
Bundle Methods for Structured Output Learning —
Back to the Roots

Michal Uřičář1, Vojtěch Franc1, and Václav Hlaváč1

Center for Machine Perception, Department of Cybernetics,
Faculty of Electrical Engineering, Czech Technical University in Prague,

Technická 2, 166 27 Prague 6, Czech Republic
{uricamic, xfrancv, hlavac}@cmp.felk.cvut.cz

Abstract. Discriminative methods for learning structured output classifiers have
been gaining popularity in recent years due to their successful applications in
fields like computer vision, natural language processing, etc. Learning of the
structured output classifiers leads to solving a convex minimization problem, still
hard to solve by standard algorithms in real-life settings. A significant effort has
been put to development of specialized solvers among which the Bundle Method
for Risk Minimization (BMRM) [1] is one of the most successful. The BMRM is
a simplified variant of bundle methods well known in the filed of non-smooth op-
timization. In this paper, we propose two speed-up improvements of the BMRM:
i) using the adaptive prox-term known from the original bundle methods, ii) start-
ing optimization from a non-trivial initial solution. We combine both improve-
ments with the multiple cutting plane model approximation [2]. Experiments on
real-life data show consistently faster convergence achieving speedup up to factor
of 9.7.

Keywords: Structured Output Learning, Bundle Methods, Risk Minimization,
Structured Output SVM

1 Introduction

Learning predictors from data is a standard machine learning task. A large number
of such tasks are translated into a convex quadratically regularized risk minimization
problem

w∗ = arg min
w∈Rn

F (w) :=

[
λ

2
‖w‖2 +R(w)

]
. (1)

The objective F : Rn → R, referred to as the regularized risk, is a sum of the quadratic
regularization term and a convex empirical risk R : Rn → R. The scalar λ > 0 is a pre-
defined constant and w ∈ Rn is a parameter vector to be learned. The quadratic regu-
larization term serves as a mean to constraint the space of solutions in order to improve
generalization. The empirical risk evaluates a match between the parameters w and
training examples. The risk typically splits into a sum of convex functions ri : Rn → R,
i.e. the risk reads

R(w) =

m∑
i=1

ri(w) . (2)

This paper proposes efficient optimization algorithm for the instances of the learning
problem (1) when evaluation of the functions ri(w) and their sub-gradients r′i(w) ∈
Rn is expensive, yet tractable.

In particular, our research was motivated by real-life applications of the Struc-
tured Output Support Vector Machine (SO-SVM) classifier, learning of which has been
formulated by [3] as follows. Given a training set of examples of input-output pairs
{xi, yi}mi=1 ∈ (X ×Y)m, assumed to be i.i.d. from an unknown p.d.f. P (x, y), we want
to learn a parameter vector w ∈ Rn of a linear classifier

h(x;w) = argmax
y∈Y
〈w,Ψ(x, y)〉 , (3)

where Ψ : X × Y → Rn is a fixed mapping from the input-output space onto the
space of parameters. The ultimate goal is to find the parameters w which minimize
the expected risk Ep(x,y)[`(y, h(x;w))] for a given loss function ` : Y × Y → R. The
problem (1) was shown to be a good proxy for the minimization of the expected risk,
which is not possible due to unknown P (x, y). The function ri(w) is set to be a convex
approximation of the loss `(yi, h(xi;w)) which reads

ri(w) = max
y∈Y

[
`(yi, y) +

〈
w,Ψ(xi, y)− Ψ(xi, yi)

〉]
. (4)

By Danskin’s theorem [4, Proposition B.25] the sub-gradient of ri(w) can be computed
as

r′i(w) = Ψ(xi, ŷi)− Ψ(xi, yi) , (5)

where ŷi = argmaxy∈Y [`(yi, y) + 〈w,Ψ(xi, y)〉]. Evaluation of ri(w) as well as
r′i(w) is often expensive due to the huge size of the output set Y , e.g. Y can be a set of
all segmentations of an input image x ∈ X . We refer to the problem (1) with the risk
R(w) defined by (4) as the SO-SVM learning problem. It can be transformed to the
equivalent quadratic program (QP) with the number of constraints linearly proportional
to the number of classifier outputs |Y|. Hence, using existing off-the-shelf solvers is not
feasible.

