
1TO APPEAR IN IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 29, NO. 7, JULY 2007

A Linear Programming Approach to
Max-sum Problem: A Review

Tomáš Werner
Dept. of Cybernetics, Czech Technical University

Karlovo náměstı́ 13, 121 35 Prague, Czech Republic

Abstract— The max-sum labeling problem, defined as maximiz-
ing a sum of binary functions of discrete variables, is a general
NP-hard optimization problem with many applications, such as
computing the MAP configuration of a Markov random field. We
review a not widely known approach to the problem, developed
by Ukrainian researchers Schlesinger et al. in 1976, and show
how it contributes to recent results, most importantly those on
convex combination of trees and tree-reweighted max-product.
In particular, we review Schlesinger’s upper bound on the max-
sum criterion, its minimization by equivalent transformations, its
relation to constraint satisfaction problem, that this minimiza-
tion is dual to a linear programming relaxation of the original
problem, and three kinds of consistency necessary for optimality
of the upper bound. We revisit problems with Boolean variables
and supermodular problems. We describe two algorithms for de-
creasing the upper bound. We present an example application to
structural image analysis.

Index Terms— Markov random fields, undirected graphical
models, constraint satisfaction problem, belief propagation, lin-
ear programming relaxation, max-sum, max-plus, max-product,
supermodular optimization.

I. INTRODUCTION

The binary (i.e., pairwise) max-sum labeling problem is de-
fined as maximizing a sum of unary and binary functions of
discrete variables, i.e., as computing

max
x∈XT

[∑
t∈T

gt(xt) +
∑

{t,t′}∈E

gtt′(xt, xt′)
]
,

where an undirected graph (T,E), a finite set X , and numbers
gt(xt), gtt′(xt, xt′) ∈ R∪{−∞} are given. It is a very general
NP-hard optimization problem, which has been studied and
applied in several disciplines, such as statistical physics, com-
binatorial optimization, artificial intelligence, pattern recogni-
tion, and computer vision. In the latter two, the problem is also
known as computing maximum posterior (MAP) configuration
of Markov random fields (MRF).

This article reviews an old and not widely known approach
to the max-sum problem by Ukrainian scientists Schlesinger
et al. and shows how it contributes to recent knowledge.

A. Approach by Schlesinger et al.

The basic elements of the old approach were given by
Schlesinger in 1976 in structural pattern recognition. In [1], he
generalizes locally conjunctive predicates by Minsky and Pa-
pert [2] to two-dimensional (2D) grammars and shows these

are useful for structural image analysis. Two tasks are con-
sidered on 2D grammars. The first task assumes analysis of
ideal, noise-free images: test whether an input image belongs
to the language generated by a given grammar. It leads to what
is today known as the Constraint Satisfaction Problem (CSP)
[3], or discrete relaxation labeling. Finding the largest arc
consistent subproblem provides some necessary but not suf-
ficient conditions for satisfiability and unsatisfiability of the
problem. The second task considers analysis of noisy images:
find an image belonging to the language generated by a given
2D grammar that is ‘nearest’ to a given image. It leads to the
max-sum problem.

In detail, paper [1] formulates a linear programming relax-
ation of the max-sum problem and its dual program. The dual
is interpreted as minimizing an upper bound to the max-sum
problem by equivalent transformations, which are redefinitions
of the the problem that leave the objective function unchanged.
The optimality of the upper bound is equal to triviality of the
problem. Testing for triviality leads to a CSP.

An algorithm to decrease the upper bound, which we called
augmenting DAG algorithm, was suggested in [1] and pre-
sented in more detail by Koval and Schlesinger [4] and fur-
ther in [5]. Another algorithm to decrease the upper bound
is a coordinate descent method, max-sum diffusion, discov-
ered by Kovalevsky and Koval [6] and later independently by
Flach [7]. Schlesinger noticed [8] that the termination crite-
rion of both algorithms, arc consistency, is necessary but not
sufficient for minimality of the upper bound. Thus, the algo-
rithms sometimes find the true minimum of the upper bound
and sometimes only decrease it to some point.

The material in [1], [4] is presented in detail in the book [9].
The name ‘2D grammars’ was later assigned a different mean-
ing in the book [10] by Schlesinger and Hlaváč. In their orig-
inal meaning, they largely coincide with MRFs.

By minimizing the upper bound, some max-sum problems
can be solved to optimality (the upper bound is tight) and some
cannot (there is an integrality gap). Schlesinger and Flach [11]
proved that supermodular problems have zero integrality gap.

B. Relation to Recent Works

Independently on the work by Schlesinger et al., a signifi-
cant progress has recently been achieved in the max-sum prob-
lem. This section reviews the most relevant newer results by
others and shows how they relate to the old approach.

2

1) Convex relaxations and upper bounds: It is common in
combinatorial optimization to approach NP-hard problems via
continuous relaxations of their integer programming formula-
tions. The linear programming relaxation given by Schlesinger
[1] is quite natural and has been suggested independently and
later by others: by Koster et al. [12], [13], who address the
max-sum problem as a generalization of CSP, the Partial CSP;
by Chekuri et al. [14] and Wainwright et al. [15]; and in bioin-
formatics [16]. Koster et al. in addition give two classes of
non-trivial facets of the Partial CSP polytope, i.e., linear con-
straints missing in the relaxation.

Max-sum problems with Boolean (i.e., two-state) variables
are a subclass of pseudo-Boolean and quadratic Boolean op-
timization, see e.g. the review [17]. Here, several different
upper bounds were suggested, which were shown equivalent
by Hammer et al. [18]. These bounds are in turn equivalent
to [1], [12], [14] with Boolean variables, as shown in [19].

Other than linear programming relaxations of the max-sum
problem have been suggested, such as quadratic [20], [21] or
semidefinite [22] programming relaxations. We will not dis-
cuss these.

2) Convex combination of trees: The max-sum problem has
been studied in terminology of graphical models, in particular
it is equivalent to finding MAP configurations of undirected
graphical models, also known as MRFs. This research primar-
ily focused on computing the partition function and marginals
of MRFs and approached the max-sum problem as the limit
case of this task.

Wainwright et al. [23] shows that a convex combination of
problems provides a convex upper bound on the log-partition
function of MRF. These subproblems can be conveniently cho-
sen as (tractable) tree problems. For the sum-product problem
on cyclic graphs, this upper bound is almost never tight. In the
max-sum limit (also known as the zero temperature limit) the
bound is tight much more often, namely if the optima on indi-
vidual trees share a common configuration, which is referred
to as tree agreement [15], [24]. Moreover, in the max-sum case
the bound is independent on the choice of trees. Minimizing
the upper bound is shown [15], [24] to be a Lagrangian dual
of a linear programming relaxation of the max-sum problem.
This relaxation is the same as in [1], [12], [14]. Besides di-
rectly solving this relaxation, tree-reweighted message passing
(TRW) algorithm is suggested to minimize the upper bound.
Importantly, it is noted [25], [26] that message passing can be
alternatively viewed as reparameterizations of the problem.
TRW is guaranteed neither to converge nor to decrease the
upper bound monotonically. Kolmogorov [27]–[30] suggests
its sequential modification (TRW-S) and conjectures that it
always converges to a state characterized by weak tree agree-
ment. He further shows that the point of convergence might
differ from a global minimum of the upper bound, however,
for Boolean variables [19], [31] they are equal.

The approach based on convex combination of trees is
closest to the approach by Schlesinger’s et al. The linear
programming relaxation considered by Wainwright is the
same as Schlesinger’s one. Reparameterizations correspond
to Schlesinger’s equivalent transformations. If the trees are
chosen as individual nodes and edges, Wainwright’s upper

bound becomes Schlesinger’s upper bound, tree agreement be-
comes CSP satisfiability, and weak tree agreement becomes arc
consistency. The convenient choice of subproblems as nodes
and edges is without loss of generality because Wainwright’s
bound is independent on the choice of trees.

The approach based on convex combination of trees is more
general than the approach reviewed in this article but the latter
is simpler, hence it may be more suitable for analysis. How-
ever, the translation between the two is not straightforward
and the approach by Schlesinger et al. provides the following
contributions to that by Wainwright et al. and Kolmogorov.

Duality of linear programming relaxation of the max-sum
problem and minimizing Schlesinger’s upper bound is proved
more straightforwardly by putting both problems into matrix
form [1], as is common in linear programming.

The max-sum problem is intimately related with CSP via
complementary slackness. This reveals that testing for tight-
ness of the upper bound is NP-complete, which has not been
noticed by others. It leads to a relaxation of CSP, which pro-
vides a simple way [8] to characterize spurious minima of the
upper bound. This has an independent value for CSP research.

The max-sum diffusion is related to TRW-S but has advan-
tage in its simplicity, which also might help further analysis.
With its combinatorial flavor, the Koval-Schlesinger augment-
ing DAG algorithm [4] is dissimilar to any recent algorithm
and somewhat resembles the augmenting path algorithm for
max-flow/min-cut problem.

3) Loopy belief propagation: It is long known that the sum-
product and max-sum problems on trees can be efficiently
solved by belief propagation and message passing [32]. When
applied to cyclic graphs, these algorithms were empirically
found sometimes to converge and sometimes not to, with
the fixed points (if any) sometimes being useful approxima-
tions. The main recent result [33] is that the fixed points of
this ‘loopy’ belief propagation are local minima a non-convex
function, known in statistical physics as Bethe free energy.

The max-sum diffusion resembles loopy belief propagation:
both repeat simple local operations and both can be interpreted
as a coordinate descent minimization of some functional. How-
ever, for the diffusion this functional is convex while for belief
propagation it is non-convex.

4) CSP and extensions: The CSP seeks to find values of
discrete variables that satisfy given logical constraints. Its ex-
tensions have been suggested in which the constraints become
soft and one seeks to maximize a criterion rather than satisfy
constraints. The max-sum problem is often closely related to
these extensions. Examples are the Max CSP [34] (subclass of
the max-sum problem), Valued CSP [35] (more general than
max-sum), and Partial CSP [12] (equivalent to max-sum).

The max-sum problem relates to CSP also via complemen-
tary slackness, as mentioned above. This establishes links to
the large CSP literature, which may be fruitful in both direc-
tions. This article seems to be the first in pattern recognition
and computer vision to make this link.

5) Maximum flow (minimum cut): Finding max-flow/min-
cut in a graph has been recognized very useful for (mainly
low-level) computer vision [36]. Later it has been realized that

3

supermodular max-sum problems can be translated to max-
flow/min-cut (see section VIII). For supermodular max-sum
problems, Schlesinger’s upper bound is tight and finding an
optimal configuration is tractable [11]. The relation of this
result with lattice theory is considered in [19], [37]–[40]. We
further extend this relation and give it a simpler form.

