+〈w,Ψ(xi, y)−Ψ(xi, yi)〉

]
.

(19)
It can be shown [4] that for a broad class of loss
functions ri(w) is a convex upper bound of the loss
`(yi, h(xi;w)). In particular, the statement holds if
`(y, y′) ≥ 0, ∀y, y′ and `(y, y′) = 0 iff y = y′.

This general formulation has many incarnations
which differ in the definition of the input space X ,
the output space Y , the loss function `(y, y′) and the
map Ψ. In order to use BMRM algorithm (as well
as P-BMRM and SGD) for learning of the particular
instances of the classifier (17) one needs to evaluate
ri(w) and its sub-gradient r′i(w). By Danskin’s the-
orem, the sub-gradient of ri(w) reads

r′i(w) = Ψ(xi, ŷi)−Ψ(xi, yi) (20)
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where

ŷi = arg max
y∈Y

[
`(yi, y) +

〈
w,Ψ(xi, y)

〉]
. (21)

In the next sections we described two particular
instances of the maximum margin classifier we use
as the benchmarks to evaluate the proposed solver.

5.2. Benchmark 1: Facial landmark detection

As the first benchmark problem we consider learn-
ing of a face landmark detector from examples. We
follow the approach of [5] where the landmark detec-
tion is posed as an instance of the structured output
SVM classification, i.e. the detector is an instance of
the linear classifier (17). In this case the input x ∈ X
is an image 40×40 pixels which contains a face. The
classifier outputs y = (y1, . . . , yL) ∈ Y = N 2×L

which is a set of 2D coordinates of L landmarks like
corners of the eyes, corners of the mouth, tip of the
nose and the center of the face. The scoring func-
tion 〈w,Ψ(x, y)〉 of the classifier (17) is composed
of the appearance model and the deformation cost.
The appearance model evaluates a match between the
input image x and the landmark templates put at po-
sitions y. The deformation cost evaluates likeliness
of the particular landmark configuration y and this
cost decomposes to a set of pair wise terms defined
over edges of an acyclic graph. The map Ψ(x, y)
is as a column-wise concatenation of local feature
descriptors of individual landmarks and parameters
of the deformation cost. Evaluation of the classifier
(17) leads to solving an instance of the dynamic pro-
graming. As the loss function we use the normalized
mean deviation between the ground truth landmark
positions y and the estimated positions y′ defined as

`(y, y′) = κ(y)
1

L

L−1∑
j=0

‖yj − y′j‖ , (22)

where κ(s) is a normalization constant ensuring that
the loss ` is scale invariant.

We trained the landmark detector from a set of
m = 7, 000 images with manually annotated land-
mark positions. In our experiment the number of
landmarks was L = 8 and the number of parameters
w ∈ Rn to learn was n = 232, 476.

5.3. Benchmark 2: Optical character recognition

As the second benchmark we consider the optical
character recognition (OCR) problem. We use the

standard MNIST database [2] composed of labeled
examples of handwritten numerals. In this case, the
input x is gray scale image 28 × 28 pixels. The out-
put y is the digit name, i.e. y ∈ Y = {0, . . . , 9}.
We model each class by a single template image
wy ∈ R28×28, y ∈ Y . As the scoring function of
the classifier (17) we use

〈w,Ψ(x, y)〉 = 〈x,wy〉 . (23)

The parameter vector w ∈ Rn has dimension n =
7, 840 resulting from a column-wise concatenation of
10 templates wy, y ∈ Y , represented themselves as
columns vectors. We use the standard classification
0/1-loss defined to be `(y, y′) = 1 for y 6= y′ and
`(y, y′) = 0 otherwise. With these definitions the
classifier (17) becomes an instance of a linear multi-
class SVM classifier.

The linear classifier is certainly not the best model
for handwritten OCR. We use this model because the
risk minimization leads to a relatively low dimen-
sional optimization problem (n = 7, 840) allowing
us to test the proposed algorithm with a high P even
on a computer with small memory. We train on all
m = 60, 000 training examples and we use the test
part of the database for validation and testing.

