
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY

M
A
S
T

E
R

T
H

E
S
IS

IS
S
N

12
13

-2
36

5

Automatic segmentation of
articulated objects of unknown

complexity from videos

Jan Košata

kosatj2@fel.cvut.cz

CTU–CMP–2007–03

January 13, 2007

Available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/svoboda/Kosata-TR-2007-03.pdf

Thesis Advisor: Tomáš Svoboda

Research Reports of CMP, Czech Technical University in Prague, No. 3, 2007

Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz

Abstract

Motion segmentation is an important topic in computer vision. Unlike simple
motion segmentation articulated segmentation gives much more information
about observed scene and makes easier classification of the observed object,
i.e. by kinetic patterns. We are interested in automatic segmentation of an
articulated object with an unknown complexity. Typical representative is a
human being or a more complicated machine. We implemented the method
described in M. Pawan Kumar, P.H.S. Torr a A. Zisserman - Learning Lay-
ered Motion Segmentation of Video. This algorithm is applicable to any
video containing piecewise rigid motion. Given the sequence, the generative
model which best describes an articulated object and a background is learnt
in an unsupervised manner. The generative model for a layered representa-
tion describes the scene as a composition of layers.

Segmentace videa je duležité téma v oblasti poč́ıtačového viděńı. Na
rozd́ıl od jednoduché segmentace pohybu segmentace artikulovaných část́ı
přináš́ı mnohem v́ıce informaćı o pozorované scéně a umožuje snazš́ı klasi-
fikaci pozorovaného objektu např́ıklad podle pohybových vzorcu. Nás zaj́ımá
automatická segmentace artikulovaných objektu o neznámé komplexitě. Typ-
ickým zástupcem takového objektu je člověk nebo komplikovaněǰśı stroj.
Implementovali jsme metodu popsanou v M. Pawan Kumar, P.H.S. Torr a
A. Zisserman - Learning Layered Motion Segmentation of Video. Tento algo-
ritmus se dá použ́ıt na libovolné video obsahuj́ıćı po částech rigidńı pohyb. Ze
vstupńı sekvence je automaticky źıskán generuj́ıćı model, který popisuje jak
objekt, tak pozad́ı. Generuj́ıćı model vrstvové representace popisuje scénu
jako kompozici vrstev.

Statement
This is to certify that I wrote this thesis on my own and that the references include all the sources of
information I have utilized.

Prohlášení
 Prohlašuji, že jsem svou diplomovou práci vypracoval samostatně a použil jsem pouze podklady
 (literaturu, projekty, SW atd.) uvedené v přiloženém seznamu.

V Praze dne 2.1. 2007 …………………………………….
 podpis

Acknowledgement

I would like to thank to my supervisor T. Svoboda PhD for leadership of the
diploma thesis, for his advices and comments. I am also grateful to M. Pawan
Kumar for his advices and suggestions during personal communication. Fi-
nally but not least I would like to thank to my wife, family and everybody
who supported my education.

Automatic segmentation of articulated objects
of unknown complexity from videos

Jan Košata

January 13, 2007

Contents

1 Introduction 1

1.1 Evolution of the diploma thesis 3

1.2 How to read a thesis . 3

2 Layered image representation 5

2.1 Layered representation . 5

2.2 Overview of the algorithm . 5

2.3 Initial estimation of parameters 6

2.3.1 Loopy Belief Propagation 9

2.4 Combining components . 11

2.5 Refining shape . 12

2.5.1 Overview . 12

2.5.2 Energy minimization via graph cuts 13

2.6 Implementation of the algorithm 14

3 Implementation issues 16

3.1 Computation complexity of the likelihood estimation 16

3.2 Understanding equation of messages calculation 17

3.3 Normalization of the likelihood 17

3.4 Overflowing and underflowing of beliefs 17

3.5 Reducing complexity of LBP - Coarse to fine strategy 18

4 Experiments 19

4.1 Testing likelihood calculation 19

4.2 Testing progress of belief calculation in every step of iteration
without normalization of beliefs 21

4.3 Results with normalized messages in LBP 21

4.4 Components processing . 21

4.5 Using frames with large resolution 21

4.6 Dilution caused by one wrongly segmented frame 28

i

ii CONTENTS

4.7 Experiment with more frames and different articulated object
in scene . 28

5 Conclusion 31

List of Figures

1.1 Simple motion segmentation and articulated motion segmen-
tation. 2

2.1 Layered image representation 6
2.2 Overview of the algorithm . 7
2.3 Overview of the part Initial estimation 11
2.4 The result of the combining components 12
2.5 The pipeline diagram of the algorithm implementation 15

4.1 Testing data . 19
4.2 Real data for testing . 20
4.3 Initial estimation based solely on likelihood 20
4.4 The experiment calculated by messages without normalization 22
4.5 The experiment calculated by messages with normalization . . 23
4.6 Values of estimated transformation of testing data 23
4.7 Initial estimation of real data based on proper algorithm with

normalized messages . 24
4.8 Results with and without the first stage of merging components 24
4.9 Components processing . 25
4.10 Components combining . 26
4.11 The experiment with large resolution of the frames 27
4.12 Dilution caused by one wrongly segmented frame 29
4.13 Experiment with more frames and different articulated object

in scene . 30

iii

Chapter 1

Introduction

A motion segmentation of a video is well known in computer vision. The sim-
plest method is pixel based motion detection without correspondence search
– [2], [12]. This algorithm detects a motion between two frames of video by
comparing values of corresponding pixels of two frames. The result of this
method gives only information of the motion. The essentially more challeng-
ing task is to not only segment the pixels but also classify them to rigidly
moving parts, see Figure 1.1.