C. Organization of the Article

Section II introduces the labeling problem on commutative
semirings and basic concepts. Section III reviews CSP. Sec-
tion IV presents the linear programming relaxation of the max-
sum problem, its dual, Schlesinger’s upper bound, and equiv-
alent and trivial problems. Section V characterizes minimality
of the upper bound. Two algorithms for decreasing the upper
bound are described in sections VI and VII. Section VIII es-
tablishes that the bound is tight for supermodular problems.
Application to structural image analysis [1], [9] is presented
in section IX. A previous version of this article is [41].

Logical conjunction (disjunction) is denoted by ∧ (∨). Func-
tion [[ψ]] returns 1 if logical expression ψ is true and 0 if it
is false. The set of all maximizers of f(x) is argmaxx f(x).
Assignment is denoted by x := y, symbol x += y denotes
x := x+ y. New concepts are in boldface.

II. LABELING PROBLEMS ON COMMUTATIVE SEMIRINGS

This section defines a class of labeling problems of which
the CSP and the max-sum problem are special cases. Here we
introduce basic terminology used in the rest of the article.

We will use the terminology from [11] where the variables
are called objects and their values are called labels. Let G =
(T,E) be an undirected graph, where T is a discrete set of
objects and E ⊆

(
T
2

)
is a set of (object) pairs. The set of

neighbors of an object t is Nt = { t′ | {t, t′} ∈ E }. Each
object t ∈ T is assigned a label xt ∈ X , where X is a discrete
set. A labeling x ∈ XT is a |T |-tuple that assigns a single
label xt to each object t. When not viewed as components of
x, elements of X will be denoted by x, x′ without subscripts.

Let (T × X,EX) be another undirected graph with edges
EX = { {(t, x), (t′, x′)} | {t, t′} ∈ E, x, x′ ∈ X }. When G
is a chain, this graph corresponds to the trellis diagram, fre-
quently used to visualize Markov chains. The nodes and edges
of G will be called objects and pairs, respectively, whereas the
terms nodes and edges will refer to (T ×X,EX). The set of
all nodes and edges is I = (T ×X) ∪ EX . The set of edges
leading from a node (t, x) to all nodes of a neighboring ob-
ject t′ ∈ Nt is a pencil (t, t′, x). The set of all pencils is
P = { (t, t′, x) | {t, t′} ∈ E, x ∈ X }. Figure 1 shows how
both graphs, their parts, and labelings will be visualized.

Let an element gt(x) of a set S be assigned to each node
(t, x) and an element gtt′(x, x′) to each edge {(t, x), (t′, x′)},
where gtt′(x, x′) = gt′t(x′, x). The vector obtained by con-
catenating all gt(x) and gtt′(x, x′) is denoted by g ∈ SI .

Before starting with the max-sum labeling problem, we in-
troduce labeling problems in a more general form. It was ob-
served [11], [42]–[45] that different labeling problems can be
unified, by letting a suitable commutative semiring specify

pair {t, t′}

object t

pencil (t, t′, x)

(t′, x′)

(t, x)
node

node

edge {(t, x), (t′, x′)}

object t′

(a) (b)

Fig. 1. (a) The 3 × 4 grid graph G (i.e., |T | = 12), graph (T ×X, EX)
for |X| = 3 labels, and a labeling x (emphasized). (b) Parts of both graphs.

how different constraints are combined together. Let S en-
dowed with two binary operations ⊕ and ⊗ form a commu-
tative semiring (S,⊕,⊗). The semiring formulation of the la-
beling problem [11] is defined as computing⊕

x∈XT

[⊗
t∈T

gt(xt) ⊗
⊗

{t,t′}∈E

gtt′(xt, x
′
t)

]
. (1)

More exactly, this is the binary labeling problem, according
to the highest arity of the functions in the brackets. We will
not consider problems of higher arity.

Interesting problems are obtained, modulo isomorphisms,
by the following choices of the semiring:

(S,⊕,⊗) task
({0, 1},∨,∧) or-and problem, CSP

([−∞,∞),min,max) min-max problem
([−∞,∞),max,+) max-sum problem

([0,∞),+, ∗) sum-product problem

Note that the extended domain, S = [−∞,∞), of min-max
and max-sum problems yields a more general formulation than
usually used S = (−∞,∞).

The topic of this article is the max-sum problem but we
will briefly cover also the closely related CSP. Since semiring
({0, 1},∨,∧) is isomorphic with ({−∞, 0},max,+), CSP is
a subclass of the max-sum problem. However, we will treat
CSP separately since a lot of independent research has been
done on it. We will not discuss the sum-product problem (i.e.,
computing MRF partition function) and the min-max problem.

III. CONSTRAINT SATISFACTION PROBLEM

The constraint satisfaction problem (CSP) [3] is defined
as finding a labeling that satisfies given unary and binary con-
straints, i.e., that passes through some or all of given nodes and
edges. It was introduced, often independently, several times in
computer vision [1], [46]–[48] and artificial intelligence [49],
often under different names, such as the Consistent Labeling
Problem [50]. CSP is NP-complete. Tractable subclasses are
obtained either by restricting the structure of G (limiting its
fractional treewidth [51]) or the constraint language. In the lat-
ter, a lot of research has been done and mathematicians seem
to be close to complete classification [52]. Independently on
this, Schlesinger and Flach discovered a tractable CSP sub-
class defined by the interval condition [11], [38]. In particular,
binary CSP with Boolean variables is known to be tractable.

4

x

t t
′

x

t t
′

(a) (b)
Fig. 2. The arc consistency algorithm deletes (a) nodes not linked with some
neighbor by any edge, and (b) edges lacking an end node.

(a) (b) (c)
Fig. 3. Examples of CSPs: (a) satisfiable, hence with a non-empty kernel
which allows to form a labeling (the labeling is emphasized); (b) with an
empty kernel, hence unsatisfiable; (c) arc consistent but unsatisfiable. The
forbidden nodes are in white, the forbidden edges are not shown.

We denote a CSP instance by (G,X, ḡ). Indicators ḡt(x),
ḡtt′(x, x′) ∈ {0, 1} say if the corresponding node or edge is
allowed or forbidden. The task is to compute the set

L̄G,X(ḡ)=
{
x ∈ XT

∣∣∣ ∧
t

ḡt(xt) ∧
∧
{t,t′}

ḡtt′(xt, xt′) = 1
}
. (2)

A CSP is satisfiable if L̄G,X(ḡ) 6= ∅.
Some conditions necessary or sufficient (but not both) for

satisfiability can be given in terms of local consistencies, sur-
veyed e.g. in [53]. The simplest local consistency is arc con-
sistency. A CSP is arc consistent if∨

x′

ḡtt′(x, x′) = ḡt(x), {t, t′} ∈ E, x ∈ X. (3)

CSP (G,X, ḡ′) is a subproblem of (G,X, ḡ) if ḡ′ ≤ ḡ. The
union of CSPs (G,X, ḡ) and (G,X, ḡ′) is (G,X, ḡ ∨ ḡ′).
Here, operations ≤ and ∨ are meant componentwise. Follow-
ing [1], [9], we define the kernel of a CSP as follows. First
note that the union of arc consistent CSPs is arc consistent. To
see this, write the disjunction of (3) for arc consistent ḡ and
ḡ′ as [

∨
x′ ḡtt′(x, x′)] ∨ [

∨
x′ ḡ′tt′(x, x

′)] =
∨

x′ [ḡtt′(x, x′) ∨
ḡ′tt′(x, x

′)] = ḡt(x)∨ ḡ′t(x), obtaining that ḡ∨ ḡ′ satisfies (3).
The kernel of a CSP is the union of all its arc consistent sub-
problems. Arc consistent subproblems of a problem form a
join semilattice w.r.t. the partial ordering by inclusion ≤. The
greatest element of this semilattice is the kernel. Equivalently,
the kernel is the largest arc consistent subproblem.

The kernel can be found by the arc consistency algorithm,
known also as discrete relaxation labeling [48]. Starting with
their initial values, the variables ḡt(x) and ḡtt′(x, x′) violat-
ing (3) are iteratively set to zero by applying rules (figure 2)

ḡt(x) := ḡt(x) ∧
∨
x′

ḡtt′(x, x′), (4a)

ḡtt′(x, x′) := ḡtt′(x, x′) ∧ ḡt(x) ∧ ḡt′(x′). (4b)

The algorithm halts when no further variable can be set to
zero. It is well-known that the result does not depend on the
order of the operations.

Theorem 1: Let (G,X, ḡ∗) be the kernel of a CSP
(G,X, ḡ). It holds that L̄G,X(ḡ) = L̄G,X(ḡ∗).

Proof. The theorem is a corollary of the more general the-
orem 6, given later.

It can also be proved by the following induction argument.
If a pencil (t, t′, x) contains no edge, the node (t, x) clearly
cannot belong to any labeling (figure 2a). Therefore, the node
(t, x) can be deleted without changing L̄G,X(ḡ). Similarly, if
a node (t, x) is forbidden then no labeling can pass through
any of the pencils { (t, t′, x) | t′ ∈ Nt } (figure 2b).

A corollary of theorem 1 are the following conditions prov-
ing or disproving satisfiability. Figure 3 shows examples.

Theorem 2: Let (G,X, ḡ∗) denote the kernel of CSP
(G,X, ḡ).

• If the kernel is empty (ḡ∗ = 0) then the CSP is not
satisfiable.

• If there is a unique label in each object (
∑

x ḡ
∗
t (x) = 1

for t ∈ T) then the CSP is satisfiable.

IV. MAX-SUM PROBLEM

We now turn our attention to the central topic of the article,
the max-sum problem. Its instance is denoted by (G,X,g),
where gt(x) and gtt′(x, x′) will be called qualities. The qual-
ity of a labeling x is

F (x |g) =
∑
t∈T

gt(xt) +
∑

{t,t′}∈E

gtt′(xt, xt′). (5)

Solving the problem means finding (one, several or all ele-
ments of) the set of optimal labelings

LG,X(g) = argmax
x∈XT

F (x |g). (6)

A. Linear Programming Relaxation

Let us formulate a linear programming relaxation of the
max-sum problem (6). For that, we introduce a different rep-
resentation of labelings that allows to represent ‘partially de-
cided’ labelings. A relaxed labeling is a vector α with the
components αt(x) and αtt′(x, x′) satisfying∑

x′

αtt′(x, x′) = αt(x), {t, t′} ∈ E, x ∈ X (7a)∑
x

αt(x) = 1, t ∈ T (7b)

α ≥ 0 (7c)

where αtt′(x, x′) = αt′t(x′, x). Number αt(x) is assigned to
node (t, x), number αtt′(x, x′) to edge {(t, x), (t′, x′)}. The
set of all α satisfying (7) is a polytope, denoted by ΛG,X .
A binary vector α represents a ‘decided’ labeling; there is a
bijection between the sets XT and ΛG,X ∩ {0, 1}I , given by
αt(x) = [[xt = x]] and αtt′(x, x′) = αt(x)αt′(x′). A non-
integer α represents an ‘undecided’ labeling.

