Facial Landmarks Detector
Learned by the Structured Output SVM

Michal Ufi¢ar!, Vojtéch Franc!, and Viclav Hlavac!

Center for Machine Perception, Department of Cybernetics,
Faculty of Electrical Engineering, Czech Technical University in Prague,
Technickd 2, 166 27 Prague 6, Czech Republic
{uricamic, xfrancv, hlavac}@cmp.felk.cvut.cz

Keywords: Facial Landmarks Detection, Deformable Part Models, Structured Output
Classification, Structured Output SVM.

Abstract. We propose a principled approach to supervised learning of facial
landmarks detector based on the Deformable Part Models (DPM). We treat the
task of landmarks detection as an instance of the structured output classification.
To learn the parameters of the detector we use the Structured Output Support
Vector Machines algorithm. The objective function of the learning algorithm is
directly related to the performance of the detector and controlled by the user-
defined loss function, in contrast to the previous works. Our proposed detector
is real-time on a standard computer, simple to implement and easily modifiable
for detection of various set of landmarks. We evaluate the performance of our
detector on a challenging “Labeled Faces in the Wild” (LFW) database. The em-
pirical results show that our detector consistently outperforms two public domain
implementations based on the Active Appearance Models and the DPM. We are
releasing open-source code implementing our proposed detector along with the
manual annotation of seven facial landmarks for nearly all images in the LFW
database.

1 Introduction

The detection of facial landmarks like canthi nose and mouth corners (see Fig. 1) is an
essential part of face recognition systems. The accuracy of the detection significantly
influences its final performance [1,2,3]. The problem of the precise and robust detection
of facial landmarks has received a lot of attention in the past decade. We briefly review
only the approaches relevant to the method proposed in this paper.

Among the most popular are detectors based on the Active Appearance Models
(AAM) [4] which use a joint statistical model of appearance and shape. Detectors build
on AAM provide a dense set of facial features, allowing to extract whole contours of
facial parts like eyes, etc. However high resolution images are required for both training
and testing stage and the detection leads to solving a non-convex optimization problem
susceptible to local optima unless a good initial guess of the landmark positions is
available.



Fig. 1. Functionality of the facial landmark detector.

A straightforward approach to landmark detection is based on using independently
trained detectors for each facial landmark. For instance the AdaBoost based detectors
and its modifications have been frequently used [5]. If applied independently, the indi-
vidual detectors often fail to provide a robust estimate of the landmark positions. The
weakness of the local evidence can be compensated by using a prior on the geometrical
configuration of landmarks. The detection is typically carried out in two consecutive
steps. In the first step, the individual detectors are used to find a set of candidate posi-
tions for each landmark separately. In the second step, the best landmark configuration
with the highest support from the geometrical prior is selected. The landmark detectors
based on this approach were proposed for example in [6,7,8,9].

The Deformable Part Models (DPM) [10,11,12,13] go one step further by fusing
the local appearance model and the geometrical constraints into a single model. The
DPM is given by a set of parts along with a set of connections between certain pairs of
parts arranged in a deformable configuration. A natural way how to describe the DPM
is an undirected graph with vertices corresponding to the parts and edges representing
the connections between the pairs of connected parts. The DPM detector estimates all
landmark positions simultaneously by optimizing a single scoring function composed
of a local appearance model and a deformation cost. The complexity of finding the best
landmark configuration depends on the structure of underlying graph. Acyclic graph
allows efficient estimation by a variant of the Dynamic Programming.

An instance of finely tuned facial landmark detector based on the DPM has been
proposed in [14]. The very same detector was also used in several successful face recog-
nition systems described in [15] and [16]. In this case, the local appearance model is
learned by a multiple-instance variant of the AdaBoost algorithm with Haar-like fea-
tures used as the weak classifiers. The deformation cost is expressed as a mixture of
Gaussian trees whose parameters are learned from examples. This landmark detector is
publicly available and we use it for comparison with our detector. ! Importantly, learn-
ing of the local appearance model and the deformation cost is done in two independent
steps which simplifies learning, but may not be optimal in terms of detectors accuracy.