5.4. Results

We compare the original BMRM, the proposed P-
BMRM and the SGD algorithms in terms of the num-
ber of iterations needed to achieve the ε-precise so-
lution of the problem (1). There are two reasons jus-
tifying the use of the number of iterations instead of
the wall clock time. First, the per-iteration computa-
tional complexity of all the tested algorithms is simi-
lar (in the case of the SGD algorithm we consider one
pass through the example as one iteration) if the com-
putations are dominated by evaluation of the risk and
its sub-gradient. This is often the case in the struc-
tured output classification or in learning from a huge
number of examples. Second, the number of itera-
tions does not depend on the used computer and the
particular implementation of the algorithms.

We run the BMRM and the P-BMRM algorithm
on the two instances of the problem (1) for different
values of the regularization constants λ. This simu-
lates the real situation when the optimal λ is tuned in
the model selection stage.

We stop the algorithms when the relative distance
to the optimal solution drops below 0.01, i.e. the
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stopping condition reads

F (wt)− Ft(wt)

F (wt)
≤ 0.01 . (24)

The stopping condition (24) cannot be used in the
SGD algorithm because it does not proved the lower
bound on the optimal value. To allow fair compari-
son, we first ran the BMRM algorithm and then we
used the value of the objective function in the last
iteration as a stopping criterion for SGD. I.e. we
iterate SGD until the value of the objective func-
tion F (w) gets below to the value returned from the
BMRM algorithm.

Tables 1 and 2 show the number of iterations re-
quired to achieve the ε-optimal solution for the two
benchmark problems. Each row shows results for a
particular algorithm. The first row, P=1 BMRM, cor-
responds to the standard BRMR algorithm which is
our baseline. The columns show the required num-
ber of iterations and the speedup of the parallelized
P-BMRM algorithm for different values of λ. The
parallelized P-BMRM means that each of the P cut-
ting plane models is computed on a separate com-
puter. Note that the speedup of the standard paral-
lel BMRM algorithm [3], which evenly decomposes
computation of the risk and the sub-gradient on P
computers, equals to P . I.e. the speedup of the paral-
lel P-BMRM algorithm is higher than the speedup of
the standard parallel BMRM due to the lower num-
ber of iterations. The last row of the table 1 shows the
number of iterations and the speedup obtained for the
SGD algorithm. The symbol “–” means that the SGD
algorithm has not converged after two days.

The results show two pleasant observations. First,
the number of iterations decreases as the number of
cutting plane models P grows. This is an expected
result because higher P implies finer approximation
of the objective. Second, the P-BMRM algorithm is
more effective for low values of λ, i.e. for the most
time consuming instances of the problem (1). For
example, the P=64-BMRM requires 11 times less it-
erations compared to the standard BMRM when used
to learn the OCR classifier with λ = 10. Using the
parallel P-BMRM implies speedup of factor of 700.

Figures 3 and 5 show the convergence curves of
the tested algorithms for different values of λ. The x-
axis corresponds to the number of iterations and the
y-axis is the relative distance to the optimal solution.
The effect of using P-BMRM with higher number of
P is clearly demonstrated.

In Figure 4(a) we also show value of the objective
function F (w) and the value of the validation risk for
the BMRM algorithm and the SGD algorithm. The
graphs correspond to the landmark detection prob-
lem and the optimal setting of λ which was 100. It is
seen that the SGD reaches relatively good precision
of objective function after a few iterations but then it
stalls unlike the BMRM which reaches the ε-precise
solution. It is seen that more precise solution of the
objective F (w) is translated to lower validation risk.
In particular, the precise BMRM algorithm outper-
formed the approximative SGD by significant 1.5%
in terms of the detection accuracy.