Remark 1: Constraints (7a)+(7b) are linearly dependent. To
see this, denote αt =

∑
x αx(t) and αtt′ =

∑
x,x′ αtt′(x, x′)

and sum (7a) over x, which gives αt = αtt′ . Since G is con-
nected, (7a) alone implies that αt and αtt′ are equal for the

5

whole G. Thus, ΛG,X could be represented in a less redun-
dant way by, e.g., replacing (7b) with

∑
t αt = |T |. It is shown

in [12] that dim ΛG,X = |T |(|X| − 1) + |E|(|X| − 1)2.

Remark 2: Conditions (7a)+(7c) can be viewed as a con-
tinuous generalization of arc consistency (3) in the following
sense: for any α satisfying (7a)+(7c), the CSP ḡ given by
ḡt(x) = [[αt(x) > 0]] and ḡtt′(x, x′) = [[αtt′(x, x′) > 0]]
satisfies (3).

Quality and equivalence of max-sum problems can be ex-
tended from ordinary to relaxed labelings. The quality of a
relaxed labeling α is the scalar product 〈g,α〉. Like F (• |g),
function 〈g, •〉 is invariant to equivalent transformations be-
cause 〈0ϕ,α〉 identically vanishes, as is verified by substitut-
ing (9) and (7a). The relaxed max-sum problem is the linear
program

ΛG,X(g) = argmax
α∈ΛG,X

〈g,α〉. (8)

The set ΛG,X(g) is a polytope, being the convex hull of the
optimal vertices of ΛG,X . If ΛG,X(g) has integer elements,
they coincide with LG,X(g).

The linear programming relaxation (8) was suggested by
several researchers independently: by Schlesinger in structural
pattern recognition [1], by Koster et al. as an extension of
CSP [12], by Chekuri et al. [14] for metric Markov random
fields, and in bioinformatics [16].

Solving (8) by a general linear programming algorithm, such
as simplex or interior point method, would be inefficient and
virtually impossible for large instances which occur e.g. in
computer vision. There are two ways to do better. First, the
linear programming dual of (8) is more suitable for optimiza-
tion because it has less variables. Second, a special algorithm
utilizing the structure of the task has to be designed.

Further in section IV, we formulate the dual of (11) and
interpret it as minimizing an upper bound on problem quality
by equivalent transformations, and that tightness of the relax-
ation is equivalent to satisfiability of a CSP. The subsequent
section V gives conditions for minimality of the upper bound,
implied by complementary slackness.

B. Equivalent Max-sum Problems

Problems (G,X,g) and (G,X,g′) are called equivalent
(denoted by g ∼ g′) if functions F (• |g) and F (• |g′) are
identical [1], [25], [28]. An equivalent transformation is a
change of g taking a max-sum problem to its equivalent. Fig-
ure 4 shows the simplest such transformation: choose a pencil
(t, t′, x), add a number ϕtt′(x) to gt(x), and subtract the same
number from all edges in pencil (t, t′, x).

A special equivalence class is formed by zero problems
for which F (• |g) is the zero function. By (5), the zero class
{g | g ∼ 0 } is a linear subspace of RI . Problems g and g′

are equivalent if and only if g − g′ is a zero problem.
We will parameterize any equivalence class by a vector ϕ ∈

RP with components ϕtt′(x), assigned to pencils (t, t′, x).
Variables ϕtt′(x) are called potentials in [1], [4], [9] and corre-
spond to messages in belief propagation literature. The equiv-
alent of a problem g given by ϕ is denoted by gϕ = g +0ϕ.

x

t t′

+ϕtt′(x)

−ϕtt′(x)

Fig. 4. The elementary equivalent transformation.

It is obtained by composing the elementary transformations
shown in figure 4 for all pencils, which yields

gϕ
t (x) = gt(x) +

∑
t′∈Nt

ϕtt′(x), (9a)

gϕ
tt′(x, x

′) = gtt′(x, x′)− ϕtt′(x)− ϕt′t(x′). (9b)

It is easy to see that problems g and gϕ are equivalent for
any ϕ since inserting (9) to (5) shows that F (x |gϕ) identi-
cally equals F (x |g). We would like also the converse to hold,
i.e. any two equivalent problems to be related by (9) for some
ϕ. However, this holds only if G is connected and all quali-
ties g are finite, as is given by theorem 3. Connectedness of G
is naturally satisfied in applications. The second assumption
does not seem to be an obstacle in algorithms even when the
extended domain g ∈ [−∞,∞)I is used, though we still do
not fully understand why.

Theorem 3: [54], [1], [28], [30] Let the graph G be con-
nected and g ∈ RI . F (• |g) is the zero function if and only
if there exist numbers ϕtt′(x) ∈ R such that

gt(x) =
∑

t′∈Nt

ϕtt′(x), (10a)

gtt′(x, x′) = −ϕtt′(x)− ϕt′t(x′). (10b)

The reader may skip the proof in the first reading.
Proof. The if part is easy, by verifying that (5) identically

vanishes after substituting (10). We will prove the only if part.
Since F (• |g) is the zero function and therefore it is modu-

lar (i.e., both sub- and supermodular w.r.t. to any order ≤). By
theorem 12 given later, also functions gtt′(•, •) are modular.
Any modular function is a sum of univariate functions [55].
This implies (10b).

Let x and y be two labelings that differ only in an object
t where they satisfy xt = x and yt = y. After substituting (5)
and (10b) to the equality F (x |g) = F (y |g), most terms
cancel out giving gt(x)−

∑
t′ ϕtt′(x) = gt(y)−

∑
t′ ϕtt′(y).

Since this holds for any x and y, neither side depends on x.
Thus we can denote ϕt = gt(x) −

∑
t′ ϕtt′(x). Substituting

(10) to F (• |g) = 0 yields
∑

t ϕt = 0.
To show (10a), we will give an equivalent transformation

that sets all ϕt to zero. Let G′ be a spanning tree of G. It
exists because G is connected. Find a pair {t, t′} in G′ such
that t is a leaf. Do the following transformation of (G,X,g):
set ϕtt′(x) += ϕt for all x and ϕt′t(x′) −= ϕt for all x′.
Set ϕt′ += ϕt and ϕt := 0. Remove t and {t, t′} from G′.
Repeat until G′ is empty.

As a counter-example for infinite g, consider the problem
in figure 5a and the same problem with the crossed edge be-
ing −∞. These two problems are equivalent but they are not
related by (9) for any ϕ ∈ RP .

6

〈g,α〉 → max
α

∑
t∈T

ut +
∑

{t,t′}∈E

utt′ → min
ϕ,u

(11a)

∑
x′∈X

αtt′(x, x′) = αt(x) ϕtt′(x) ∈ R, {t, t′} ∈ E, x ∈ X (11b)∑
x∈X

αt(x) = 1 ut ∈ R, t ∈ T (11c)∑
x,x′∈X

αtt′(x, x′) = 1 utt′ ∈ R, {t, t′} ∈ E (11d)

αt(x) ≥ 0 ut −
∑

t′∈Nt

ϕtt′(x) ≥ gt(x), t ∈ T, x ∈ X (11e)

αtt′(x, x′) ≥ 0 utt′ + ϕtt′(x) + ϕt′t(x′) ≥ gtt′(x, x′), {t, t′} ∈ E, x, x′ ∈ X (11f)

TABLE I

C. Schlesinger’s Upper Bound and Its Minimization

Let the height of object t and the height of pair {t, t′} be
respectively

ut = max
x

gt(x), utt′ = max
x,x′

gtt′(x, x′). (12)

The height of a max-sum problem (G,X,g) is

U(g) =
∑

t

ut +
∑
{t,t′}

utt′ . (13)

Comparing corresponding terms in (5) and (13) yields that the
problem height is an upper bound of quality, i.e., any g and
any x satisfy F (x |g) ≤ U(g).

Unlike the quality function, the problem height is not in-
variant to equivalent transformations. This naturally leads to
minimizing this upper bound by equivalent transformations,
expressed by the linear program

U∗(g) = min
g′∼g

U(g′) (14a)

= min
ϕ∈RP

[∑
t

max
x

gϕ
t (x) +

∑
{t,t′}

max
x,x′

gϕ
tt′(x, x

′)
]
.(14b)

Remark 3: Some equivalent transformations preserve U(g),
e.g., adding a constant to all nodes of an object and subtracting
the same constant from all nodes of another object. Thus, there
may be many problems with the same height within every
equivalence class. This gives an option to impose constraints
on ut and utt′ in the minimization and reformulate (14) in a
number of ways, e.g.

U∗(g) = min
ϕ∈RP | gϕ

tt′ (x,x′)≤0

∑
t

max
x

gϕ
t (x) (15a)

= |T | min
ϕ∈RP | gϕ

tt′ (x,x′)≤0
max

t
max

x
gϕ

t (x). (15b)

Form (15a) corresponds to imposing utt′ ≤ 0. Form (15b)
corresponds to utt′ ≤ 0 and ut = ut′ = u. Other natural
constraints are ut = 0, or ut = ut′ = utt′ .

D. Trivial Problems

Node (t, x) is a maximal node if gt(x) = ut. Edge
{(t, x), (t′, x′)} is a maximal edge if gtt′(x, x′) = utt′ , where
u is given by (12). Let this be expressed by Boolean variables

ḡt(x)=[[gt(x) = ut]], ḡtt′(x, x′)=[[gtt′(x, x′) = utt′]]. (16)

A max-sum problem is trivial if a labeling can be formed of
(some or all of) its maximal nodes and edges, i.e., if the CSP
(G,X, ḡ) with ḡ given by (16) is satisfiable. It is easy to see
that the upper bound is tight, i.e. F (x |g) = U(g) for some
x, for and only for trivial problems. This allows to formulate
the following theorem, central to the whole approach.

Theorem 4: Let C be a class of equivalent max-sum prob-
lems. Let C contain a trivial problem. Then any problem in
C is trivial if and only if its height is minimal in C.

Proof. Let (G,X,g) be a trivial problem in C. Let a labeling
x be composed of the maximal nodes and edges of (G,X,g).
Any g′ ∼ g satisfies U(g′) ≥ F (x |g′) = F (x |g) = U(g).
Thus (G,X,g) has minimal height.