! There also exists a successful commercial solution OKAO Vision Facial Feature Extraction
API (http://www.omron.com) which is used for example in Picasa™ or Apple iPhoto™ soft-
ware.


http://www.omron.com

We propose to learn the parameters of the DPM discriminatevly in one step by
directly optimizing accuracy of the resulting detector. The main contributions of this
paper are as follows:

1. We treat the landmark detection with the DPM as an instance of the structured out-
put classification problem whose detection accuracy is measured by a loss function
natural for this application. We propose to use the Structured Output SVM (SO-
SVM) [17] for supervised learning of the parameters of the landmark detector from
examples. The learning objective of the SO-SVMs is directly related to the accu-
racy of the detector. In contrast, all existing approaches we are aware of optimize
surrogate objective functions whose relation to the detector accuracy is not always
clear.

2. We empirically evaluate accuracy of the proposed landmark detector learned by the
SO-SVMs on a challenging “Labeled Faces in the Wild” (LFW) database [18].

3. We provide an empirical comparison of two popular optimization algorithms — the
Bundle Method for Regularized Risk Minimization (BMRM) [19] and the Stochas-
tic Gradient Descend (SGD) [20] — which are suitable for solving the convex op-
timization problem emerging in the SO-SVM learning.

4. We provide an open source library which implements the proposed detector and
the algorithm for supervised learning of its parameters. In adidtion we provide a
manual annotation of the facial landmarks for all images from the LFW database.

The paper is organized as follows. Section 2 defines the structured output classifier
for facial landmark detection based on the DPM. Section 3 describes the SO-SVM algo-
rithm for learning the parameters of the classifier from examples. Experimental results
are presented in Sect. 4. Section 5 shortly describes the open source implementation
of our detector and the provided manual annotation of the LFW database. Section 6
concludes the paper.

2 Structured Output Classifier for Facial Landmark Detection

We treat the landmark detection as an instance of the structured output classification
problem. We assume that the input of our classifier is a still image of fixed size con-
taining a single face. In our experiments we construct the input image by cropping a
window around a bounding box found by a face detector (enlarged by a fixed margin
ensuring that the whole face is contained) and normalizing its size. The classifier output
are estimated locations of a set of facial landmarks. A formal definition is given next.
Let 7 = X"V be a set of input images with H x W pixels, where X denotes a
set of pixel values which in our experiments, dealing with 8bit gray-scale images, is
X ={0,...,255}. We describe the configuration of M landmarks by a graph G = (V,E),
where V = {0,...,M — 1} is a set of landmarks and E C V? is a set of edges defining
the neighboring landmarks. Each landmark is assigned a position s; € §; C {1,...,H} X
{1,...,W}, where S; denotes a set of all admissible positions of the i-th landmark within
the image I € 4. The quality of a landmark configuration s = (sg,...,Sy—1) €S = So X
-+ X Sy—1 given an input image I € J is measured by a scoring function f: 7 x § — R



defined as
fs)=Y qils)+ Y. gijsi,s)) - (H
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The first term in (1) corresponds to a local appearance model evaluating the match
between landmarks on positions s and the input image /. The second term in (1) is the
deformation cost evaluating the relative positions of the neighboring landmarks i and j.

We assume that the costs ¢;: X §; =+ R,i=0,...,M—1and g;;: 5; x S; = R, (i, j) €
E are linearly parametrized functions

qi(l,si) = (w!,WI(1,s;)) 2)
8ij(si,sj) = (Wi, Wii(si,85)) (3)

where W/: 7 x S§; — R"a, ‘P‘fj:& x S§; — RM,i=0,...,M — 1 are predefined maps and
w/ € R", wi, € R",i=0,...,M — 1 are parameter vectors which will be learned from
examples. Let us introduce a joint map ¥:J x § — R” and a joint parameter vector
w € R" defined as a column-wise concatenation of the individual maps %7, ‘Pfj and the

individual parameter vectors w{, wf; respectively. With these definitions we see that the

scoring function (1) simplifies to f(Z,s) = (w,¥(I,s)) .
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Fig. 2. Definition of (a) the underlying graph G = (V, E) for the landmark configuration and (b)

the components of the proposed detector.