Articulated objects, e.g. pedestrians, are often very difficult to recognize
from a scene due to a large variability in their local and global appearance.
It is caused by various types and styles of clothing, so that only few local
regions are really characteristic for the entire category, more information can
be found in [7]. As can be seen on the Figure 1.1 simple motion segmen-
tation inform only about moving pixels. A silhouette can be acquired from
this information but sometimes it could be difficult task to recognize object
only from this shape. Properties of a silhouette, i.e. area, circumference or
number of the curves can represent input to classifier, which should recog-
nize object on scene. However, these simple properties sometimes are not
enough. Articulated motion segmentation gives us much more information
of the scene. From articulated motion segmentation we acquire not only seg-
mented moving object but also information describing motion of each part.
This information may be used to learn kinetic patterns belonging to the
individual parts of the articulated structure and better recognition of the
scene.

There are two main groups of approaches for motion segmentation with-
out correspondence search; background model based [4] and those based on
consecutive frames (optical flow)[13], [9]. Comparison of the current frame
of the sequence with the background model is very popular way of the mo-
tion segmentation. The idea is to create and maintain a background model.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Simple motion segmentation gives only information about motion
in a picture. On the other hand from articulated motion segmentation we
acquire not only segmented moving object but also information describing
motion of each part. This information with knowing kinetic patterns leads to
a better recognition of the scene. A frame sequence taken from a static cam-
era [11]. The scene consists of a person walking against a static background.
Picture of the segmented body taken from [5].

If a new object occurs in foreground, it can be found as inconsistency with
the background model. Certain complications arise from a fact, that it can
be nearly never assumed that background is static; it’s getting darker, sun
becomes occluded by clouds, or shadows are moving. Therefore algorithms
for background subtraction that use adaptive background [2] model are more
successful than those based on the assumption of static background [4].

The methods based on optical flow [13] calculation can be used to detect
independently moving objects even in the presence of camera motion and
gives very good results. Motion segmentation methods, which are based on
the optical flow, are computationally complex and hence not suitable for
realtime systems without specialized hardware.

Many different approaches for motion segmentation have been reported.
The situation, if the model occlusion is not used (i.e. described in [3]), can
lead to problems such as overcounting the data when obtaining the segmen-
tation. Different segments may have different depth. It could cause occlusion
of some segments. This problem can be resolved by using a layered repre-
sentation. However, this method usually relies on a keyframe for the initial
estimation. All the information of the layered representation we estimate
from the sequence of a video. The next important issue is to use spatial

1.1. EVOLUTION OF THE DIPLOMA THESIS 3

continuity to avoid non-continuous segmentation when foreground and back-
ground are similar in appearance. This issue is noted in [15].

In our work, we use a model which does not suffer from the problems
mentioned above. The implementation of method was inspired in [5]. An
initial estimate of the model is obtained by dividing the scene into rigidly
moving components using efficient loopy belief propagation. We use the
set of components obtained from all pairs of consecutive frames in a video
seqeunce which are later combined to get the initial estimate of the segments.
This avoids the problem of finding only those segments which are present in
one keyframe of the video. Given this estimate, the shape of the segments,
along with the layering, are learnt by minimizing an objective function using
αβ-swap and α-expansion algorithms [1].

We tested the algorithm by simple motion and real data. Input of the
algorithm is video, output are individual parts of the articulated object. This
algorithm can be used for the coarse estimation of the rigidly moving parts
in video.

1.1 Evolution of the diploma thesis

The algorithm deals with layered representation so the code for generation
the testing data from layered representation was needed. We generate a few
types of the testing data with simple motion (see Fig. 4.1).

The implementation starts with the part Initial estimation of the pa-
rameters, described in section 2.3. Actual progress of the implementation
was tested by simple data and then with real data. We had to get over a few
unclearness in [5] and contacted Pawan Kumar. We spent quite a lot of time
with understanding the LBP in this implementation and Refining shape.

The final step of the algorithm should perform refining shape of the
segments. We tried to adapt codes from [1] and from Pawan Kumar previous
work but we did not suceed. Graph construction from picture into graph cut
minimization requires more information than we found in [5] and [1]. The
result of our algorithm are coarse segments of the rigidly moving parts of a
video and their transformation.

1.2 How to read a thesis

The diploma thesis is divided into the following chapters:

• Chapter 1 – Introduction deals with a motion segmentation and
articulated motion segmentation.

4 CHAPTER 1. INTRODUCTION

• Chapter 2 Layered image representation describes theory of the
algorithm and its implementation.

• Chapter 3 Implemetation issue contains description of the prob-
lems we met at implementation and their solutions.

• Chapter 4 – Experiments contains tests and experiments that we
used during the implementation.

• Chapter 5 – Conclusion sums up work done, discusses fulfillment of
the goals.

Chapter 2

Layered image representation
and estimation of its
parameters

2.1 Layered representation

Layered representation is a generative model that can describe and generate
any frame of a video from set of layers and their transformation parametres,
see Figure 2.1. The goal of this work is to estimate such a model from a
video. A frame is divided to layers according to its appearance. Each rigidly
moving part of the frame has its own layer. For a full description of the set
of frames by a layered representation we also need transformations. That
includes a scale, a rotation and translations to both directions x and y.

When we generate a frame j, we start from the blank image and map
every point x from the respective layer using the transformations a scale, a
rotation and translations in both directions. It means that points belonging
to the same segment move rigidly together. The generated frame is then
obtained by composing the transformed segment in proper order of their
layer numbers. For this work, each transformation has four parameters:
scale, rotation and translations in direction x and y. The original method
[5] models also motion blur and illumination changes.