Let (G,X,g) be a non-trivial problem with minimal height
in C. Any g′ ∼ g and any optimal x satisfy U(g′) ≥ U(g) >
F (x |g) = F (x |g′). Thus C contains no trivial problem.
Theorem 4 allows to divide the solution of a max-sum problem
into two steps:

1) minimize the problem height by equivalent transforma-
tions,

2) test the resulting problem for triviality.
If the resulting problem with minimal height is trivial, i.e.
(G,X, ḡ) is satisfiable, then LG,X(g) = L̄G,X(ḡ). If not, by
theorem 4 the max-sum problem has no trivial equivalent and
remains unsolved. In the former case the relaxation (8) is tight
and in the latter case it is not.

Testing for triviality is NP-complete, equivalent to CSP.
Thus, recognizing whether a given upper bound is tight is NP-
complete. Even if we knew that a given upper bound U(g) is
tight, finding a labeling x such that F (x |g) = U(g) still
would be NP-complete. We can prove or disprove tightness of
an upper bound only in special cases, such as those given by
theorem 2.

Figure 3, giving examples of CSPs, can be interpreted also
in terms of triviality if we imagine that the black nodes are
maximal, the white nodes are non-maximal, and the shown
edges are maximal. Then figure 3a shows a trivial prob-
lem (thus having minimal height), 3b a problem with a non-
minimal height (hence non-trivial), and 3c a non-trivial prob-
lem with minimal height.

Note that not every polynomially solvable subclass of the
max-sum problem has a trivial equivalent: e.g., if G is a simple

7

loop dynamic programming is applicable but figure 3c shows
there might be no trivial equivalent.

E. Linear Programming Duality

The linear programs (8) and (14) are dual to each other [1,
theorem 2]. To show this, we wrote them together in equa-
tion (11) (table I) such that a constraint and its Lagrange mul-
tiplier are on the same line, as is usual in linear programming.

The pair (11) can be slightly modified, corresponding to
modifications of the primal constraints (7) and imposing con-
straints on dual variables u, as discussed in remarks 1 and 3.

Duality of (8) and upper bound minimization was indepen-
dently shown also by Wainwright et al. [15], [24] in the frame-
work of convex combinations of trees. In our case, when the
trees are objects and object pairs, proving the duality is more
straightforward then for general trees.

Schlesinger and Kovalevsky [56] proposed elegant physical
models of the pair (11). We described one of them in [41].

V. CONDITIONS FOR MINIMAL UPPER BOUND

This section discusses how we can recognize that the height
U(g) of a max-sum problem is minimal among its equivalents,
i.e., that g is optimal to (11). The main result will be that a
non-empty kernel of the CSP formed by the maximal nodes
and edges is necessary but not sufficient for minimal height.

To test for optimality of (11), linear programming duality
theorems [57] give us a starting point. By weak duality, any g
and any α ∈ ΛG,X satisfy 〈g,α〉 ≤ U(g). By strong duality,
〈g,α〉 = U(g) if and only if g has minimal height and α has
maximal quality. By complementary slackness, 〈g,α〉 = U(g)
if and only if α is zero on non-maximal nodes and edges.

To formalize the last statement, we define the relaxed
CSP (G,X, ḡ) as finding relaxed labelings on given nodes
and edges, i.e., finding the set Λ̄G,X(ḡ) of relaxed labelings
α ∈ ΛG,X satisfying the complementarity constraints

[1− ḡt(x)]αt(x) = 0, [1− ḡtt′(x, x′)]αtt′(x, x′) = 0. (17)

Thus, Λ̄G,X(ḡ) is the set of solutions to system (7)+(17). A
CSP (G,X, ḡ) is relaxed-satisfiable if Λ̄G,X(ḡ) 6= ∅.

Further in this section, we let ḡ denote a function of g
given by (16). In other words, (G,X, ḡ) is not seen as an
independent CSP but it is composed of the maximal nodes
an edges of the max-sum problem (G,X,g). Complementary
slackness now reads as follows.

Theorem 5: The height of (G,X,g) is minimal of all its
equivalents if and only if (G,X, ḡ) is relaxed-satisfiable. If it
is so then ΛG,X(g) = Λ̄G,X(ḡ).

A. Non-empty Kernel Necessary for Minimal Upper Bound

In section III, the concepts of arc consistency and kernel
have been shown useful for characterizing CSP satisfiability.
They are useful also for characterizing relaxed satisfiability.
To show that, we first generalize the result that taking kernel
preserves L̄G,X(ḡ):

Theorem 6: Let (G,X, ḡ∗) be the kernel of a CSP
(G,X, ḡ). Then Λ̄G,X(ḡ) = Λ̄G,X(ḡ∗).

Proof. Obvious from the argument in section III. A formal
proof in [41].

Thus, theorem 2 can be extended to relaxed labelings:

Theorem 7: A non-empty kernel of (G,X, ḡ) is neces-
sary for its relaxed satisfiability, hence for minimal height of
(G,X,g).

Proof. An immediate corollary of theorem 6. Alternatively,
it is instructive to consider also the following dual proof.

We will denote the height of pencil (t, t′, x) by utt′(x) =
maxx′ gtt′(x, x′) and call (t, t′, x) a maximal pencil if it con-
tains a maximal edge. Let us modify the arc consistency al-
gorithm such that rather than by explicitly zeroing variables
ḡ like in (4), nodes and edges of (G,X, ḡ) are deleted by re-
peating the following equivalent transformations on (G,X,g):

• Find a pencil (t, t′, x) such that utt′(x) < utt′ and
gt(x) = ut. Decrease node (t, x) by ϕtt′(x) = 1

2 [utt′ −
utt′(x)]. Increase all edges in pencil (t, t′, x) by ϕtt′(x).

• Find a pencil (t, t′, x) such that utt′(x) = utt′ and
gt(x) < ut. Increase node (t, x) by ϕtt′(x) = 1

2 [ut −
gt(x)]. Decrease all edges in pencil (t, t′, x) by ϕtt′(x).

When no such pencil exists, the algorithm halts.
If the kernel of (G,X, ḡ) was initially non-empty, the algo-

rithm halts after the maximal nodes and edges that were not in
the kernel are made non-maximal. If the kernel was initially
empty, the algorithm sooner or later decreases the height of
some node or edge, hence U(g).

The algorithm in the proof has only a theoretical value. In
practice, it is useless due to its slow convergence.

B. Non-empty Kernel Insufficient for Minimal Upper Bound

One might hope that non-empty kernel is not only neces-
sary but also sufficient for relaxed satisfiability. Unfortunately,
this is false, as was observed by Schlesinger [8] and, analogi-
cally in terms of convex combination of trees, by Kolmogorov
[28], [30]. Figures 5b,c,d show counter-examples. We will jus-
tify these counter-examples first by giving a primal argument
(i.e., by showing that (G,X, ḡ) is not relaxed-satisfiable) then
by giving a dual argument (i.e., by giving an equivalent trans-
formation that decreases U(g)).

1) Primal argument: Let (G,X, ḡ∗) denote the kernel of
a CSP (G,X, ḡ). Consider an edge {(t, x), (t′, x′)}. By theo-
rem 6, existence of α ∈ Λ̄G,X(ḡ) such that αtt′(x, x′) > 0 im-
plies ḡ∗tt′(x, x

′) = 1. Less obviously, the opposite implication
is false. In other words, the fact that an edge belongs to the ker-
nel is necessary but not sufficient for some relaxed labeling to
be non-zero on this edge. The same holds for nodes. Figure 5a
shows an example: it can be verified that system (7a)+(17) im-
plies that αtt′(x, x′) = 0 on the edge marked by the cross.

In figures 5b and 5c, the only solution to system (7a)+(17)
is α = 0, therefore ḡ is relaxed-unsatisfiable. Note that 5b
contains 5a as its part.

2) Dual argument: The analogical dual observation is that
the kernel of (G,X, ḡ) is not invariant to equivalent trans-
formations of (G,X,g). Consider the transformations in fig-
ure 5, depicted by non-zero values of ϕtt′(x) written next to

8

−1+1

−1

−1+1

+1
−1 +1

−1 +1

+1 −1

−1

+1 −1

+1

−1 +1

−1+1

+1

−1

−1+1

−1

+1

+1

−1

−1 +1

−2+1

+1

−2
+2

−2

+2
−2

+2

−1−1

(a) (b) (c) (d)
Fig. 5. Examples of kernels not invariant to equivalent transformations. The shown edges have quality 0 and the not shown edges −∞. Problem (a) has
minimal height, problems (b, c) do not; in particular, for (b, c) system (7a)+(7b)+(17) is unsolvable. For problem (d), system (7a)+(7b)+(17) is solvable but
system (7a)+(7b)+(7c)+(17) is not.

the line segments crossing edge pencils (t, t′, x). In each sub-
figure, the shown transformation makes the edge marked by
the cross non-maximal and thus deletes it from the kernel. Af-
ter this, the kernel in figure 5a still remains non-empty while
the kernels in 5b and 5c become empty, as is verified by doing
the arc consistency algorithm by hand. Thus, in 5b and 5c a
non-empty kernel of (G,X, ḡ) does not suffice for minimality
of the height of (G,X,g).

In figures 5b and 5c, system (7a)+(7b)+(17) has no solution,
without even considering constraint (7c). Figure 5d shows a
more advanced counter-example, where system (7a)+(7b)+(17)
has a (single) solution but this solution violates (7c).

C. Boolean Max-sum Problems
For problems with Boolean variables (|X| = 2), Schlesinger

observed [54] that a non-empty kernel is both necessary and
sufficient for minimal upper bound. Independently, the equiv-
alent observation was made by Kolmogorov and Wainwright
[19], [31], who showed that weak tree agreement is sufficient
for minimality of Wainwright’s tree-based upper bound [24].
In addition, both noticed that for Boolean variables at least one
relaxed labeling is half-integral; an analogical observation was
made in pseudo-Boolean optimization [18], referring to [58].

Theorem 8: Let a CSP (G,X, ḡ) with |X| = 2 labels have
a non-empty kernel. Then Λ̄G,X(ḡ) ∩ {0, 1

2 , 1}
I 6= ∅.

Proof. We will prove the theorem by constructing a relaxed
labeling α ∈ Λ̄G,X(ḡ) ∩ {0, 1

2 , 1}
I .