Currently used approaches for the SO-SVM learning involve approximative on-line
algorithms and precise methods. The approximative methods are often fast, especially at
early optimization stages, but have no clear stopping condition. Moreover, they require
educated setting of the learning rate and are sensitive to improperly scaled data. The
prominent representatives of the approximative methods are variants of the Stochastic
Gradient Descent (SGD) algorithm [5, 6].

The precise methods are slower but provide theoretically grounded stopping con-
dition based on the optimality certificate. Currently the most popular precise solver is
the Bundle Method for Risk Minimization (BMRM) proposed by [1]. It can be read-
ily applied to an arbitrary instance of the problem (1) requiring only an oracle which
evaluates the risk (4) and its sub-gradient (5). The BMRM has been proved to converge
to ε-optimal solution after O(1ε) iterations at most. [7] proposed a variant of the col-
umn generation algorithm solving “1-slack” reformulation of the QP equivalent to the
SO-SVM learning problem. The solver was implemented in the Though discovered in-
dependently, the StructSVM solver is exactly the same as the instance of the BMRM
for the SO-SVM learning.

The BMRM is a simplified variant of bundle methods (BM), which are standard
tools in non-smooth optimization [8]. In this paper, we propose two improvements of
the BMRM which significantly speed up its convergence. The first improvement is the
usage of adaptive prox-term, known from the original BM, which has a significant sta-
bilization effect on the convergence. We also propose a novel strategy for setting the
strength of the prox-term which is suitable for the problem (1). The second improve-
ment is to start optimization from a non-trivial initial solution. This improvement can-
not be used without the first one due to the lack of non-trivial (i.e. not centered at zero)
prox-term like in the original BMRM. In addition, we combined these two improve-
ments with the multiple cutting plane risk approximation [2].

The paper is organized as follows. In Section 2 we outline the standard BM, their
relation to the BMRM and the source of inefficiency of the BMRM. Section 3 describes
the proposed improvements. Experimental evaluation is given in Section 4 and Section 5
concludes the paper.

2 Existing methods

Let us assume for a moment a special variant of the problem (1) without the regulariza-
tion term, i.e. λ = 0, then the problem becomes

w∗ ∈ arg min
w∈Rn

R(w) . (6)

Thanks to its convexity, the risk R(w) can be approximated by its cutting plane (CP)
model

Rt(w) = max
i=1,...,t

[
R(wi) + 〈R′(wi),w −wi〉

]
, (7)

wherew1, . . . ,wt are the points at which the risk R(w) is sampled and R′(wi) ∈ Rn,
i = 1, . . . , t, denotes sub-gradients computed at these points. The CP model Rt(w)
is a piece-wise linear under-estimator of the risk R(w) which is tight at the points
w1, . . . ,wt. Figure 1 illustrates the CP approximation on a simple function.

The cutting plane algorithm [9] is a simple iterative procedure which exploits the
CP model to solve the problem (6). Starting from an initial solution w1 ∈ Rn, the
CP algorithm computes the new iterates by solving the reduced problem wt+1 =
argminw∈Rn Rt(w). The iterations generated by the CP algorithm show a strong zig-
zag behavior, especially at the early iterations when the CP model is inaccurate, causing
it to converge slowly.