Given an input image 1, the structured output classifier returns the configurations §
computed by maximizing the scoring function f(I,s), i.e.

§ € argmax f(I,s) . 4)
sES

We assume that the graph G = (V,E) is acyclic (see Fig. 2(a)), which allows efficient
solving of the maximization problem (4) by dynamic programming.
A complete specification of the structured classifier (4) requires to define:



— The maps W{(I,s;),i =0,...,M — 1 where \P{(I,s;) defines a local feature descrip-
tor of i-th landmark computed on a rectangular window centered at s;. We call the
rectangular window a component (see Fig. 2(b)). The size of the component and
its feature descriptor are crucial design options which have to be made carefully. In
Sect. 2.1 we describe a list of feature descriptors we have considered.

— The fixed maps ‘Pfj (si,8j), (i, j) € E defining the parametrization of the deforma-
tion cost. Section 2.2 describes the parametrization which we have considered.

— The set § = (So X - - X Sy—1) defining the search space of the landmark positions.

These sets can be interpreted as hard constraints on the admissible configurations
of the landmarks, i.e. the landmark positions outside these sets corresponds to —oo
value of the deformation cost g;;(s;,s;).
We tune the size of these search spaces experimentally — we keep track of the axis
aligned bounding box (AABB) for each component throughout the whole database
excluding the images whose components does not fit in the image. We set the size
of components in order to keep at least 95% images of the original database. Con-
sequently, the AABB of each component is made vertically symmetric along the
center y-axis in order to remove bias to certain positions. Figure 3 visualizes the
found search spaces.

— The joint parameter vector w € R” learned from the training examples by the SO-
SVM algorithm described in Sect. 3.

niguth-corner-

Fig. 3. Left: optimal search spaces for each component. Right: the same search spaces made
symmetrical along the vertical magenta line.

Finally we would like to stress that the particular number of landmarks and their
neighborhood structure can be arbitrary as long as the inference problem (1) can be
solved efficiently. In this paper we experiment with the 8-landmarks variant of the graph
G = (V,E) shown in Fig. 2(a).

2.1 Appearance Model

We have experimented with several feature descriptors W/ for the local appearance
model ¢;(1,s;). In particular, we considered i) normalized intensity values, ii) deriva-
tives of image intensity values, iii) histograms of Local Binary Patterns (LBP) [21]



and iv) the LBP pyramid feature descriptor [22]. We obtained the best results with the
LBP pyramid feature descriptor which is used in the experiments. The LBP pyramid
descriptor is constructed by concatenating binary encoded LBP features computed in
each pixel (up to boundary pixels) and in several scales. In particular, we use the LBP
pyramid computed in 4 scales starting from the original image and consequently down-
scaling the image 3 times by 1/2. The resulting feature vector is high dimensional but
very sparse.

2.2 Deformation Cost

We have experimented with two parametrizations of the deformation cost g;;(s;,s;):
i) a table representation and ii) a quadratic function of a displacement vector between
landmark positions.

The table representation is the most generic form of the deformation cost useful
when no prior knowledge is available. Table elements specify cost for each combina-
tion of s; and s; separately. ‘Pf'] (si,s;) is a sparse vector with all elements zero but the
element corresponding to the combinations (s;,s;) which is one. Such a representation
of the deformation cost is very flexible and easy to implement. Though the table repre-
sentation is very flexible its main disadvantage is a very large number of parameters to
be learned. In turn, a large number of training examples is required to avoid over-fitting.
In fact, each combination (s;,s;) should be present in training examples at least once to
make the corresponding cost non-zero.