6. Conclusions

We have proposed an efficient algorithm, called
P-BMRM, for solving the regularized risk minimiza-
tion problem (1). The P-BMRM improves the stan-
dard BMRM algorithm by using P > 1 cutting plane
models to approximate the risk R instead of a single
cutting plane model as in the original BMRM. Higher
number of cutting plane models allows to obtain finer
approximation of the risk which in turn decreases the
number of iterations needed to achieve the ε-optimal
solution. Importantly, updating P cutting plane mod-
els, which needs to be done in each iteration, has
exactly the same computational complexity as up-
dating a single cutting plane model of the original
BMRM. On the other hand, the P-BMRM requires P
times more memory for storing the cutting planes as
compared to the original BMRM. The P-BMRM al-
gorithm can be efficiently parallelized by computing
and storing each of the P cutting plane models on a
separate computer.

The experimental evaluation on two real-life prob-
lems show that the proposed P-BMRM algorithm
requires significantly less iterations compared to
the standard BMRM. The P-BMRM algorithm with
P=64 decrease the number of iterations by more
than an order of magnitude compared to the standard
BMRM. The speedup obtained by P-BMRM algo-
rithm is more significant for the problems with low
values of the regularization constant which are the
most time consuming ones.

Our current implementation of the P-BMRM al-
gorithm runs on a single computer only. In the future
work we will focus on an efficient implementation of
the proposed algorithm using distributed computers
as well as we will conduct more thorough compari-
son.
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Facial landmark detection
λ = 10000 λ = 1000 λ = 100 λ = 10

#iter speedup #iter speedup #iter speedup #iter speedup
P = 1 BMRM 104 1 172 1 390 1 999 1
P = 8 BMRM 88 9.5 171 8.0 350 8.9 858 9.3
P = 16 BMRM 85 19.6 144 19.1 307 20.3 733 21.8
P = 32 BMRM 75 44.4 123 44.7 276 45.2 618 51.7

SGD 1 104 1 171 — — — —
Table 1. The table shows the number of iterations needed to reach the ε-optimal solution and the speed up of the paral-
lelized version of the algorithm. Each row corresponds to different setting of the number of cutting plane models. The
last row shows results for the SGD algorithm. The symbol “—” means that the SGD has not converged.

(a) λ = 10000 (b) λ = 1000

(c) λ = 100 (d) λ = 10

Figure 3. Convergence curves of the standard BMRM (i.e.P=1-BMRM) and P-BMRM algorithm applied with different
setting of the regularization constant λ to the face landmark detection problem. The curves show the relative distance to
the optimal solution as the function of the number of iterations.
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(a) Objective function. (b) Validation risk

Figure 4. The convergence of the objective value (a) and the validation risk (b) for the BMRM and the SGD algorithm on
the face landmark detection problem using the optimal setting of the regularization λ = 100.

OCR — MNIST data
λ = 1000 λ = 100 λ = 10 λ = 1

#iter speedup #iter speedup #iter speedup #iter speedup
P = 1 BMRM 163 1 431 1 1384 1 5159 1
P = 8 BMRM 123 10.6 271 12.7 737 15.0 2132 19.4
P = 16 BMRM 98 26.6 208 33.2 512 43.3 1346 61.3
P = 32 BMRM 79 66.0 155 89.0 332 133.4 810 203.8
P = 64 BMRM 60 173.9 106 260.2 218 406.3 470 702.5

Table 2. The table shows the number of iterations needed to reach the ε-optimal solution and the speed up of the paral-
lelized version of the algorithm. Each row corresponds to different setting of the number of cutting plane models.

(a) λ = 1000 (b) λ = 100

(c) λ = 10 (d) λ = 1

Figure 5. Convergence curves of the standard BMRM (i.e. P=1-BMRM) and P-BMRM algorithm applied with different
setting of the regularization constant λ to the OCR benchmark problem. The curves show the relative distance to the
optimal solution as the function of the number of iterations.
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