2.2 Overview of the algorithm

Given a video, its layered representation is learnt in an unsupervised man-
ner by minimizing the energy of the representation in four stages. The first
stage is initial estimation of the parameters. Inter–frame motion is estimated

5

6 CHAPTER 2. LAYERED IMAGE REPRESENTATION

Figure 2.1: The top row of images shows individual layers, bottom row final
frames generated from layers and information of transformations. Θk

T i de-
notes set of transformations scale, rotation and translations of segment i to
generate part of frame k, a and b are lighting parameters.

for each pair of consecutive frames. This provides us with the rigidly mov-
ing connected components of the patches between each pair of consecutive
frames. These components are then clustered according to their appearance
to obtain an initial estimate of the model parameters. The second stage is
refining shape of the segments. The initial estimation of the shape of the
segments is refined by the energy minimization. Following stage is updating
appearance. The appearance of the points added to the matte of a segment
in the second stage is obtained. The point is simply assigned the mean of its
observed RGB values over all frames in the video where it is visible. The last
stage is refining transformation. The transformations are refined by search-
ing around their initial estimate. The transformation resulting in the least
sum-of-squared differences is chosen.

2.3 Initial estimation of parameters

The goal of this part of the algorithm is to find initial parameters of each
layer. This part is described in paragraph 3.1 in [5] and for the sake of clarity
we repeat the main points here. In order to obtain an initial estimate of the
model parameters, we obtain rigidly moving components between every pair
of consective frames. This involves computing the image motion for every
pixel in frame n to frame n+1. However, at this stage we are only interested
in obtaining a coarse estimate of the model parameters which we refine later.

2.3. INITIAL ESTIMATION OF PARAMETERS 7

Figure 2.2: The complete algorithm: Input of the algorithm are frames from a
video. Given a frame, algorithm divides it into uniform patches and generates
MRF representation. Every patch is represented by site of the MRF and
every putative transformation of every patch is represented by label of the
MRF. In next step rigidly moving components are found by Loopy Belief
Propagation. These tentative components with similar transformation are
clustered into segments which are refined. Refining of the shape is performed
by algorithms minimizing graph cuts, specifically by the αβ-swap algorithm
and α-expansion. The output of the algorithm are individual parts of the
articulated object separated into layers and their transformations. Some of
these pictures were taken from [5]

8 CHAPTER 2. LAYERED IMAGE REPRESENTATION

Firstly we divide each frame into uniform patches of size m×m pixels,
we used m = 5. To track the patches from frame n to n + 1 we define
a Markov random field (MRF) over the patches. Each site of the MRF
corresponds to one patch in the frame. The labels of a site correspond to the
putative transformations of that patch. The likelihood of a label is given by
the cross-correlation of the corresponding patch in frame n, after undergoing
the transformation specified by that label, with frame n + 1. Since we are
interested in finding rigidly moving components, we specify the prior that
neighboring patches tend to move rigidly together. The neighborhood of a
patch is its 4-neighbourhood. We are looking for the transformation of each
patch from the one frame to the next one that maximizes joint probability

Pr(ϕ) =
1

Z

∏
k

ψ(sk)
∏

nl∈Nk

ψ(sk, sl), (2.1)

where ϕ is a set of transformations, k is the index through all transformations,
Nk is the 4-neighbourhood of the patch k, sk and sl are the labels of the
transformation, ψ(sk) is the likelihood of the transformation sk, ψ(sk, sl) is
a pairwise potential, which will be discussed later.

We use loopy belief propagation (LBP) for finding this transformation
from the set of putative transformations. At the beginning of the algorithm
we define range of the putative transformations, number of the frames and
the resolution of each patch. We calculate likelihood ψ(sk) for each patch
and each transformation by equation

ψ(sk) = eL(fk,ψk), (2.2)

where L(fk, ψk) is the cross-correlation of the transformed patch and the rel-
evant patch from the next frame. Cross-correlation is calculated by equation

L(x,y) =
(x− x)T(y − y)√

(x− x)T(x− x)(y − y)T(y − y)
, (2.3)

where x is the vector of the RGB values of the pixels from the patch from
the actual frame and y is the vector of the RGB values of the pixels from the
patch from the next frame transformed by transformation ψk. Linear correl-
ative coefficient r(x, y) (normalized cross-correlation) denotes how much val-
ues of vectors x and y are bounded by linear function. If they are accurately
bounded by linear function with positive derivation then r(x, y) = 1, with
negative derivation r(x, y) = −1. Generaly can be said −1 ≤ r(x, y) ≤ 1.

The beliefs are calculated by equation

b(sk) = ψ(sk)
∏

nl∈Nk

mt
lk(sk). (2.4)

2.3. INITIAL ESTIMATION OF PARAMETERS 9

Variable mt
lk(sk) is the message, that is sent by patch l to patch k in iteration

t and is calculated by equation

mt
kl(sl) =

∑
sk

ψ(sk, sl)ψ(sk)
∏

nd∈Nk\nl

mt−1
dk (sk)

 , (2.5)

where ψ(sk) is likelihood calculated in previous part of code (2.2) by the
equation:

ψ(sk, sl) =

{
1 if rigid motion

exp(ζ∇(fk, fl)) otherwise
, (2.6)

where ∇(fk, fl) is the sum of the gradients of the neighboring pixels x ∈ fk
and y ∈ fl, where value of the pixel brightness is between 0 and 1. fk is
the fragment that we are interested in and fl is the neighbouring fragment.
ζ is normalization constant, we used ζ = 1. There is a typo in sign in this
equation in the original paper [5]. The proper sign in exponent should be
plus.