As the second option, we considered the deformation cost g;;(s;,s;) to be a quadratic
function of a displacement vector s; —s;. Following [12], we define the deformation cost
as

ij

(dxvdy) = (xjvyj) - (xiayi)
This representation accounts for the distance and the direction of the j-th landmark
with respect to i-th landmark. This representation is determined only by four parameters
which substantially reduces the risk of over-fitting.

We found experimentally the quadratic deformation cost to give slightly better re-
sults compared to the table representation, therefore experiments described further use
only this parametrization of deformation cost.

W8 (s1,8,) = (dx,dy,dx*,dy?) } (5)

3 Learning the Parameters of the Structured Output Classifier

We learn the joint parameter vector w by the SO-SVM algorithm [17]. The require-
ments on the classifier are specified by a user defined loss-function ¢: § x § — R. The
value £(s,s*) penalizes the classifier estimate s provided the actual configuration of the
landmarks is s*. The SO-SVM requires loss function to be non-negative and zero iff the
estimate is absolutely correct, i.e. £(s,s*) > 0, Vs,s* € §, and {(s,s*) = 0 iff s = s*. In
particular, we use the mean normalized deviation between the estimated and the ground
truth positions as the loss function, i.e.

| M=1
f(s,S*)=K(S*)M Y lsi—sil - (6)
j=0



The normalization factor k(s*) = || (SeyeR +s eyeL) —Smouthll ! is reciprocal to the
face size which we define as the length of the line connecting the midpoint between the
eye centers SeyeR and SeyeL with the mouth center sy, ,+,- The normalization factor is
introduced in order to make the loss function scale invariant which is necessary because
responses of the face detector used to construct the input images do not allow accurate
estimation of the scale. Figure 4 illustrates the meaning of the loss function (6). Finally,
we point out that any other loss function meeting the constraints defined above can be
readily used, e.g. one can use maximal normalized deviation.

Given a set of training examples {(I',s!),..., (I",;s™)} € (J x §)™ composed of
pairs of the images and their manual annotations, the joint parameter vector w of the
classifier (4) is obtained by solving the following convex minimization problem

w" = arg min {xﬂwz—i—R(w)} , Where @)
weRn | 2
s i i s i i
R(w):E;Tea;(<€(s,s)+<w,w(1,s)>)—E;<W,T(l,s)> . @)

The number A € RY is a regularization constant whose optimal value is tuned on
a validation set. R(w) is a convex piece-wise linear upper bound on the empirical risk
Lym  ¢(s,argmaxges f(I',s)). That is, the learning algorithm directly minimizes the
performance of the detector assessed on the training set and at the same time it controls
the risk of over-fitting via the norm of the parameter vector.

Though the problem (7) is convex its solving is hard. The hardness of the problem
can be seen when it is expressed as an equivalent quadratic program with m|S| linear
constrains (recall that |§| is the number of all landmark configurations). This fact rules
out off-the-shelf optimization algorithms.

Thanks to its importance a considerable effort has been put to a development of
efficient optimization algorithms for solving the task (7). There has been an ongoing
discussion in the machine learning community trying to decide whether approximative
on-line solvers like the SGD are better than the accurate slower solvers like the BMRM.
No definitive consensus has been achieved so far. We contribute to this discussion
by providing an empirical evaluation of both approaches on the practical large-scale
problem required to learn the landmark detector. The empirical results are provided in
Sect. 4.5. For the sake of self-consistency, we briefly describe the considered solvers,
i.e. the BMRM and the SGD algorithm, in the following two sections.