The BM [10] refine the CP algorithm by adding a quadratic prox-term to the reduced
problem, i.e. the next iterate becomeswt+1 = argminw∈Rn

[
Rt(w)+αi‖w−w+

i ‖2
]
.

wherew+
i is the prox-center and αi is the prox-term penalty parameter. If the improve-

ment in the objective value is sufficiently large, i.e. if R(wt) − R(wt+1) ≥ γt holds,
the prox-center is updated to w+

t+1 = wt+1. Otherwise, the prox-center is unchanged
w+
t+1 = w+

t . The prox-term reduces influence of the inaccurate CP model by con-
straining the distance between consecutive iterations, thereby removing the detrimental
zig-zag behavior of the CP algorithm. The BM is controlled by two rules, with signifi-
cant impact on the convergence [8]. The first rule defines the minimal decrease threshold
γt and, the second rule sets the prox-term penalty αt.

w0w1

R(w)

R2(w)

w2

R(w1) + 〈R′(w1), w − w1〉R(w0) + 〈R′(w0), w − w0〉

Fig. 1. A convex function R(w) can be approximated by a collection of linear under-estimators
(cutting planes).

[1] adopted the original BM for the specific problem (1) objective of which already
contains a quadratic term. In particular, [1] propose to replace the problem (1) by the
following reduced problem

wt+1 = arg min
w∈Rn

Ft(w) :=

[
λ

2
‖w‖2 +Rt(w)

]
. (8)

The reduced problem objective Ft(w) is obtained from (1) by replacing the risk R(w)
with its CP modelRt(w) while the quadratic regularization term is unchanged. The reg-
ularization term serves as a natural prox-center. This is an elegant solution that avoids
designing rules for updating the prox-center penalty and the sufficient decrease thresh-
old which are needed in the standard BM.

Starting from an initial guess w1 ∈ Rn, the BMRM iteratively solves the reduced
problem (8) and uses the new iterate wt+1 to update the CP model (7) which becomes
progressively more accurate. This process is repeated until a gap between the primal
and the reduced objective gets below a prescribed ε > 0.

The prox-term penalty is in the BMRM replaced by a fixed regularization parameter
λ and the prox-center is constantly zero . For low values of λ, the influence of the
quadratic term is weak and the BMRM becomes closer to the CP algorithm, i.e. the
BMRM again exhibits a zig-zag behavior and, consequently, a slow convergence. The
detrimental effect of a low λ is also seen from the upper bound on the maximal number
of iterations O(log2 λ + C

λε) derived in [1]. The mentioned inefficiency of the BMRM
can have serious practical implications because the optimal value of λ is unknown and
thus one needs to train with the whole range of λ’s including low values which can
require prohibitively many iterations and thus long computational times.

3 Improved BMRM

In this section, we propose two improvements of the original BMRM which speed up
its convergence. First, we propose to use the prox-term in the definition of the reduced

Algorithm 1 Prox-BMRM
Require: ε > 0, T > 0, K > 0 , w1 ∈ Rn
1: Set α1 = 0 and γt =∞
2: repeat
3: Solve the reduced problem wαt

t+1 = argminw∈Rn Ft(w, αt)
4: if F (wt)− F (wαt

t+1) ≥ γt then
5: accept the solution and set: wt+1 = wαt

t+1, αt+1 = αt, γt+1 = γt
6: else
7: Find the minimal α̂ ∈ {2i}∞0 such that ‖wα̂

t+1 −wt‖ ≤ K , where
wα
t+1 = argminw∈Rn Ft(w, α)

8: Set wt+1 = wα̂
t+1, αt+1 = α̂ and γt+1 =

F (wα̂t+1)

T
− Ft(w

0
t+1)

T (1−ε)
9: end if

10: until F (wt+1)− Ft(w0
t+1) ≤ ε · |F (wt+1)|

problem in order to avoid the zig-zag behavior. The strength of the prox-term is adap-
tively adjusted by a novel strategy which we derived for the problem (1). Second, we
propose to start the optimization from a non-trivial solution. Both of these improve-
ments can be readily combined with the multiple cutting plane model which we pro-
posed in [2]. The next sections detail the improvements.

3.1 Prox-BMRM

As the first improvement, we propose to integrate a quadratic prox-term to the objective
of the reduced problem in order to prevent the zig-zag behavior of the BMRM. This
modification, which we call Prox-BMRM, returns the BMRM algorithm closer to its
roots, i.e. to the original BM. The difference when compared to the classical BM is that
i) we do not approximate the original quadratic regularizer by the CP model and ii) we
propose new rules for adjusting the prox-term penalty and the minimal improvement
threshold.