All messages (2.5)are initialized to 1 in iteration 0 for all k and l. In every
step of iteration all messages must be normalized by

∑
sl
mt
kl(sl) = 1. The

termination criterion is that the maximum of change of all beliefs falls below
certain threshold. We used threshold 10−4. In one iteration we must calculate
all messages and look for the maximal change of beliefs of all patches. When
iterations stop, we find the transformations with the maximal belief for each
patch.

In next step we color the patches with same transformations by same
color and find connected components with same color. Components smaller
then 100 pixels are merged with their surrounding. Each patch of the compo-
nent appointed for merging searches its neighborhood and acquires the color
of the majority neighbor with different color. Merging has two stages: before
finding components is merged isolated patches with different color than the
surrounding (by the same way as described above). If this first stage was
not used there would form imaginary component on background surrounded
by isolated patches (see figure 4.8. The second stage is merging founded
components smaller than 100 pixels.

2.3.1 Loopy Belief Propagation

For sake of clarity we describe here main points of Loopy Belief Propagation
(LBP). Details can be found in [14]. LBP is a message passing algorithm used
to find the MAP maximizing (2.1).The rules of the local belief propagation
without loops were proposed by [10]. This method is guaranteed to converge

10 CHAPTER 2. LAYERED IMAGE REPRESENTATION

to the optimal (maximal) beliefs. It was empirically demonstrated, that
the same algorithm has a good performance on networks with loops, but a
theoretical understanding of this performance has not yet been achieved [14].

Finding the optimal beliefs of all sites is reached iteratively. For a singly
connected unit, the beliefs vector is guaranteed to converge to the posterior
probability of the node nl given all the evidence. In every iteration the
messages are sent among all the neighboring sites. Now we explain calculation
of the messages according to (2.5). In iteration 0 all messages are initialized
to 1. Sending messages in next iterations are subjected to following rules.
The message that site nk sends to site nl is calculated as follows:

• Combine all messages coming into nk except coming from nl into vector
v. The combination is done by multiplying all the messages vectors
element by element.

• Multiply vector v by the likelihood of the site nk and pairwise likelihood
corresponding to the link between nk and nl (see equation 2.6).

• Normalize all the messages so they sum to 1. The normalized vector is
send to nl.

These Pearl’s propagation rules [10] were designed for Bayesian net-
works, while here we are interested in Markov networks. Bayesian networks
have arrows on the links, and of any two neighboring nodes, one is considered
to be the cause and the other is the effect. Markov networks replace the no-
tion of causal link, with a weaker notion of compatibility which is symmetric
in the two neighboring nodes. The probability distributions represented by
Markov networks are a subset of those that can be represented by Bayesian
networks.

Another difference between the algorithm presented here and Pearl’s
original algorithm is in the normalization. In Pearl’s algorithm messages
going in one direction are normalized while those in the other direction are
not. As pointed out by Pearl [10], the normalization step does not influence
the final beliefs but ensures the stability of the message passing scheme.

The belief revision rules described here are equivalent to these described
by Pearl except for the normalization. In Hidden Markov Models, belief
revision is equivalent to the Viterbi update rules, and is a special case of
concurrent dynamic programming. As can be seen from the previous discus-
sion, update procedure of the type described by Pearl have been analyzed in
many areas of optimization and applied mathematics. However, according
to [14], in all these contexts the network is assumed to be singly connected.
These procedures are well defined for any Markov network – all it requires is
a decomposition of the posterior probability into pairwise compatibilities.

2.4. COMBINING COMPONENTS 11

Figure 2.3: Progress of the part Initial estimation of parameters. From input
frames the patches with the same transformation are colored by LBP. The
patches with same transformation have same color. Connected components
are found from this data and components smaller then 100 pixels are merged
into surroundings.

2.4 Combining components

Now we have rigidly moving components of each inter-frame and we combine
these components through all frames. We define similarity matrix S of size
c×c, where c is total number all rigid components of all frames. We compute
S(i, j) as normalized cross-correlation of segments i and j. The number of
pixel used to compute S(i, j) is the number of pixels in the smaller component
and from the bigger component we use the part of component that maximize
S(i, j). S(i, j) is computed only for a small number of components pairs (i, j)
due to a several reasons. First, the similarity matrix is symmetrical, second,
we compute S(i, j) only for components, which overlay of these components
is bigger than half of the smaller one. For components that lies far from each
other we define S(i, j) = −1.

Now we find (i∗, j∗) = arg maxS(i, j) and we say i∗ and j∗ belong to
same cluster. We repeat this until S(i∗, j∗) < threshold, we use threshold
between 0.8 and 0.95. If we set low threshold (about 0.8) all components
are in same cluster and segment is the least one (only one or two segments).
If higher threshold (about 0.95) is used, no greater component (body) is
clustered and there are a lot of segments. Number of clusters gives us number
of segments and the initial shape of the segment is the least component of
every cluster.

Method described above was recommended by from Pawan Kumar [6].

12 CHAPTER 2. LAYERED IMAGE REPRESENTATION

Colored components of the interframe nr 1

1

2

3

4

5

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Colored components of the interframe nr 2

1

2

3

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Colored components of the interframe nr 3

1

2

3

4

5

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Colored segments (combined components)

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Figure 2.4: The result of the combining components: the first three pic-
tures show tentative components, the last image is result of the components
combining. This last image is input to the part Refining shape.