3.1 Bundle Methods for Regularized Risk Minimization

The BMRM is a generic method for minimization of regularized convex functions [19],
i.e. BMRM solves the following convex problem
* . A 2
w* = arg min F(w) := = ||w||" + R(w) , )
weR” 2
where R:R" — R is an arbitrary convex function. The risk term R(w) is usually the
complex part of the objective function which makes the optimization task hard. The



core idea is to replace the original problem (9) by its reduced problem
. Ao
w; = arg min F;(w) := —||w||+R,(w) . (10)
weR” 2

The objective function F;(w) of the reduced problem (10) is obtained after replacing
the risk R(w) in the original objective F(w) by its cutting plane model

Ri(w)= ma)f 1[R(wi—f—(R/(w,'),w—wi)] , (11)

where R'(W;) € dw,R(W;) denotes an arbitrary sub-gradient of R evaluated at the point
w; € R"™,

Starting from an initial guess wy = 0, the BMRM algorithm computes a new iterate
w; by solving the reduced problem (10). In each iteration ¢, the cutting plane model (11)
is updated by a new cutting plane computed at the intermediate solution w, leading to
a progressively tighter approximation of F(w). The BMRM algorithm halts if the gap
between F (w;) (an upper bound on F(w*)) and F;(w;) (a lower bound on F(w*)) falls
below a desired €, meaning that F(w;) < F(w*) + €. The BMRM algorithm stops after
at most O(1/¢) iterations for arbitrary € > 0 [19].

The reduced problem (10) can be expressed as an equivalent convex quadratic pro-
gram with ¢ variables. Because ¢ is usually small (up to a few hundreds), off-the-shelf
QP solvers can be used.

Before applied to a particular problem, the BMRM algorithm requires a procedure
which for a given w returns the value of the risk R(w) and its sub-gradient R'(w). In
our case the risk R(w) is defined by (8) and its sub-gradient can be computed by the
Danskin’s theorem as

ey LG i o i
Row) =3 (v s) - (') (12)
éi:argrllezg( [((s",s)—f—(W,‘I’(I",s)ﬂ . (13)

Note that the evaluation of R(w) and R'(w) is dominated by the computation of the
scalar products (w,¥(I',s)), i = 1,...,m, s € S, which, fortunately, can be efficiently
parallelized.

3.2 Stochastic Gradient Descent

Another popular method solving (7) is the Stochastic Gradient Descent (SGD) algo-
rithm. We use the modification proposed in [20] which uses two neat tricks. Starting
from an initial guess wy, the SGD algorithm iteratively changes w by applying the fol-
lowing rule:

7\’71
o+ tgt

to is a constant and 7 is the number of the iteration. The SGD implementation proposed
in [20] tunes the optimal value of 7y on a small portion of training examples subsampled

Wipl =W, — . & =Aw,+h; . (14)



from training set. The sub-gradient is computed in almost the same manner as in (12),
but only for one training image at a time, i.e. h, =¥(I',§") —P(I',s").

In addition, [20] propose to exploit the sparsity of the data in the update step. Equa-
tion (14) can be expressed as

W1 = W, — oy W, — B/hy, where (15)
1 At

= — = . 16

¢ fo+t’ B fo+t (16)

Note that if h; is sparse then subtracting 3;h, involves only the nonzero coefficients
of h,, but subtracting a,w; involves all coefficients of w;. In turn, it is beneficial to
reformulate (15) as

Wil = (L —oy)w; —Brhy . (17

By using this trick, the complexity O(d) corresponding to the naive implementation
of the update rule (14) reduces to the complexity O(dnon—zero) corresponding to the
reformulated rule (17), where d is the dimension of the parameter vector and dpon—zero
is the number of the non-zero elements in h,. Typically, like in our case, dpon—zero 1S
much smaller than d.

A considerable advantage of the SGD algorithm is its simplicity. A disadvantage is a
lack of any certificate of optimality and thus also of the theoretically grounded stopping
condition.

4 Experiments

In this section, we present experimental evaluation of the proposed facial landmark de-
tector and its comparison against three different approaches. We considered the detector
estimating positions of the eight landmarks: the canthi of the left and right eye, the cor-
ners of the mouth, the tip of the nose and the center of the face. The corresponding
graph (V, E) is shown in Fig. 2(a).

In Sect. 4.1, we describe the face database and the testing protocol used in the
experiments. The competing methods are summarized in Sect. 4.2. The results of the
comparison in terms of detection accuracy and basic timing statistics are presented in
Sect. 4.4. Finally, in Sect. 4.5 we compare two algorithms for solving the large-scale
optimization problems emerging in the SO-SVM learning, namely, the BMRM and the
SGD algorithm.