The reason behind the additional prox-term is to prevent overly big changes of the
solution in two consecutive iterations. To this end, we require that the Euclidean dis-
tance between two consecutive iterations ‖wt+1 −wt‖ is not larger than some reason-
ably chosen constant K > 0. This constraint is implemented by adding a prox-term to
the objective function of the reduced problem, i.e. the modified objective becomes

Ft(w, α) :=

[
λ

2
‖w‖2 +Rt(w) + α‖w −wt‖2

]
, (9)

where α ≥ 0 is the prox-term penalty. Similarly to the original BMRM, the Prox-
BMRM computes the new iterate by minimizing the reduced objective (9) with the
value of α set adaptively. The optimization schema is described in Algorithm 1.

In each iteration, the Prox-BMRM first tries to compute new iterate by minimizing
(9) with the prox-center penalty α used in the previous step (line 3). If the new itera-
tion sufficiently improves the primal objective, i.e. its value decreases by more than γt
(line 4), the solution is accepted and the setting of the penalty αt as well as the mini-
mal improvement threshold γt are unchanged. If the improvement is not sufficient the

prox-term penalty is tuned to guarantee that the distance between the previous and the
new iterate is not higher than the constant K (line 7). At the same time, the minimal
improvement threshold is set to a new value γt+1. It is easy to show that if the improve-
ment in all following iterations is not less than γt+1 (i.e. condition on line 4 holds) then
the stopping condition is satisfied after at most T iterations. In turn, the prox-center
penalty is readjusted not later than after T iterations. To sum up, the Prox-BMRM guar-
antees in each iteration that either the primal objective is sufficiently improved or the
new iterate is not overly far from the previous one. We will experimentally show that
this strategy avoids the zig-zag behavior and also significantly decreases the number of
iterations needed to converge to the ε-optimal solution.

Compared to the original BMRM, the proposed Prox-BMRM introduces an addi-
tional overhead because the solution of the reduced problem can be required several
times in a single iteration. The overhead is not dramatic, moreover, it can be signifi-
cantly reduced by using several tricks. First, in the search for α on line 7 one should use
the fact that ‖wα1

t+1−wt‖ > ‖wα2
t+1−wt‖ holds for any α1 < α2 which follows from

the strict-convexity of the quadratic prox-term. In addition, the search can start from
the previous value αt instead of always going sequentially form α = 0. Second, one
can significantly speed up solving the reduced problem by using the warm start strat-
egy. Third, the stopping condition on line 10, which also requires solving the reduced
problem with α = 0 to get lower bound on the optimum, does not need to be evaluated
in every iteration. It turns out to be sufficient to evaluate the stopping condition only
when the α readjusting takes place. With these tricks implemented, we observed that
the reduced problem is solved on average 2-3 times instead of 1 times (like in the origi-
nal BMRM) which constitutes a negligible increase of computation time. This increase
is amply compensated by the reduced number of the iterations.

Besides the precision parameter ε, the Prox-BMRM algorithm requires setting of
the initial solution w1 and two constants: K which is the maximal distance between
two consecutive iterations and T which is the maximal number of iterations without
readjusting the prox-center penalty α. A way to find a non-trivial initial solution, i.e.
‖w1‖ > 0, is discussed in the next section. We found that setting T = 100 and K =
0.01‖w1‖ worked consistently well in all our experiments.

Algorithm 1 reduces the solution of (1) to a sequence of problems (9). The prob-
lem (9) is equivalent to QP: wt+1 = argminw∈Rn

[
λ
2 ‖w‖2 + αt‖w −wt‖2 + ξ

]
,

s. t. ξ ≥ R(wi) + 〈R′(wi),w − wi〉, i = 0, . . . , t − 1. In practice, the number of
cutting planes t required by Algorithm 1 to converge is usually much lower than the
dimension n of the parameter vector w ∈ Rn. Thus one can benefit from solving the
reduced problem (9) in its dual formulation, which form is very similar to the one used
in the standard BMRM.