This procedure works properly for some examples, but not for many. Nor-
malized cross-correlation of smaller components gives bigger values then with
greater components. We need to preference clustering of the bigger compo-
nents, so we used weighting function in computing similarity matrix S. Every
element different to minus one in matrix is computed by (2.7):

S∗ij = Sij(1− α
√

max
m

Cm/Ci), (2.7)

where S∗ij is new value of the matrix, Sij is original value, α is constant, we
used α = 0, 1, maxmCm is size of the greatest component and Ci is the size
of the component i. Using this modified procedure we achieved better results
(see figure 2.4 and 4.10)

2.5 Refining shape

2.5.1 Overview

We now describe a method to refine the shape of the segments and determine
their layer numbers. The refinement is carried out such that it minimizes the
energy of the representation. It takes advantage of efficient iterative algo-
rithms for multi-way graph cuts [1]. It iterates over segments and refine the
shape of one segment at a time. At each iteration, an αβ -swap is performed
for the segment and its surrounding segments (i.e. segments lying close to
it). The αβ-swap algorithm swaps the points belonging to two segments
thereby reassigning the points which were wrongly labelled as belonging to
a particular segment. Next we perform an α-expansion algorithm which as-
signs the points surrounding the initial estimate of the segment to it. At
each iteration, we also consider two options for overlapping segments, i.e. ei-
ther segment A occludes segment B or vice versa, and chose the option that
results in lesser energy. The iteration stops when the energy of the model

2.5. REFINING SHAPE 13

cannot be minimized further. After termination, the refined estimate of the
shape of the segments is obtained as well as their layering.

2.5.2 Energy minimization via graph cuts

Given an initial coarse estimation of the segments, their shape can be itera-
tively improved using consistency of motion and texture over the entire video
sequence. The refinement is performed such that it minimizes the energy of
model using efficient algorithms for multi-way graph cuts which minimizes
an energy function over point labellings h of the form

Ψ =
∑
x∈X

Dx(hx) +
∑

x,y∈N
Vx,y(hx, hy), (2.8)

under fairly broad constraints on D and V . Here Dx(hx) is the cost for
assigning the label hx to point x and Vx,y(hx, hy) is the cost for assigning hx
and hy to the neighboring points x and y respectively. Especialy, we make
use of two algorithms: αβ-swap and α-expansion.

The algrithm iterates over segments and refine the shape of one segment
pi at a time. At each iteration, we perform an αβ-swap for pi and each of
its surrounding segments pk. This relabels all the points which were wrongly
labelled as belonging to pi. Then an α-expansion algorithm is performed
to expand pi to include those points x in its limit, which move rigidly with
pi. We choose the option which results in the minimum value of the energy.
This determines the occlusion ordering among surrounding segments. We
stop iterating when further reduction of the energy is not possible. This
provides us with a refined estimate of the shape along with the layer number
li of the segments.

The αβ-swap algorithm swaps the assignments of certain points x which
have label α to β and vice versa. In this case, it attempts to relabel points
which were incorrectly assigned to segments pα or pβ. Each of the two points
x and y are represented by one vertex in the graph. In addition, there are
two special vertices called the source and the sink which represent the labels
α and β. In this representation the source is represented by the pixels of
the refined segment and the sink by the pixels of the surroundings segments.
The graph cut algorithm perform finding the minimal graph cut, in this case
the refined shape of the segment.

14 CHAPTER 2. LAYERED IMAGE REPRESENTATION

2.6 Implementation of the algorithm

Almost the entire algorithm is implemented in Matlab. The final part Refin-
ing shape using graph cut algorithm is written in C++ as a MEX-file. Figure
2.5 shows pipeline diagram with symbolic code fo the implementation.

After loading all the frames into array the likelihood of all transforma-
tions for each patch is calculated by the function Calc LH.m according to
the equation (2.2). Result of this calculation is saved and later used for
calculation of the messages according to equation (2.5) and can be found in
m-script Calc MSG.m. Result of the LBP is only beliefs of each transforma-
tion of all patches. From this data the maximal beliefs are found and colored
according to color that represent the transformation with maximal belief.
The information about the transformation of each patch is saved to array
Transformation(k,j,i,transf) where k is number of the inter-frame, j

and i are positions of the patch in the frame and transf determine type
of the found transformations. transf=1 means scale, transf=2 rotation,
transf=3 translation in axis x and transf=4 y translation. For our infor-
mation we display this in meshgrid graph by m-script Disp Transf.m.

The patches with same transformation of each inter-frame are grouped
into connected components by m-script Components finding.m. The core
of the connected component finding algorithm is performed by the Matlab
function bwlabel adjusted for multi-color labels.

In next step the components smaller then 100 pixels are merged with
their surrounding by the m-script Components merging.m. The components
greater then 100 pixels are combined into segments through all frames by
the m-script Components combining.m. Combination is performed by the
algorithm using similarity matrix of the all components of all inter-frames.

The final step of the algorithm should perform refining shape of the
segments. This would have been implemented partially in Matlab code and
partially in C++ as MEX file due to time complexity. We tried to adapt
codes from [1] and from Pawan Kumar previous work but we did not suc-
ceed. Graph construction from picture into graph cut minimization is too
difficult and partially implemented code from Pawan Kumar has a lot of
unclearness and doesn’t work in our Matlab implementation. The result of
our algorithm are coarse segments of the rigidly moving parts of a video and
their transformation.

2.6. IMPLEMENTATION OF THE ALGORITHM 15

Figure 2.5: The pipeline diagram of the algorithm implementation. Blocks
in the diagram denotes the individual parts of the algorithm and symbolic
code of the implementation.