4.1 Database and Testing Protocol

We use the LFW database [ 18] for evaluation as well as for training of our detector. This
database consists of 13,233 images each of size 250 x 250 pixels. The LFW database
contains a great ethnicity variance and the images have challenging background clutter.
We augmented the original LFW database by adding manual annotation of the eight
considered landmarks.

We randomly split the LFW database into training, testing and validation sets. Ta-
ble 1 describes this partitioning. The experimental evaluation of all competing detectors
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L™MaX(s,8) = kmax{eq, ..., €3}

Fig. 4. The illustration of two accuracy statistics used to benchmark the detectors. The green and
the red crosses denote the manually annotated landmarks and the detected landmarks, respec-
tively. The deviations €y, ..., €7 correspond to radii of the dashed circles.

Table 1. The partitioning of the LFW database into training, validation and testing set.

Data set Training | Validation| Testing
Percentage 60% 20% 20%
# of examples| 6,919 2,307 | 2,316

was made on the same testing set. The training and the validation parts were used for
learning of the proposed detector and the base line SVM detector. The other competing
detectors had their own training databases.

In order to evaluate the detectors, we use two accuracy measures: i) the mean nor-
malized deviation £(s,s’) defined by equation (6) and ii) the maximal normalized devi-
ation

M (s,8) =x(s) max |[|s;—§; 18
(5.8) = x(s) _max s, as)
where s = (Sg,...,Sy—1) are the manually annotated landmark positions and § =
(80, --,8m—1) are the landmark positions estimated by the tested detector. Figure 4 il-

lustrates both accuracy measures.

4.2 Competing Methods

In this section, we outline all detectors that were used in the experimental evaluation.

Proposed Detector The proposed detector estimates the landmark positions according
to (4). As the feature descriptor ¥(1,s;) defining the local appearance model g;(1,s;),
we use the LBP pyramid described in Sect. 2.1. As the parametrization ‘I’lgj(si,s ;) of
the deformation cost g;;(si,s;), we use the quadratic function described in Sect. 2.2.
The parameter vector w of the classifier (4) is trained from the training part of the
LFW database using the BMRM algorithm (c.f. Sect. 3.1). The regularization constant A



appearing in the learning problem (7) was selected from the set {10,1,0.1,0.01,0.001}
to minimize the average mean normalized deviation Ryar, computed on the validation
part of the LFW database.

Independently Trained SVM Detector This detector is formed by standard two-class
linear SVM classifiers trained independently for each landmark. For training, we use
the SVM solver implemented in LIBOCAS [22]. For each individual landmark we cre-
ated a different training set containing examples of the positive and negative class. The
positive class is formed by images cropped around the ground truth positions of the
respective component. The negative class contains images cropped outside the ground
truth regions. Specifically, the negative class images satisfy the following condition

P — Pgr| > %WidthGTa P! —Pgr| > %heightGT ’ (19

where P* and Py is the x-coordinate of the negative and the ground truth component
respectively. heightgt and widthgr denote the width and the height of the component.

We use the LBP-pyramid descriptor (see Sect. 2.1) as the features. The parameters
of the linear SVM classifier are learned from the training part of the LFW database.
The SVM regularization constant C was selected from the set {10,1,0.1,0.01,0.001} to
minimize the classification error computed on the validation part of the LFW database.

Having the binary SVM classifiers trained for all components, the landmark position
is estimated by selecting the place with the maximal response of the classifier scoring
function, evaluated in the search regions defined for each component differently. The
search regions as well as the sizes of the components are exactly the same as we use for
the proposed SO-SVM detector.

Note that the independently trained SVM detector is a simple instance of the DPM
where the deformation cost g;;(s;,s;) is zero for all positions inside the search region
and —oo outside. We compare this baseline detector with the proposed SO-SVM detector
to show that one can improve the accuracy by learning the deformation cost from data.