Delete all nodes and edges not in the kernel. Denote the
number of nodes in object t and the number of edges in pair
{t, t′} by nt =

∑
x ḡt(x) and ntt′ =

∑
x,x′ ḡtt′(x, x′), respec-

tively. All object pairs can be partitioned into five classes (up
to swapping labels), indexed by triplets (nt, nt′ , ntt′):

(1, 1, 1) (1, 2, 2) (2, 2, 2) (2, 2, 3) (2, 2, 4)

Remove one edge in each pair of class (2, 2, 3) and two
edges in each pair of class (2, 2, 4) such that they be-
come (2, 2, 2). Now there are only pairs of classes (1, 1, 1),
(1, 2, 2) and (2, 2, 2). Let αt(x) = ḡt(x)/nt and αtt′(x, x′) =
ḡtt′(x, x′)/ntt′ . Clearly, this α belongs to Λ̄G,X(ḡ).

For |X| > 2, a relaxed labeling that is an integer multiple
of |X|−1 may not exist. A counter-example is in figure 6.

1

4

1

2

1

4

1

4

1

4

3

4

1

4

1

2
1

4

1

2
1

4

Fig. 6. A CSP for which Λ̄G,X(ḡ) has a single element α that is not an inte-
ger multiple of |X|−1. This can be verified by solving system (7a)+(7b)+(17).

D. Summary: Three Kinds of Consistency

To summarize, we have met three kinds of ‘consistency’,
related by implications as follows:

ḡ satisfiable
g trivial ⇒ ḡ relaxed-satisfiable

height of g minimal ⇒ kernel of ḡ non-empty.

The opposite implications do not hold in general. Excep-
tions are problems with two labels, for which non-empty ker-
nel equals relaxed satisfiability, and supermodular max-sum
problems (lattice CSPs) and problems on trees for which non-
empty kernel equals satisfiability.

Testing for the first condition is NP-complete. Testing for
the last condition is polynomial and simple, based on arc con-
sistency. Testing for the middle condition is polynomial (solv-
able by linear programming) but we do not know any effi-
cient algorithm to do this test for large instances. The diffi-
culty seems to be in the fact that while arc consistency can be
tested by local operations, relaxed satisfiability is probably an
inherently non-local property.

To our knowledge, all known efficient algorithms for de-
creasing the height of max-sum problems use arc consistency
or non-empty kernel as their termination criterion. We will re-
view two such algorithms in sections VI and VII. Existence
of arc consistent but relaxed-unsatisfiable configurations is un-
pleasant here because these algorithms need not find the min-
imal problem height. Analogical spurious minima occur also
in the sequential tree-reweighted message passing (TRW-S)
algorithm, as observed by Kolmogorov [27]–[30]. Omitting a
formal proof, we argue that they are of the same nature as arc
consistent relaxed-unsatisfiable states.

9

VI. MAX-SUM DIFFUSION

This section describes the max-sum diffusion algorithm [6],
[7] to decrease the upper bound (13). It can be viewed as a
coordinate descent method.

The diffusion is related to edge-based message passing by
Wainwright [24, algorithm 1] but, unlike the latter, it is con-
jectured to always converge. Also, it can be viewed as the
sequential tree-reweighted message passing (TRW-S) by Kol-
mogorov [27], [30], with the trees being nodes and edges (we
omit a detailed proof). The advantage of the diffusion is its
simplicity: it is even simpler than belief propagation.

A. The Algorithm

The node-pencil averaging on pencil (t, t′, x) is the equiv-
alent transformation that makes gt(x) and utt′(x) equal, i.e.,
which adds number 1

2 [utt′(x)− gt(x)] to gt(x) and subtracts
the same number from qualities of all edges in pencil (t, t′, x).
Recall that utt′(x) = maxx′ gtt′(x, x′). In its simplest form,
the max-sum diffusion algorithm repeats node-pencil averag-
ing until convergence, on all pencils in any order such that
each pencil is visited ‘sufficiently often’. The following code
does it (with a deterministic order of pencils):

repeat
for (t, t′, x) ∈ P do
ϕtt′(x) += 1

2 [maxx′ gϕ
tt′(x, x

′)− gϕ
t (x)];

end for
until convergence
g := gϕ;

Remark 4: The algorithm can be easily made slightly more
efficient. If a node (t, x) is fixed and node-pencil averaging is
iterated on pencils { (t, t′, x) | t′ ∈ Nt } till convergence, the
heights of all these pencils and gt(x) become equal. This can
be done by a single equivalent transformation on node (t, x).

B. Monotonicity

When node-pencil averaging is done on a single pencil, the
problem height can decrease, remain unchanged, or increase.
For an example when the height increases, consider a max-
sum problem with X = {1, 2} such that for some pair {t, t′},
we have gt(1) = gt(2) = 1 and utt′(1) = utt′(2) = −1. After
the node-pencil averaging on (t, t′, 1), U(g) increases by 1.

Monotonic height decrease can be ensured by choosing an
appropriate order of pencils as given by theorem 9. This shows
that the diffusion is a coordinate descent method.

Theorem 9: After the equivalent transformation consisting
of |X| node-pencil averagings on pencils { (t, t′, x) | x ∈ X },
the problem height does not increase.

Proof. Before the transformation, the contribution of object
t and pair {t, t′} to U(g) is maxx gt(x)+maxx utt′(x). After
the transformation, this contribution is maxx[gt(x)+utt′(x)].
The first expression is not smaller than the second one be-
cause any two functions f1(x) and f2(x) satisfy maxx f1(x)+
maxx f2(x) ≥ maxx[f1(x) + f2(x)].

Fig. 7. A max-sum problem satisfying (18). A line segment starting from
node (t, x) and aiming to but not reaching (t′, x′) denotes an edge satisfying
gt(x) = gtt′ (x, x′) < gt′ (x

′). If gt(x) = gtt′ (x, x′) = gt′ (x
′), the line

segment joins the nodes (t, x) and (t′, x′). The grey levels help distinguish
different layers; the highest layer is emphasized.

C. Properties of the Fixed Point

Based on numerous experiments, it was conjectured that
the max-sum diffusion always converges. In addition, its fixed
points can be characterized as follows:

Conjecture 1: For any g ∈ [−∞,∞)I , the max-sum dif-
fusion converges to a solution of the system

max
x′

gtt′(x, x′) = gt(x), {t, t′} ∈ E, x ∈ X. (18)

We are not aware of any proof of this conjecture.
Any solution to (18) has the following layered structure (see

figure 7). A layer is a maximal connected subgraph of graph
(T ×X,EX) such that its each edge {(t, x), (t′, x′)} satisfies
gt(x) = gtt′(x, x′) = gt′(x′). By (18), all nodes and edges of
a layer have the same quality, the height of the layer. The
highest layer is formed by the maximal nodes and edges.

Property (18) implies arc consistency of the maximal nodes
and edges, as given by theorem 10. However, the converse is
false: not every max-sum problem with arc consistent maximal
nodes and edges satisfies (18).

Theorem 10: If a max-sum problem satisfies (18) then its
maximal nodes and edges form an arc consistent CSP.

Proof. Suppose (18) holds. By (3), we are to prove that a
pencil (t, t′, x) is maximal if and only if node (t, x) is max-
imal. If (t, x) is maximal, then utt′(x) = gt(x) ≥ gt(x′) =
utt′(x′) for each x′, hence (t, t′, x) is maximal. If (t, x) is
non-maximal, then utt′(x) = gt(x) < gt(x′) = utt′(x′) for
some x′, hence (t, t′, x) is not maximal.

Since the max-sum problems in figures 5b,c,d satisfy (18),
diffusion fixed points can have a non-minimal upper bound
U(g). This is a serious drawback of the algorithm.

More on max-sum diffusion can be found in the recent
works [59], [60].

VII. THE AUGMENTING DAG ALGORITHM

This section describes the height-decreasing algorithm given
in [4], [9]. Its main idea is as follows: run the arc consistency

10

algorithm on the maximal nodes and edges, storing the point-
ers to the causes of deletions. When all nodes in a single
object are deleted, it is clear that the kernel is empty. Back-
tracking the pointers provides a directed acyclic graph (DAG),
called the augmenting DAG, along which a height-decreasing
equivalent transformation is done.

The algorithm has been proved to converge in a finite num-
ber of steps [1] if it is modified as follows: maximality of
nodes and edges is redefined using a threshold, ε. We will
first explain the algorithm without this modification and re-
turn to it at the end of the section.

The iteration of the algorithm proceeds in three phases,
described in subsequent sections. We use formulation (15a),
i.e., we look for ϕ that minimizes U(gϕ) =

∑
t maxx g

ϕ
t (x)

subject to the constraint that all edges are non-positive,
gϕ

tt′(x, x
′) ≤ 0. Initially, all edges are assumed non-positive.

A. Phase 1: Arc Consistency Algorithm

The arc consistency algorithm is run on the maximal nodes
and edges. It is not done exactly as described by rules (4) but
in a slightly modified way as follows.

A variable pt(x) ∈ {ALIVE, NONMAX} ∪ T is assigned to
each node (t, x). Initially, we set pt(x) := ALIVE if (t, x) is
maximal and pt(x) := NONMAX if (t, x) is non-maximal.

If a pencil (t, t′, x) is found satisfying pt(x) = ALIVE and
violating condition

(∃x′)
[

edge {(t, x), (t′, x′)} is maximal,
pt′(x′) = ALIVE

]
, (19)

node (t, x) is deleted by setting pt(x) := t′. The object t′

is called the deletion cause of node (t, x). This is repeated
until either no such pencil exists, or an object t∗ is found
with pt∗(x) 6= ALIVE for all x ∈ X . In the former case,
the augmenting DAG algorithm halts. In the latter case, we
proceed to the next phase.

After every iteration of this algorithm, the maximal edges
and the variables pt(x) define a directed acyclic subgraph D
of graph (T ×X,EX), as follows: the nodes of D are the end
nodes of its edges; edge ((t, x), (t′, x′)) belongs to D if and
only if it is maximal and pt(x) = t′. Once t∗ has been found,
the augmenting DAG D(t∗) is a subgraph of D reachable by
a directed path in D from the maximal nodes of t∗.

Example. The example max-sum problem in figure 8 has T =
{a, . . . , f} and the labels in each object are 1, 2, 3, numbered
from bottom to top. Figure 8a shows the maximal edges and
the values of pt(x) after the first phase, when 10 nodes have
been deleted by applying rule (19) successively on pencils
(c, a, 2), (c, a, 3), (e, c, 1), (e, c, 3), (f, e, 3), (d, c, 2), (b, d, 2),
(a, b, 2), (d, b, 1), (f, d, 1). The non-maximal edges are not
shown. The nodes with pt(x) = ALIVE are small filled, with
pt(x) = NONMAX small unfilled, and with pt(x) ∈ T large
filled. For the deleted nodes, the causes pt(x) are denoted by
short segments across pencils (t, pt(x), x). The object t∗ = f
has a black outline.