Chapter 3

Implementation issues

This chapter contains description of the problems we met at implementation
and their solutions. The main issue of our implementation is computation
complexity. This issue was partially solved for computation of the likelihood
transformation and LBP by coarse to fine strategy. Other issues are mostly
caused by arduousness of the algorithm and wrong understanding of the [5].

3.1 Computation complexity of the likelihood

estimation

Efficient implementation of the likelihood computation (2.2) is an important
issue. The likelihood is computed for each patch and each transformation.
There is a large number of transformations to calculate, i.e. if we use the
same set of putative transformations like in [5] (scale from 0.8 to 1.2 in steps
of 0.2, rotation from -0.3 to 0.3 in steps of 0.15, translations in x and y di-
rections from -5 to 5 pixels and -10 to 10 pixels respectively in step of 1)
it would be 3465 transformations for each patch. We compare two possible
ways to implement image transformations. The first is to use Matlab com-
mands imrotate, imscale and imcrop for each patch. Commands imrotate,
imscale and imcrop perform image transformations by inner Matlab imple-
mentation. The second manner is to calculate matrix of transformations,
through it calculate new position of each pixel and use Matlab command
interp2 to calculate transformed image. Command interp2 performs gen-
eral 2D interpolation of the pixel RGB value for point laying off the grid. It
would be more universal to use the matrix of transformations, but there was
a time problem with using command interp2. Execution of this command
takes quite to much time so finally algorithm ran for long time. Exactly for
set of putative transformations described above it takes about 4.5 second

16

3.2. UNDERSTANDING EQUATION OF MESSAGES CALCULATION17

for one patch at processor AMD Sempron 3000+, it is about 40 hours of
calculating time for general image with 213x160 patches.

The best way what we found is to use commands imrotate and imscale

for necessary operations, it means for rotation 6= 0 and scale 6= 1 for patches
from the first frame and simply copying of shifted patches from next frame.
This solution was 10 times faster, because it computes the transformations
not for all causes. General shift the patch window is much more effective
then using transformation command.

3.2 Understanding equation of messages cal-

culation

We spent quite a bit of time to understand equation for message computation
the LBP algorithm (2.5), it is equation (11) in [5]. Question was through
what variable we should add at first sum, how they recognize rigid motion
and what the maximal value of pixel intensity is in calculation of gradient. At
last we asked Pawan Kumar and he explained us main issues of this equation.
There was a typo in eqation (11) in [5], proper equation is rewritten in this
paper: equation (2.5). We defined rigid motion by simple thresholds. Two
motions are considered as rigid, if their translations are the same or different
by 2 points, scale is the same and no rotation.

3.3 Normalization of the likelihood

There is a question of normalization the likelihood. By default, sum all
values of likelihood ψ(sk) through all transformations sk should be equal 1
(
∑
sk
ψ(sk) = 1), so we normalize likelihood equation, but after consultations

it with Mr. Pawan Kumar we leave it un-normalized.

3.4 Overflowing and underflowing of beliefs

As it can be seen in equation of the messages (2.5) in every next step of
iteration we multiply previous messages. If the values of all messages were less
then 1 after a few iterations the messages and beliefs fall bellow the floating
point accuracy. Over against if the values of the beliefs were greater then 1
there would be overflowing of beliefs. We adopt normalization suggested by
Yair Weiss [14]. The messages are normalized in every step of the iteration

18 CHAPTER 3. IMPLEMENTATION ISSUES

to 1 through all transformations of one patch. This normalization leads to
better results without overflowing and underflowing.

3.5 Reducing complexity of LBP - Coarse to

fine strategy

The time complexity of LBP is O(nH2), where n is number of sites, i.e. the
number of patches, and H is number of labels per site, i.e. the number of
putative transformations. This quadratic dependence implies that we can
not use large set of putative transformation. For example if we use entire
set of putative transformations described above (3465 transformations), the
computing time of two relative small frames (240 × 180 pixels) is about 80
hours.

The way how to resolve this issue is to use coarse to fine strategy. The
idea of this strategy is group together similar transformations that differs
only in translation. The set of translations of each direction is divided into
two groups. Then the representative ψ(sk) and ψ(sk, sl) of each group is
found that is ψ(sk) with maximal value and by LBP the group with maximal
belief is chosen. This group is divided into smaller groups by same way and
repeat the algorithm LBP until we have group with basic dimension -single
label. This strategy is effective only for large set of the translations, not for
large set of rotations and scales, because dilated is only set of translation. In
general use it is enough, set of putative translation is much larger than set
of rotations or scales.

This strategy leads to better time complexity. Using it we reach com-
puting times about 10 minutes.

Chapter 4

Experiments

For testing we used firstly testing data (see Figure 4.1), what include static
background with texture and translating rectangle with different texture.
Results of this first experiments you can see on figure 4.3. For next exper-
iments we use simple real data: two frames of video of moving people (see
Figure 4.2). We found this frames in [5]. In case of time demand factor of
the algorithm we used pictures with low resolution 120× 80 pixels. For the
other experiments are used photos from laboratory G9 of Czech Technical
University, the part of the MultiCAM project.

4.1 Testing likelihood calculation

After calculating likelihoods we wanted to test results of initial estimation
based solely on likelihood ψ(sk) of every patch. In this step we estimate
transformation by maximum of ψ(sk) of every patch (see equation 2.2). The
result you can see on Figure 4 testing data (moving textured rectangle). This
estimation brings good results for simple data (i.e. our testing data), but it
cannot be used for more complicated cases due to motion blur etc.