Active Appearance Models We use a slightly modified version of a publicly available
implementation of the AAM [23]. As the initial guess of the face position required
by the AAM, we use the center of the bounding box obtained from a face detector. The
initial scale is also computed from this bounding box. The AAM estimates a dense set of
feature points which are distributed around important face contours like the contour of
mouth, eyes, nose, chin and eyebrows. The AAM requires a different training database
which contains high resolution images along with annotation of all contour points.

For training the AAM model we use a publicly available IIM Face database [24].
The IIM database consists of 240 annotated images (6 images per person). Each image
is 640 x 480 pixel in size and comes with 58 manually annotated points which are
distributed along the main face contours. Note that the creation of training examples for
the AAM put much higher demands on the annotator who has to click a large number of
uniformly distributed points. In contrast, our method requires annotation of only a small
number of well defined points. Specifically, the whole IIM database requires to annotate



13920 points, carefully distributed along each contour, while the LFW database requires
to annotate 48433 points, which are well defined and easy to annotate.

To compare the AAM based detector with our detector, we have to transform the
output of the AAM, i.e. the points on contours around important face parts, to the land-
mark positions returned by our detector. We simply select the relevant points on the
corresponding contours.

4.3 Detector of Everingham et al.

The last competing detector is the DPM based detector of [25]. This detector was trained
on a collection of consumer images which, however, are not available. This detector re-
turns canthi of both eyes (4 landmarks), corners of the mouth (2 landmarks) and 3
landmarks on the nose. To compare this detector, we consider only the relevant land-
marks for our detector. Note that unlike the proposed SO-SVM detector, this detector
learns the local appearance model and the deformation cost of the DPM independently.

4.4 Results

In this section, we describe results of the experimental evaluation of the detection accu-
racy of all competing detectors. We have measured the mean and the maximal normal-
ized deviation computed on the test part of the LFW database.

Table 2 shows the average mean normalized deviation Rtst and the the average
maximal normalized deviation RT¢} for each individual detector. The results show that
the proposed detector consistently outperforms all other competing methods irrespec-
tive to the accuracy measure. Surprisingly, the independently trained SVM detector is
comparable with the DPM based detector of [25]. The far worst results were obtained
for the AAM based detector which can be attributed to a relatively low resolution input
images.

In Fig. 5 we show the cumulative histograms of the mean and maximal normalized
deviation. Table 3 shows the percentage of examples from the test part of the LFW
database with the mean/maximal normalized deviation less or equal to 10% (this cor-
responds to the line at 10% of x-axis taken from Fig. 5. It is seen that the proposed
detector estimates around 97% of images with the mean normalized deviation less than
10%. This results is far better than was achieved for all other competing methods. In
Fig. 6, we show examples of images with the mean normalized deviation equal to 10%
for better understanding of these statistics.

We have also measured the average time required by the proposed detector to pro-
cess a single image. The measurements were done on a notebook with Intel Core 2 Duo
T9300 2.50 GHz. The average detection time was 7 ms per face.

4.5 Comparison of BMRM and SGD

In this section, we compare performance of the BMRM and the SGD algorithm on the
problem emerging when learning the proposed detector.

The task of the solvers is to minimize the problem stated in (7). Besides the value
of the objective function F(w) of the task (7) we also measured the validation risk



Table 2. Average mean normalized deviation and the average maximal normalized deviation
computed on the test part of the LFW database.

Rrst | Rysy
AAM 17.6042|31.2715

Independent SVMs| 7.1970 (18.3601
Everingham et al. | 7.9975 |15.9451
proposed detector | 5.4606 (12.4080
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Fig. 5. Cumulative histograms for the mean and the maximal normalized deviation shown for all
competing detectors.

RvyaL (W) being another important criterion characterizing convergence of the learning
algorithm.