Figure 8a shows D after t∗ has been found and figure 8b
shows D(t∗). The edges of D and D(t∗) are emphasized and
the nodes, except (a, 3), too.

(a)

b d

eca

f

(b)

-1

-1

-1-1

-1

+1

+1

-1

+1

+1

+1

+1

+1

-1

-2

+2

b d

eca

f

Fig. 8. (a) The augmenting DAG algorithm after phase 1; (b) after phase 2.

B. Phase 2: Finding the Search Direction
The direction of height decrease is found in the space RP ,

i.e., a vector ∆ϕ is found such that U(gϕ+λ∆ϕ) < U(gϕ)
for a small positive λ.

Denoting ∆ϕt(x) =
∑

t′∈Nt
∆ϕtt′(x), the vector ∆ϕ has

to satisfy

−∆ϕt∗(x) = 1 if pt∗(x) 6= NONMAX,

∆ϕt(x) ≤ 0 if pt(x) 6= NONMAX,

∆ϕtt′(x)+∆ϕt′t(x′) ≥ 0 if {(t, x), (t′, x′)} maximal.

We find the smallest vector ∆ϕ satisfying these. This is done
by traversing D(t∗) from roots to leaves, successively enforc-
ing these constraints for all its nodes and edges. The traversal
is done in a linear order on D(t∗), i.e., a node is not vis-
ited before the tails of all edges entering it have been visited.
In figure 8b, the non-zero numbers ∆ϕtt′(x) are written near
their pencils.

C. Phase 3: Finding the Search Step
The search step length λ is found such that no edge becomes

positive, the height of no object is increased, and the height
of t∗ is minimized. These read respectively

gϕ+λ∆ϕ
tt′ (x, x′) ≤ 0,

gϕ+λ∆ϕ
t (x) ≤ max

x
gϕ

t (x),

gϕ+λ∆ϕ
t∗ (x) ≤ max

x
gϕ

t∗(x)− λ.

To justify the last inequality, see that each node of t∗ with
pt∗(x) ∈ T decreases by λ and each node with pt∗(x) =
NONMAX increases by λ∆ϕt∗(x). The latter is because D(t∗)
can have a leaf in t∗. To minimize the height of t∗, the nodes
with pt∗(x) = NONMAX must not become higher than the nodes
with pt∗(x) ∈ T .

Solving the above three conditions for λ yields the system

λ ≤
gϕ

tt′(x, x
′)

∆ϕtt′(x) + ∆ϕt′t(x′)
if ∆ϕtt′(x) + ∆ϕt′t(x′) < 0,

λ ≤ ut − gϕ
t (x)

[[t = t∗]] + ∆ϕt(x)
if [[t = t∗]] + ∆ϕt(x) > 0.

11

We find the greatest λ satisfying these.
The iteration of the augmenting DAG algorithm is com-

pleted by the equivalent transformation ϕ += λ∆ϕ.
For implementation details, refer to [4], [41].

The algorithm sometimes spends a lot of iterations to min-
imize the height in a subgraph of G accurately [61]. This is
wasteful because this accuracy is destroyed once the subgraph
is left. This behavior, somewhat similar to the well-known in-
efficiency of the Ford-Fulkerson max-flow algorithm, can be
reduced by redefining maximality of nodes and edges using a
threshold ε > 0 as follows [4]: node (t, x) is maximal if and
only if −gϕ

tt′(x, x
′) ≤ ε, and edge {(t, x), (t′, x′)} is maximal

if and only if −gϕ
tt′(x, x

′) ≤ ε. If ε is reasonably large, ‘nearly
maximal’ nodes and edges are considered maximal and often
a larger λ results. With ε > 0, the algorithm terminates in
finite number of iterations [4]. A possible scheme is to run
the algorithm several times, exponentially decreasing ε.

Since they are arc-consistent, the problems in figures 5b,c,d
are termination states of the algorithm. Thus, the algorithm
can terminate with a non-minimal upper bound U(g).

VIII. SUPERMODULAR MAX-SUM PROBLEMS

(Super-) submodularity, for bivariate functions also known
as (inverse) Monge property [62], is well-known to simplify
many optimization tasks; in fact, it can be considered a dis-
crete counterpart of convexity [63]. It is long known that set
supermodular max-sum problems can be translated to max-
flow/min-cut [17], [64] and therefore are tractable. Some
authors suggested this independently, e.g. Kolmogorov and
Zabih [36]. Others showed translation to max-flow for other
subclasses of the supermodular max-sum problem: Greig et al.
[65]; Ishikawa and Geiger [66], [67] for the bivariate func-
tions being convex univariate functions of differences of vari-
able pairs; Cohen et al. for Max CSP [34]. D. Schlesinger and
Flach [68] gave the translation to max-flow of the full class of
supermodular max-sum problems; importantly, this is a spe-
cial case of the more results that max-sum problem with any
number of labels can be transformed to a problem with two
labels [68]. In many of these works, especially in computer
vision, connection with supermodularity was not noticed and
the property was given ad hoc names.

Tractability of supermodular max-sum problems follows
from a more general result. Their objective function is a spe-
cial case of a supermodular function on a product of chains,
which is in turn a special case of a supermodular function
on a distributive lattice. Submodular functions with Boolean
variables can be minimized in polynomial time [69], [70] and
for submodular functions on distributive lattices, even strongly
polynomial algorithms exist [71], [72].

Linear programming relaxation (11) was shown tight for
supermodular problems by Schlesinger and Flach [11] and,
independently, for Boolean supermodular problems by Kol-
mogorov and Wainwright [19], [31] using convex combina-
tion of trees [15], [24]. Further in this section, we prove this,
following [11].

In particular, we will prove that if the function F (x |g)
(or, equivalently, the functions gtt′(•, •)) is supermodular then

x

t t′

x′

y′y

(a) (b)
Fig. 9. (a) An arc consistent lattice CSP is always satisfiable because
a labeling on it can be found by picking the lowest label in each ob-
ject separately (emphasized). (b) Supermodular max-sum problems satisfy
gtt′ (x, x′) + gtt′ (y, y′) ≥ gtt′ (x, y′) + gtt′ (y, x′) for every x ≤ y and
x′ ≤ y′. It follows that the poset L̄tt′ = { (x, x′) | gtt′ (x, x′) = utt′ } is
a lattice. In the pictures, the order ≤ is given by the vertical direction.

the max-sum problem has a trivial equivalent and finding an
optimal labeling is tractable. We will proceed in two steps:
first, we’ll show that a certain subclass of CSP is tractable and,
moreover, satisfiable if its kernel is non-empty; second, we’ll
show that the maximal nodes and edges of a supermodular
problem always form a CSP in this subclass.

We assume that the label set X is endowed with a (known)
total order ≤, i.e., the poset (X,≤) is a chain. The product
(Xn,≤) of n these chains is a distributive lattice, with the new
partial order given componentwise, and with meet ∧ (join ∨)
being componentwise minimum (maximum). In this section,
∧ and ∨ denote meet and join rather than logical conjunction
and disjunction. See [41], [55], [73] for background on lattices
and supermodularity.

Let L̄tt′ = { (x, x′) | ḡtt′(x, x′) = 1 }. We call (G,X, ḡ) a
lattice CSP if the poset (L̄tt′ ,≤) is a lattice (i.e., is closed
under meet and join) for every {t, t′} ∈ E. Note, it follows
easily that for a lattice CSP, L̄G,X(ḡ) is also a lattice. Theo-
rem 11 shows that lattice CSPs are tractable.

Theorem 11: Any arc consistent lattice CSP (G,X, ḡ) is
satisfiable. The ‘lowest’ labeling x =

∧
L̄G,X(ḡ) is given by

xt = min{x ∈ X | ḡt(x) = 1 } (xt are the components of x).
Proof. It is obvious from figure 9a that the ‘lowest’ nodes

and edges form a labeling. Here is a formal proof.
Let xt = min{x ∈ X | ḡt(x) = 1 }. We’ll show that

ḡtt′(xt, xt′) = 1 for {t, t′} ∈ E. Pick {t, t′} ∈ E. By (3),
pencil (t, t′, xt) contains at least one edge, while pencils
{ (t, t′, x) | x < xt } are empty. Similarly for pencils (t′, t, xt′)
and { (t′, t, x′) | x′ < xt′ }. Since (L̄tt′ ,≤) is a lattice, the
meet of the edges in pair {t, t′} is {(t, xt), (t′, xt′)}.

Recall that a function f : A → R on a lattice (A,≤) is
supermodular if all a, b ∈ A satisfy

f(a ∧ b) + f(a ∨ b) ≥ f(a) + f(b). (20)

In particular, a bivariate function f (i.e., (A,≤) is a product
of two chains, (X2,≤)) is supermodular if and only if x ≤ y
and x′ ≤ y′ implies f(x, x′) + f(y, y′) ≥ f(x, y′) + f(y, x′).

We say (G,X,g) is a supermodular max-sum problem if
all the functions gtt′(•, •) are supermodular on (X2,≤). The
following theorem shows that this is equivalent to supermod-
ularity of the function F (• |g).

12

Theorem 12: The function F (• |g) is supermodular if and
only if all the bivariate functions gtt′(•, •) are supermodular.

Proof. The if part is true because by (20), a sum of super-
modular function is supermodular.

The only if part. Pick a pair {t, t′}. Let two labelings x,y ∈
XT be equal in all objects except t and t′ where they satisfy
xt ≤ xt′ and yt ≥ yt′ . If F (• |g) is supermodular, by (20) it
is F (x ∧ y |g) + F (x ∨ y |g) ≥ F (x |g) + F (y |g). After
substitution from (5) and some manipulations, we are left with
gtt′(xt, yt′) + gtt′(yt, xt′) ≥ gtt′(xt, xt′) + gtt′(yt, yt′).

Function F (• |g) is invariant to equivalent transformations.
Theorem 12 implies that supermodularity of gtt′(•, •) is so
too. This is also seen from the fact that an equivalent transfor-
mation means adding a zero problem, which is modular, and
supermodularity is preserved by adding a modular function.

The following theorem shows that the maximal nodes and
edges of a supermodular problem form a lattice CSP.

Theorem 13: [55] The set A∗ of maximizers of a super-
modular function f on a lattice A is a sublattice of A.

Proof. Let a, b ∈ A∗. Denote p = f(a) = f(b), q = f(a∧b),
and r = f(a ∨ b). Maximality of p implies p ≥ q and p ≥ r.
Supermodularity condition q + r ≥ 2p yields p = q = r.