3.2 Initialization by on-line methods (warm start)

In contrast to the original BMRM, it is reasonable to start the proposed Prox-BMRM
from a non-trivial solution, which is possible thanks to the prox-term added to the ob-
jective. We use the following two strategies to find the initial solution.

The first strategy finds the initial solution by computing a few iterations of an on-
line algorithm. In particular, we use a variant of the SGD [5]. We run 10 passes of

the SGD and keep track of the minimal value of the F (w). Finally, we take the SGD
solution, which minimizes F (w) as the initial point of the Prox-BMRM algorithm.

The second strategy is based on reusing previously obtained solutions. For example,
during validation stage, one typically needs to train the classifier with several values of
the regularization constant λ ∈ Λ, where Λ = {λ1, λ2, . . . , λn}. Since the BMRM
converges quickly with higher values of λ, it is straightforward to exploit the ordering
on Λ, e.g. λ1 > λ2 > · · · > λn. With such constellation, it is obvious that one can use
the solution vector wλi as an initial solution for computing wλi+1 .

4 Experiments

In this section, we demonstrate experimentally the effect of the proposed improvements.
We use three different instances of the SO-SVM learning as benchmarks. We first briefly
describe the three benchmarks and then we present the evaluation.

4.1 OCR

We consider the optical character recognition (OCR) problem as the first benchmark.
We use the MNIST database1 composed of labeled examples of handwritten numerals.
The classifier input x is a gray scale image 28 × 28 pixels large. The classifier output
y is a digit name, i.e. y ∈ Y = {0, . . . , 9}. We model each class by a single tem-
plate image wy ∈ R28×28, y ∈ Y . As the scoring function of the classifier (3) we use
〈w,Ψ(x, y)〉 = 〈x,wy〉. The parameter vector w ∈ Rn has dimension n = 7, 840 re-
sulting from a column-wise concatenation of 10 templateswy , y ∈ Y , We use the stan-
dard classification 0/1-loss defined to be `(y, y′) = 1 for y 6= y′ and `(y, y′) = 0 other-
wise. With these definitions, the classifier (3) becomes an instance of a linear multi-class
SVM classifier.

We train on all m = 60, 000 training examples.

4.2 Facial landmark detection

We consider learning of a facial landmark detector as the second benchmark. We follow
the approach of [11], where the landmark detection is posed as an instance of the SO-
SVM classifier (3). The classifier input x ∈ X is 40 × 40 image containing a face.
The classifier outputs y = (y1, . . . , yL) ∈ Y = N 2×L being a set of 2D coordinates
of L landmarks like corners of the eyes, etc. Evaluation of the classifier (3) leads to
solving an instance of dynamic programing (DP). The loss function measures the mean
deviation between the ground truth landmark positions y and their estimates y′, i.e.
`(y, y′) = κ(y) 1

L

∑L−1
j=0 ‖yj − y′j‖, where κ(s) is a normalization constant ensuring

that the loss is scale invariant.
We trained the landmark detector on a set of m = 6, 919 images with manually

annotated landmark positions. In our experiment, L = 8 and the dimensionality of
w ∈ Rn was n = 232, 476.

1 http://yann.lecun.com/exdb/mnist/

4.3 Number plate segmentation

We consider segmentation of car number plate images as the third benchmark. The
classifier input x ∈ X is an image H ×W pixels large which contains a number plate,
i.e. a line of text composed of a known set of characters. The columns of the input image
x are features extracted from intensity values of a corresponding column of a raw image
taken by a camera. The classifier outputs image segmentation y = (s1, . . . , sL) ∈ Y
where s = (a, k), a ∈ A is a character code and k ∈ {1, . . . ,W} is a character position.
An admissible segmentation y ∈ Y must satisfy

k(s1) = 1 ,W = k(sL) + ω(sL)− 1 , k(si) = k(si−1) + ω(si−1) ,∀i > 1 , (10)