Figure 4.1: Testing data: static background with a rectangle moving in x
direction.

19

20 CHAPTER 4. EXPERIMENTS

Figure 4.2: Real data for testing: A frame sequence taken from a still camera
(courtesy Hedvig Sidenbladh [11]). The scene consists of a person walking
against a static background.

0
5

10
15

20
25

0

5

10

15
0

2

4

6

8

10

Transformation 3 − X Translation

0
5

10
15

20
25

0

5

10

15
0

0.5

1

1.5

2

2.5

3

Maximal values of psi

Figure 4.3: Initial estimation based solely on likelihood. The left side of this
figure shows values of the recognized transformation (motion in x direction)
in the image showed on figure 4.1 (moving rectangle). You can see good
estimation of the transformation except of several patches at the edges of the
rectangle. The right side of the figure shows value of the maximal likelihood.

4.2. TESTING PROGRESS OF BELIEF CALCULATION IN EVERY STEP OF ITERATION WITHOUT NORMALIZATION OF BELIEFS21

4.2 Testing progress of belief calculation in

every step of iteration without normal-

ization of beliefs

As we wrote in section 4.5, we had problem with loosing information in every
step of iteration. After consulting this problem with Mr. Pawan Kumar we
got recommendation to use normalization of messages in every step. This
information resolved our problem. On Figure 4.4 you can se previous results
without normalization of the messages in example of frames with no motion.
Every pair of pictures shows values of estimated transformation and beliefs.
In the first step of iteration estimation is quite good, but it got worse and
worse by every step.

4.3 Results with normalized messages in LBP

At last we used all information what we got from Mr. Pawan Kumar, it means
proper sign and values of pixel brightness in calculation ψ(sk, sl), likelihood
without normalization and normalization messages in every iteration step.
Final form of algorithm we tested on testing data and real data. Iteration
stops after second step and result you can se on Figure 4.5, 4.6 and 4.7.

4.4 Components processing

Figure (4.9) shows processing the components. From colored patches we find
connected components and merge the small ones to the surrounding.

Figure (4.10) show the found components of four frames and their com-
bination according to the description above with similarity matrix S(i, j).

In this experiments we used frames with resolution 320× 200 pixels and
resolution of every patch was 5 × 5 pixels. Results bring coarse estimation
of the rigidly moving clouds of pixels located in the observed scene.

4.5 Using frames with large resolution

Using frames with large resolution new issues become. On the figure 4.11
is shown two frames with resolution 640 × 480 and result of the finding
rigidly moving components. Background with texture is classified correctly,
but there are a lot of separated components instead of exactly circumscribed
body, hands and legs. Further there are a few components on the top of the

22 CHAPTER 4. EXPERIMENTS

0
5

10
15

20
25

0

5

10

15
−5

0

5

Transformation 3 − X Translation

0
5

10
15

20
25

0

5

10

15
0

0.05

0.1

0.15

Maximal values of b

0
5

10
15

20
25

0

5

10

15
−5

0

5

Transformation 3 − X Translation

0
5

10
15

20
25

0

5

10

15
0

0.05

0.1

0.15

Maximal values of b

0
5

10
15

20
25

0

5

10

15
−5

0

5

Transformation 3 − X Translation

0
5

10
15

20
25

0

5

10

15
0

0.05

0.1

0.15

Maximal values of b

0
5

10
15

20
25

0

5

10

15
−5

0

5

Transformation 3 − X Translation

0
5

10
15

20
25

0

5

10

15
0

0.05

0.1

0.15

Maximal values of b

Figure 4.4: Four steps of iteration in no-motion example calculated by mes-
sages without normalization. On the first row of the pictures you can see
right estimation based on likelihood (iteration 0) and values of beliefs. The
next rows of the pictures show gradually loosing the proper estimation and
falling of the values of the beliefs.

4.5. USING FRAMES WITH LARGE RESOLUTION 23

5 10 15 20

2

4

6

8

10

12

14

16

Figure 4.5: Initial estimation of testing data based on proper algorithm with
normalized messages. You can see good estimation of the transformation
except of several patches at the edges of the rectangle. These inaccuracies
are resolved by subsequent part of the algorithm.

0

10

20

30

0

5

10

15

20
0

1

2

3

4

5

Transformation 3 − X Traslation

0

10

20

30

0

5

10

15

20
0

0.5

1

1.5

2

2.5

x 10−3

Maximal values of b

Figure 4.6: Values of estimated transformation of testing data and their
beliefs. The peaks are caused by an inaccurate estimation at the edges,
where patches are located on limits of the rigid by moving components.

24 CHAPTER 4. EXPERIMENTS

5 10 15 20

2

4

6

8

10

12

14

16

18

Figure 4.7: Initial estimation of real data based on proper algorithm with
normalized messages. You can see the right recognized silhouette of the
person - the head, torso and one hand. These parts are moving rigidly.
Several inaccurate recognized patches are located mostly at the edges.

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Colored components of the interframe nr 2

1

2

3

4

5

6

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Colored components of the interframe nr 2

1

2

3

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Figure 4.8: Results with (first column) and without (second column) the first
stage of merging components. The first row shows colored patches and the
second found components. Components 2 and 3 on the left bottom image are
only part of the background, component 4 should be part of the component
nr 5.

4.5. USING FRAMES WITH LARGE RESOLUTION 25

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Colored segments (combined components)

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Figure 4.9: Components processing: From colored patches we find connected
components and merge the small ones to the surrounding. Right bottom
image shows final shape of the find connected components.