The theorem can be applied to function f being either
gtt′(•, •) or F (• |g). This completes the proof that every su-
permodular max-sum problem has a trivial equivalent and is
tractable.

IX. APPLICATION TO STRUCTURAL IMAGE ANALYSIS

Even if this article primarily focuses on theory, we present
an example of applying the approach to structural image anal-
ysis. It is motivated by those in [1], [9] and we give more such
examples in [41]. The task is different from non-supermodular
problems of Potts type and arising from stereo reconstruction,
experimentally examined in [19], [28], [29], [31], [74], [75],
in the fact that a lot of edge qualities are −∞. In that, our
example is closer to CSP. In the sense of [1], [9], it can be
interpreted as finding the ‘nearest’ image belonging to the lan-
guage generated by a given 2D grammar (in full generality,
2D grammars include also hidden variables). If qualities are
viewed as log-likelihoods, the task corresponds to finding the
maximum of a Gibbs distribution.

Let the following be given. Let G represent a 4-connected
image grid. Each pixel t ∈ T has a label from X = {E, I, T, L,
R}. Numbers gtt′(x, x′) are given by figure 10a, which shows
three pixels forming one horizontal and one vertical pair, as
follows: the solid edges have quality 0, the dashed edges − 1

2 ,
and the edges not shown −∞. The functions gtt′(•, •) for all
vertical pairs are equal, as well as for all horizontal pairs.

Numbers f(E) = f(I) = 1 and f(T) = f(L) = f(R) = 0
assign an intensity to each label. Thus, f(x) = { f(xt) | t ∈
T } is the black-and-white image corresponding to labeling x.

First, assume that gt(x) = 0 for all t and x. The set
{ f(x) | F (x |g) > −∞} contains images feasible to the 2D
grammar (G,X,g), here, images of multiple non-overlapping
black ‘free-form’ characters ‘Π’ on white background. An ex-
ample of such an image with labels denoted is in figure 10b.
The number of characters in the image is −F (x |g).

T

L

R R

L

T

R

L

I

E

E

I

E

I

T

EEEEEEE EEEEEEE EEEEEEE EEEEEEE EEEEEEE EEEEEEEE E E E E E

E E

E E

E E

E E

E E E E E

I I

I I

I I

L

L

L R

R

R

TT

E

TT

(a) (b)

(c) (d) (e)

Fig. 10. The ‘Letters Π’ example. (a) The vertical and horizontal pixel
pair defining the problem. (b) A labeled image feasible to this definition. The
input image in (d) is the image in (c) plus independent Gaussian noise. (e)
The output image. Image size 50× 50 pixels.

Let an input image { ft | t ∈ T } be given. The numbers
gt(x) = −c [ft − f(x)]2 quantify similarity between the input
image and the intensities of the labels; we set c = 1

6 . Setting
the dashed edges in figure 10a to a non-zero value discourages
images with a large number of small characters, which can be
viewed as a regularization.

For the input in figure 10d, we minimized the height of the
max-sum problem (G,X,g) by the augmenting DAG algo-
rithm and then computed the kernel of the CSP formed by
the maximal nodes and edges. To get a partial and suboptimal
solution to the CSP, we used the unique label condition from
theorem 2. The result is in figure 10e. A pixel t with a unique
maximal node (t, x) is black or white as given by f(x), a pixel
with multiple maximal nodes is gray. Unfortunately, there are
rather many ambiguous pixels.

It turns out that if X and g are redefined by adding two
more labels as shown in figure 11, a unique label in each
pixel is obtained. We observed this repeatedly: of several for-
mulations of the max-sum problem defining the same feasible
set { f(x) | F (x |g) > −∞}, some (usually not the simplest
ones) provide tight upper bounds more often.

For figure 10, the runtime of the augmenting DAG algo-
rithm (the implementation [41]) was 1.6 s on a 1.2 GHz lap-
top PC, and the max-sum diffusion achieved the state with arc
consistent maximal nodes and edges in almost 8 min (maxi-
mality threshold 10−6, double arithmetic). For figure 11, the
augmenting DAG algorithm took 0.3 s and the diffusion 20 s.

X. CONCLUSION

We have reviewed the approach to the max-sum problem by
Schlesinger et al. in a unified and self-contained framework.

The fact that due to non-optimal fixed points, no efficient
algorithm to minimize the upper bound U(g) is known is the
most serious open question. This is not only a gap in theory but

13

T

L

R

TL

TR TR

TL

R

L

T

TR

TL

R

L

I

E

E

I

E

I

T

EEEEEEE EEEEEEE EEEEEEE EEEEEEE EEEEEEE EEEEEEEE E E E E E

E E

E E

E E

E E

E E E E E

I I

I I

I I

L

L

L R

R

R

TT

E

TL TR

(a) (b)

(c)

Fig. 11. The ‘Letters Π 2’ example, alternative ‘better’ definition of ’Letters
Π’. (a) Definition, (b) a feasible labeled image, (c) output. The input was
figure 10d.

also relevant in applications because the difference between
the true and a spurious minimum can be arbitrarily large.

To present the approach by Schlesinger et al. in a single
article, we had to omit some issues for lack of space. We
have omitted a detailed formal comparison with the work by
Wainwright et al. and Kolmogorov [19], [24], [30]. We have
not discussed relation to other continuous relaxations [20]–
[22], [76], to α-expansions and αβ-swaps [77], and to primal-
dual schema [78]. We have not done experimental comparison
of the max-sum diffusion and the augmenting DAG algorithms
with other approximative algorithms for the max-sum problem
[75], [79], [80]. We have not discussed persistency (partial
optimality) results by Kolmogorov and Wainwright [19] for
Boolean variables and by Kovtun [39], [40] for the (NP-hard)
Potts model.

ACKNOWLEDGMENT

My work has been supported by the the European Union,
grant IST-2004-71567. The article could not be written with-
out Václav Hlaváč, who established co-operation of our group
with the Kiev and Dresden groups in 1996 and has been
supporting it since then, and my personal communication
with Mikhail I. Schlesinger. Christoph Schnör, Alexander
Shekhovtsov, Václav Hlaváč, Mirko Navara, Tomáš Pajdla, Jiřı́
Matas, and Vojtěch Franc gave me valuable comments.

REFERENCES

[1] M. I. Schlesinger, “Sintaksicheskiy analiz dvumernykh zritelnikh sig-
nalov v usloviyakh pomekh (Syntactic analysis of two-dimensional vi-
sual signals in noisy conditions),” Kibernetika, vol. 4, pp. 113–130,
1976, in Russian.

[2] M. L. Minsky and S. A. Papert, Perceptrons: An Introduction to Compu-
tational Geometry, 2nd ed. Cambridge, MA, USA: MIT Press, 1988,
first edition in 1971.

[3] A. Mackworth, “Constraint satisfaction,” in Encyclopedia of Artificial
Intelligence. New York: Wiley, 1991, pp. 285–292.

[4] V. K. Koval and M. I. Schlesinger, “Dvumernoe programmirovanie v
zadachakh analiza izobrazheniy (Two-dimensional programming in im-
age analysis problems),” USSR Academy of Science, Automatics and
Telemechanics, vol. 8, pp. 149–168, 1976, in Russian.

[5] V. A. Kovalevsky, M. I. Schlesinger, and V. K. Koval, “Ustrojstvo dlya
analiza seti,” Patent Nr. 576843, USSR, priority of January 4, 1976,
1977, in Russian.

[6] V. A. Kovalevsky and V. K. Koval, “A diffusion algorithm for decreasing
energy of max-sum labeling problem,” approx. 1975, Glushkov Institute
of Cybernetics, Kiev, USSR. Unpublished.

[7] B. Flach, “A diffusion algorithm for decreasing energy of max-sum
labeling problem,” 1998, Fakultät Informatik, Technische Universität
Dresden, Germany. Unpublished.

[8] M. I. Schlesinger, “False minima of the algorithm for minimizing energy
of max-sum labeling problem,” 1976, Glushkov Institute of Cybernetics,
Kiev, USSR. Unpublished.

[9] ——, Matematicheskie sredstva obrabotki izobrazheniy (Mathematical
Tools of Image Processing). Naukova Dumka, Kiev, 1989, in Russian.

[10] M. I. Schlesinger and V. Hlaváč, Ten Lectures on Statistical and Struc-
tural Pattern Recognition, M. A. Viergever, Ed. Dordrecht, The Nether-
lands: Kluwer Academic Publishers, 2002.

[11] M. I. Schlesinger and B. Flach, “Some solvable subclasses of structural
recognition problems,” in Czech Patt. Recog. Workshop, 2000.

[12] A. Koster, C. P. M. van Hoesel, and A. W. J. Kolen, “The partial con-
straint satisfaction problem: Facets and lifting theorems,” Operations
Research Letters, vol. 23, no. 3–5, pp. 89–97, 1998.

[13] A. Koster, “Frequency assignment – models and algorithms,” Ph.D. dis-
sertation, Universiteit Maastricht, Maastricht, The Netherlands, 1999,
ISBN 90-9013119-1.

[14] C. Chekuri, S. Khanna, J. Naor, and L. Zosin, “Approximation algo-
rithms for the metric labeling problem via a new linear programming
formulation,” in Symposium on Discrete Algorithms, 2001, pp. 109–118.

[15] M. Wainwright, T. Jaakkola, and A. Willsky, “MAP estimation via
agreement on (hyper)trees: message passing and linear programming
approaches,” in Allerton Conf. on Communication, Control and Com-
puting, 2002.

[16] C. L. Kingsford, B. Chazelle, and M. Singh, “Solving and analyzing
side-chain positioning problems using linear and integer programming,”
Bioinformatics, vol. 21, no. 7, pp. 1028–1039, 2005.

[17] E. Boros and P. L. Hammer, “Pseudo-Boolean optimization,” Discrete
Applied Mathematics, vol. 123, no. 1-3, pp. 155–225, 2002.

[18] P. L. Hammer, P. Hansen, and B. Simeone, “Roof duality, complementa-
tion and persistency in quadratic 0-1 optimization,” Math. Programming,
vol. 28, pp. 121–155, 1984.

[19] V. N. Kolmogorov and M. J. Wainwright, “On the optimality of tree-
reweighted max-product message-passing,” in Conf. Uncertainty in Ar-
tificial Intelligence (UAI), 2005.

[20] T. Wierschin and S. Fuchs, “Quadratic minimization for labeling prob-
lems,” Technical University Dresden, Germany, Tech. Rep., 2002.

[21] P. Ravikumar and J. Lafferty, “Quadratic programming relaxations for
metric labeling and Markov random field MAP estimation,” in Intl. Conf.
Machine Learning ICML, 2006.