where ω : A → N are widths of the characters. The constraints (10) guarantee that the
segmentation y covers the whole image x by a sequence of characters a1, . . . , aL which
do not overlap. Each character a ∈ A is modeled by a template image νa ∈ RH×ω(a).
The parameter vector w ∈ Rn to be learned is a column-wise concatenation of all
templates νa, a ∈ A. The scoring function of the classifier (3) computes the corre-
lation between the image x and the character templates placed one by one according
to the segmentation y ∈ Y , i.e. 〈Ψ(x, y),w〉 = ∑L(y)

i=1

∑ω(a(si))
j=1 〈col(x, j + k(si) −

1), col(wa(si), j)〉 , where col(I, i) denotes i-th column of the image I . The loss func-
tion measures the number of incorrectly segmented columns w.r.t. to the annotated
segmentation. Evaluation of the classifier (3), as well as evaluation of ri(w) and its
sub-gradient ri(w), leads to an instance of DP.

We used m = 6, 788 annotated images for training. The parameter vector w had
n = 4, 059 components.

4.4 Results

We compare the original BMRM with the proposed Prox-BMRM described by Algo-
rithm 1. In addition, we combine the Prox-BMRM with the multiple cutting model
approximation of the risk [2]. We use Prox-P-BMRM to denote Algorithm 1 with P
cutting plane models.

As for the second improvement, we have experimented with two different strate-
gies providing initial solution to the Prox-(P)-BMRM. In Benchmark 1, the strategy
of reusing the previous solutions obtained in validation of regularization constant was
used. In Benchmarks 2 and 3, the initial solution was obtained in a pre-training with 10
iterations of the SGD [5].

We learned the SO-SVM classifier for a range of regularization parameters λ on
the training examples. We used exactly the same stopping condition for all the tested
algorithms. As a result, all tested algorithms provide the same precise classifier but they
require different time to converge. Hence we do not report classification accuracies
but only the training time measured in terms of i) the number of iterations and ii) the
wall clock time. The obtained results are summarized in Table 1. We see that the Prox-
BMRM significantly decreases both the number of iterations and the wall clock time
compared to the original BMRM. As expected, the speedup is higher for lower λ’s. The
speedup is further improved after increasing the number of CP models to P = 16 . The

Table 1. The number of iterations, the wall clock time in hours and the obtained speedups for all
benchmark problems, all tested algorithms and different values of λ.

Benchmark 1: OCR — MNIST (SHOGUN [12] implementation)
Initial solution λ1 = 1000 λ2 = 100 λ3 = 10 λ4 = 1
REUSE iter time spdup iter time spdup iter time spdup iter time spdup
BMRM 157 0.04878 1 417 0.12836 1 1429 0.45233 1 5932 2.01847 1
Prox-BMRM 226 0.06893 0.7 232 0.07184 1.8 317 0.09939 4.6 698 0.26470 7.6
Prox-P=16-BMRM 244 0.07838 0.6 256 0.08580 1.5 291 0.10703 4.2 408 0.20904 9.7

Benchmark 2: Facial landmark detection (MATLAB implementation)
Initial solution λ1 = 10000 λ2 = 1000 λ3 = 100 λ4 = 10
SGD iter time spdup iter time spdup iter time spdup iter time spdup
BMRM 108 2.492 1 207 8.263 1 442 9.798 1 1084 47.767 1
Prox-BMRM 28 0.693 3.6 61 1.539 5.3 180 4.654 2.1 783 19.772 2.4
Prox-P=16-BMRM 32 0.783 3.2 55 1.301 6.3 142 3.365 2.9 555 14.411 3.3

Benchmark 3: License plate recognition (MATLAB implementation)
Initial solution λ1 = 105 λ2 = 104 λ3 = 103 λ4 = 102

SGD iter time spdup iter time spdup iter time spdup iter time spdup
BMRM 33 0.605 1 87 1.581 1 251 3.923 1 840 13.726 1
Prox-BMRM 34 0.631 1.0 67 1.236 1.3 126 2.065 1.9 286 4.665 2.9
Prox-P=16-BMRM 22 0.404 1.5 37 0.674 2.3 64 0.981 4.0 131 2.444 5.6

improvement is best seen on the license plate benchmark where the parameters have
relatively low dimension. Using more CP models is less beneficial on the facial land-
mark problem where the data are high dimensional and sparse. The maximal speedup
9.7 was obtained on the OCR problem for the lowest λ and Prox-16-BMRM.