To make the iterations of both algorithms comparable, we define one iteration of the
SGD as a sequence of single update steps equal to the number of training examples. This
makes the computational time of both solvers approximately proportional to the number
of iterations. The optimal value of parameter fy for SGD was selected to minimize the
objective function F(w) computed on 10% of the training examples after one pass of
the SGD algorithm throughout the data. The parameter 7o have to be tuned for each
value of A separately. We fixed the total number of iterations of the SGD algorithm to
50.

We run both solver on the problem (7) with the parameters A € {0.001,0.01,0.1,1}
recording both F(w) and Ryar(w). Results of the experiment are summarized in Ta-
ble 4.

It can be seen that the SGD converges quickly at the beginning and it stalls as
it approaches the minimum of the objective F. Similarly for the validation risk. The
optimal value of A minimizing the validation error was 0.01 for both SGD and BMRM.
The test errors computed for the optimal A were Ryst = 5.44 for the SGD and Rrst =
5.54 for the BMRM, i.e., the difference is not negligible. The results for the SGD could
be improved by using more than 50 iterations, however, in that case both algorithms



Table 3. The percentage of images from the test part of the LFW database where the
mean/maximal normalized deviation of the estimated landmark positions was less or equal to
10%.

Mean |Maximal

AAM 8.98% | 0.62%
Everingham et al. |85.28%| 22.93%
binary SVM 85.66%| 34.50%

proposed detector|96.59%| 53.23%

L

(a) (b)

Fig. 6. Sample images where the estimated landmark positions have the mean normalized de-
viation equal to 10%. The green and red points denote the manually annotated and estimated
landmarks, respectively.

would require the comparable time. Moreover, without the reference solution provided
by the BMRM one would not know how to set the optimal number of iterations for
the SGD. We conclude that for the tested problem the BMRM produced more accurate
solution, but the SGD algorithm was significantly faster. This suggests that the SGD is
useful in the cases when using the precise but slower BMRM algorithm is prohibited.
In the opposite case the BMRM algorithm returning a solution with the guaranteed
optimality certificate is preferable.

5 Open-source library and LFW annotation

We provide an open-source library implementing the proposed DPM detector including
the BMRM algorithm for supervised learning of its parameters. The detector is imple-
mented in C and we also provide the MEX interface to MATLAB.The library comes
with several toy example applications, e.g. running the detector on still images or a
video stream and displaying the landmarks. The library is licensed under the GNU/GPL
version 3 and was tested on GNU/Linux and Windows platform.

In addition, we provide a manual annotation of the LFW database for noncommer-
cial use. The following set of landmarks is annotated for each face: canthi for both eyes,
the tip of the nose and the corners of mouth, i.e. 7 annotated landmarks in total for each
image. Both the library and the annotation can be downloaded from:
http://cmp.felk.cvut.cz/~uricamic/flandmark


http://cmp.felk.cvut.cz/~uricamic/flandmark

Table 4. Comparison of the BMRM and the SGD. We show the value of primal objective function
F(w) and validation risk Ryar, for the 50th iteration (assuming termination of SGD after this
iteration) as well as for the number of iterations needed by the BMRM algorithm to find the
e-precise solution.

A A=1 A=0.1 A=0.01 || A=0.001
# of iterations|| 50 | 106 || 50 | 201 || 50 | 462 || 50 [1200

BMRM F(w) 77.48|62.19(|145.13|29.68|(35.33|14.62||34.35|7.459
RvaL(w) [[23.24]10.48(|19.054|6.067|(9.054(5.475(|9.054|5.876

SGD F(w) 50.88|50.44/120.62|20.52{(13.72{10.80{|12.86|6.309
RvaL(w) [[9.719]9.627(|6.156|6.142||5.577(5.496|5.544|5.818

6 Conclusions

In this paper, we have formulated the detection of facial landmarks as an instance of the
structured output classification problem. Our structured output classifier is based on the
DPM and its parameters can be learned from examples by the SO-SVM algorithm. In
contrast to the previous works, the learning objective is directly related to the accuracy
of the resulting detector. Experiments on the LFW database show that the proposed
detector consistently outperforms a baseline independently trained SVM detector and
two public domain detectors based on the AAM and DPM.
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