[22] M. J. Wainwright and M. I. Jordan, “Semidefinite relaxations for ap-
proximate inference on graphs with cycles.” in Conf. Neural Information
Processing Systems (NIPS), 2003.

[23] M. J. Wainwright, T. Jaakkola, and A. S. Willsky, “A new class of upper
bounds on the log partition function,” IEEE Trans. Information Theory,
vol. 51, no. 7, pp. 2313–2335, 2005.

[24] M. Wainwright, T. Jaakkola, and A. Willsky, “MAP estimation via
agreement on (hyper)trees: message passing and linear programming
approaches,” IEEE Trans. Information Theory, vol. 51, no. 11, pp. 3697–
3717, 2005.

[25] ——, “Tree-based reparameterization framework for analysis of sum-
product and related algorithms,” IEEE Trans. Information Theory,
vol. 49, no. 5, pp. 1120–1146, 2003.

[26] ——, “Tree consistency and bounds on the performance of the max-
product algorithm and its generalizations,” Statistics and Computing,
vol. 14, pp. 143–166, 2004.

[27] V. Kolmogorov, “Convergent tree-reweighted message passing for en-
ergy minimization,” Microsoft Research, Tech. Rep. MSR-TR-2004-90,
2004.

[28] ——, “Convergent tree-reweighted message passing for energy mini-
mization,” Microsoft Research, Tech. Rep. MSR-TR-2005-38, 2005.

[29] ——, “Convergent tree-reweighted message passing for energy mini-
mization,” in Intl. Workshop on Artificial Intelligence and Statistics (AIS-
TATS), 2005.

14

[30] ——, “Convergent tree-reweighted message passing for energy min-
imization,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 28, no. 10, pp. 1568–1583, 2006.

[31] V. Kolmogorov and M. Wainwright, “On the optimality of tree-
reweighted max-product message-passing,” Microsoft Research, Tech.
Rep. MSR-TR-2004-37, 2005.

[32] J. Pearl, Probabilistic reasoning in intelligent systems: Networks of plau-
sible inference. San Francisco: Morgan Kaufmann, 1988.

[33] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Trans. Information Theory, vol. 51, no. 7, pp. 2282–2312, 2005.

[34] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin, “Supermodular func-
tions and the complexity of Max CSP.” Discrete Applied Mathematics,
vol. 149, no. 1-3, pp. 53–72, 2005.

[35] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and
H. Fargier, “Semiring-based CSPs and valued CSPs: Frameworks, prop-
erties,and comparison,” Constraints, vol. 4, no. 3, pp. 199–240, 1999.

[36] V. Kolmogorov and R. Zabih, “What energy functions can be minimized
via graph cuts?” in European Conf. Computer Vision (ECCV). Springer-
Verlag, 2002, pp. 65–81.

[37] D. Schlesinger, “Strukturelle ansätze für die stereorekonstruktion,” Ph.D.
dissertation, Technische Universität Dresden, Fakultät Informatik, Insti-
tut für Künstliche Intelligenz, July 2005, in German.

[38] B. Flach, “Strukturelle bilderkennung,” Fakultät Informatik, Technische
Universität Dresden, Germany, Tech. Rep., 2002, habilitation thesis, in
German.

[39] I. Kovtun, “Partial optimal labelling search for a NP-hard subclass of
(max,+) problems,” in Conf. German Assoc. for Pattern Recognition
(DAGM), 2003, pp. 402–409.

[40] ——, “Segmentaciya zobrazhen na usnovi dostatnikh umov optimal-
nosti v NP-povnikh klasakh zadach strukturnoi rozmitki (Image seg-
mentation based on sufficient conditions of optimality in NP-complete
classes of structural labeling problems),” Ph.D. dissertation, IRTC ITS
Nat. Academy of Science Ukraine, Kiev, 2004, in Ukrainian.

[41] T. Werner, “A linear programming approach to max-sum problem: A
review,” Center for Machine Perception, Czech Technical University,
Tech. Rep. CTU–CMP–2005–25, December 2005.

[42] S. Verdú and H. V. Poor, “Abstract dynamic programming models under
commutativity conditions,” SIAM J. Control and Optimization, vol. 25,
no. 4, pp. 990–1006, July 1987.

[43] S. Bistarelli, U. Montanari, and F. Rossi, “Semiring-based constraint
satisfaction and optimization,” J. of ACM, vol. 44, no. 2, pp. 201–236,
1997.

[44] S. Gaubert, “Methods and applications of (max,+) linear algebra,” In-
stitut national de recherche en informatique et en automatique (INRIA),
Tech. Rep. 3088, 1997.

[45] S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE
Trans. on Information Theory, vol. 46, no. 2, pp. 325–343, 2000.

[46] D. L. Waltz, “Generating semantic descriptions from drawings of scenes
with shadows,” Massachusetts Institute of Technology, Tech. Rep., 1972.

[47] U. Montanari, “Networks of constraints: Fundamental properties and
application to picture processing,” Information Science, vol. 7, pp. 95–
132, 1974.

[48] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, “Scene labeling by
relaxation operations,” IEEE Trans. on Systems, Man, and Cybernetics,
vol. 6, no. 6, pp. 420–433, June 1976.

[49] A. K. Mackworth, “Consistency in networks of relations,” Artificial in-
telligence, vol. 8, no. 1, pp. 65–73, 1977.

[50] R. M. Haralick and L. G. Shapiro, “The consistent labeling problem,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 1, no. 2,
pp. 173–184, 1979.

[51] M. Grohe and D. Marx, “Constraint solving via fractional edge covers,”
in Proc. the 17th annual ACM-SIAM symp. Discrete algorithm (SODA).
ACM Press, 2006, pp. 289–298.

[52] A. Bulatov, P. Jeavons, and A. Krokhin, “Classifying the complexity of
constraints using finite algebras,” Computing, vol. 34, no. 3, pp. 720–
742, 2005.

[53] R. Debruyne and C. Bessière, “Domain filtering consistencies,” Journal
of Artificial Intelligence Research, no. 14, pp. 205–230, May 2001.

[54] M. I. Schlesinger, “Lectures on labeling problems attended by the au-
thors, Kiev, Prague, Dresden,” 1996-2006.

[55] D. M. Topkis, “Minimizing a submodular function on a lattice,” Oper-
ations Research, vol. 26, no. 2, pp. 305–321, 1978.

[56] M. I. Schlesinger and V. Kovalevsky, “A hydraulic model of a linear
programming relaxation of max-sum labeling problem,” 1978, Glushkov
Institute of Cybernetics, Kiev, USSR. Unpublished.

[57] R. J. Vanderbei, Linear Programming: Foundations and Extensions.
Boston: Kluwer Academic Publishers, 1996.

[58] M. L. Balinski, “Integer programming: methods, uses, computation,”
Management Science, vol. 12, no. 3, pp. 253–313, 1965.

[59] T. Werner and A. Shekhovtsov, “Unified framework for semiring-based
arc consistency and relaxation labeling,” in 12th Computer Vision Winter
Workshop, St. Lambrecht, Austria, M. Grabner and H. Grabner, Eds.
Graz University of Technology, February 2007, pp. 27–34.

[60] T. Werner, “What is decreased by the max-sum arc consistency algo-
rithm?” in Intl. Conf. on Machine Learning, Oregon, USA, June 2007.

[61] M. I. Schlesinger, “Personal communication,” 2000-2005, International
Research and Training Centre, Kiev, Ukraine.

[62] R. E. Burkard, B. Klinz, and R. Rudolf, “Perspectives of Monge proper-
ties in optimization,” Discrete Applied Math., vol. 70, no. 2, pp. 95–161,
1996.

[63] L. Lovász, “Submodular functions and convexity,” in Mathematical Pro-
gramming – The State of the Art, A. Bachem, M. Grötschel, and B. Ko-
rte, Eds. Springer-Verlag, New York, 1983, pp. 235–257.

[64] P. L. Hammer, “Some network flow problems solved with pseudo-
Boolean programming,” Operations Research, vol. 13, pp. 388–399,
1965.

[65] D. Greig, B. Porteous, and A. Seheult, “Exact maximum a posteriori
estimation for binary images,” J. R. Statist. Soc. B, no. 51, pp. 271–279,
1989.

[66] H. Ishikawa and D. Geiger, “Segmentation by grouping junctions,” in
IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 1998,
pp. 125–131.

[67] H. Ishikawa, “Exact optimization for Markov random fields with convex
priors.” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25,
no. 10, pp. 1333–1336, 2003.

[68] D. Schlesinger and B. Flach, “Transforming an arbitrary MinSum prob-
lem into a binary one,” Dresden University of Technology, Germany,
Tech. Rep. TUD-FI06-01, April 2006.

[69] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and
its consequences in combinatorial optimization.” Combinatorica, vol. 1,
no. 2, pp. 169–197, 1981.

[70] ——, Geometric Algorithms and Combinatorial Optimization. Springer
Verlag, 1988, 2nd edition in 1993.

[71] A. Schrijver, “A combinatorial algorithm minimizing submodular func-
tions in strongly polynomial time,” Combinatorial Theory, Ser. B,
vol. 80, no. 2, pp. 346–355, 2000.

[72] S. Iwata, L. Fleischer, and S. Fujishige, “A combinatorial strongly
polynomial-time algorithm for minimizing submodular functions,” J. As-
soc. Comput. Mach., vol. 48, pp. 761–777, 2001.

[73] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order.
Cambridge University Press, Cambridge, 1990.

[74] T. Meltzer, C. Yanover, and Y. Weiss, “Globally optimal solutions for en-
ergy minimization in stereo vision using reweighted belief propagation,”
in Int. Conf. on Computer Vision (ICCV), June 2005, pp. 428–435.

[75] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwala, M. Tappen, and C. Rother, “A comparative study of en-
ergy minimization methods for Markov random fields,” in European
Conf. Computer Vision (ECCV), 2006, pp. II: 16–29.

[76] M. P. Kumar, P. H. S. Torr, and A. Zisserman, “Solving Markov random
fields using second order cone programming,” in Conf. on Computer
Vision and Pattern Recognition (CVPR), 2006.

[77] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[78] N. Komodakis and G. Tziritas, “A new framework for approximate la-
beling via graph cuts.” in Intl. Conf. Computer Vision (ICCV), 2005, pp.
1018–1025.

[79] V. Kolmogorov and C. Rother, “Comparison of energy minimization
algorithms for highly connected graphs,” in European Conf. Computer
Vision (ECCV), 2006, pp. II: 1–15.

[80] C. Yanover, T. Meltzer, and Y. Weiss, “Linear programming relaxations
and belief propagation: An empirical study,” Machine Learning Re-
search, vol. 7, pp. 1887–1907, September 2006.