To show the effect of the improvements due to the added prox-term we plot conver-
gence curves for the BMRM and the Prox-BMRM on the OCR benchmark in Figure 2.
As expected, the convergence curve of the Prox-BMRM is much smoother compared to
the BMRM whose curves fluctuate strongly.

λ = 1 λ = 10

Fig. 2. Convergence curves of the BMRM and Prox-BMRM on OCR benchmark.

5 Conclusions

In this paper, we have analyzed a source of inefficiency of the BMRM and propose
two improvements, which consistently speedup its convergence. The first improvement

brings the BMRM back to the classical BM, from which it has been originally derived.
In particular, we propose to use a an adaptive quadratic prox-center to compensate im-
precision of the cutting plane model. In addition, the prox-center enables to start from a
non-trivial initial solution which can be either found by an imprecise on-line algorithm
like the SGD or one can reuse previous solution obtained, e.g. during model selection.
We also measured the benefit obtained from combining the proposed improvements
with the multiple cutting plane model [2]. We evaluate the proposed improvements on
the MNIST data and two real-life applications of the SO-SVM classifiers. The experi-
ments show that the BMRM using the proposed improvements converges consistently
faster achieving speedup up to a factor of 9.7.

The proposed algorithm has become a core SO-SVM solver of the SHOGUN Ma-
chine Learning Toolbox [12].

Acknowledgements

MU and VH were supported by The Technology Agency of the Czech Republic under
Project TE01020197, VF by the Grant Agency of the Czech Republic under Project
P202/12/2071 and by EC project FP7-ICT-247525 HUMAVIPS and VH by EC project
FP7-288553 CLOPEMA.

References
1. Teo, C., Vishwanathan, S., Smola, A., Quoc, V.: Bundle Methods for Regularized Risk

Minimization. Journal of Machine Learning Research 11 (2010) 311–365
2. Uřičář, M., Franc, V.: Efficient Algorithm for Regularized Risk Minimization. In: CVWW

’12: Proceedings of the 17th Computer Vision Winter Workshop. (February 2012) 57–64
3. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large Margin Methods for Struc-

tured and Interdependent Output Variables. Journal of Machine Learning Research 6 (2005)
1453–1484

4. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont, MA (1999)
5. Bordes, A., Bottou, L., Gallinari, P.: SGD-QN: Careful Quasi-Newton Stochastic Gradient

Descent. Journal of Machine Learning Research 10 (2009) 1737–1754
6. Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal Estimated sub-GrAdient SOlver for

SVM. In: Proceedings of International Conference on Machine Learning (ICML), ACM
Press (2007) 807 – 814

7. Joachims, T., Finley, T., Yu, C.N.: Cutting-Plane Training of Structural SVMs. Machine
Learning 77(1) (2009) 27–59

8. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Mathemat-
ical Programming 69 (1995) 111–147

9. Cheney, E., Goldstain, A.: Newton’s method for convex programming and Tchebytcheff
approximation. Numerische Mathematick 1 (1959) 253–268

10. Lemaréchal, C.: Nonsmooth optimization and descend methods. Technical report, IIASA,
Laxenburg, Austria (1978)

11. Uřičář, M., Franc, V., Hlaváč, V.: Detector of facial landmarks learned by the structured
output svm. In: VISAPP (1), SciTePress (2012) 547–556

12. Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., Bona, F.d., Binder,
A., Gehl, C., Franc, V.: The shogun machine learning toolbox. J. Mach. Learn. Res. 99
(August 2010) 1799–1802