26 CHAPTER 4. EXPERIMENTS

Colored components of the interframe nr 1

1

2

3

4

5

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Colored components of the interframe nr 2

1

2

3

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Colored components of the interframe nr 3

1

2

3

4

5

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Colored segments (combined components)

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Figure 4.10: Components combining: The first row of pictures shows the
video frames, next two frames show found components in each inter-frame
and their combination.

4.5. USING FRAMES WITH LARGE RESOLUTION 27

Colored components of the interframe nr 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22 23

24

25

26

27

20 40 60 80 100 120

10

20

30

40

50

60

70

80

90

Figure 4.11: Emergence of the virtual components (10, 22, 23, 25 and 27)
while using large resolution of the frames. This is caused absence of the
texture on the picture.

image (components 10, 22, 23 and 27) and one separated component number
25. Emergence of these components isn’t caused due to rigid motion, these
components aren’t moving. As can be seen on the original frames there is
white space without texture on the place of the components. The texture
absence causes wrong classification of the patches.

28 CHAPTER 4. EXPERIMENTS

4.6 Dilution caused by one wrongly segmented

frame

Grouping and combining components isnt robust to wrong finding compo-
nents in one inter-frame. As can be seen on the figure 4.12 first 3 inter-frames
have correctly found components, but components on the 4th inter-frames
are too much diluted. This dilution of the one inter-frame leads to grouping
these components with correctly found components and diluting final seg-
ments into small ones (see figure 4.12, the last image). The first 4 frames
and their inter-frames are the same as in the experiment described in Com-
ponents processing so the result should be similar.

4.7 Experiment with more frames and differ-

ent articulated object in scene

For this experiment we used 10 frames from video with cow walking in scene
[8]. The video is taken from a static analog camera which introduces a
lot of noise. The video has resolution 320 × 200 pixels and resolution of
every patch was 5× 5 pixels. Every inter-frame brings quite good results of
coarse estimation of the motion between frames (legs, body and background
segmented). Combination of the all inter-frames shows segments of the legs
but without body. It is caused, that the body is not separated from legs in
no inter-frame, see Figure 4.13.

4.7. EXPERIMENT WITH MORE FRAMES AND DIFFERENT ARTICULATED OBJECT IN SCENE29

Colored components of the interframe nr 1

1

2

3

4

5

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Colored components of the interframe nr 2

1

2

3

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Colored components of the interframe nr 3

1

2

3

4

5

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Colored components of the interframe nr 4

1

2

3

4

5

6

7

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Colored segments (combined components)

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

Figure 4.12: Dilution caused by one wrongly segmented frame. The first 4
frames and their inter-frames are the same as in the experiment 4.10 the last
one caused the dilution.

30 CHAPTER 4. EXPERIMENTS

Colored components of the interframe nr 1

1

2

3 4

10 20 30 40 50 60

5

10

15

20

25

30

35

40

Colored components of the interframe nr 2

1

2

3

4

10 20 30 40 50 60

5

10

15

20

25

30

35

40

Colored components of the interframe nr 3

1

2

3

10 20 30 40 50 60

5

10

15

20

25

30

35

40

Colored components of the interframe nr 4

1

2

3

4

5

10 20 30 40 50 60

5

10

15

20

25

30

35

40

Colored components of the interframe nr 5

1

2

3

10 20 30 40 50 60

5

10

15

20

25

30

35

40

Colored components of the interframe nr 6

1

2

3

10 20 30 40 50 60

5

10

15

20

25

30

35

40

Colored components of the interframe nr 7

1

2

3

10 20 30 40 50 60

5

10

15

20

25

30

35

40

Colored components of the interframe nr 8

1

2

10 20 30 40 50 60

5

10

15

20

25

30

35

40

Colored components of the interframe nr 9

1

2

3

4

10 20 30 40 50 60

5

10

15

20

25

30

35

40

Colored segments (combined components)

10 20 30 40 50 60

5

10

15

20

25

30

35

40

Figure 4.13: Experiment with more frames and different articulated object
in scene: 10 frames from video with cow walking in scene [8]. The video
is taken from a static analog camera which introduces a lot of noise. The
first row of the pictures shows the first, middle and last frame of the video,
next 9 images show components found in every inter-frame and last image
is combination of all inter-frames. Although all inter-frames are quite good
segmented, final combination is short of segment denoting body.

Chapter 5

Conclusion

Our implementation can recognize moving components in video and combine
these components into segments over more frames, but we did not test it
by large images and bigger set of putative transformation due to time and
memory complexity. We improve components combination using similarity
matrix with weighted values and use coarse to fine strategy to obtain shorter
calculation times. We identify main issues of this algorithm: time complexity
of the calculation of the likelihood and mainly time and memory complexity
of the loopy belief propagation.

The most of the algorithm was successfully implemented, but not entire
algorithm. Unfortunately we did not succeed in the implementation of last
step of the algorithm, the refining shape. Despite that fact preliminary results
can be used for recognition applications

31

Appendix A

Notes to article [5]

The article [5] is dense and contains a few unclearness, what we must have
consulted with M. Pawan Kumar. We note these inaccuracies for better un-
derstanding in future. There is a typo in equation (10) in [5], there should be
plus instead of minus. Sign minus leads to opposite dependence. Equation
(12) in [5] has wrong index letter by first s, there should be sl (see proper
equation 2.5). The part of the algorithm Combining components is in [5] de-
scribed very briefly and imperfectly for implementation, proper explanation
is described above.

Better description with corrected mistakes can be found in enlarged
version of the article. This enlargement leads to better understanding of the
messages passing algorithm of the LBP, has more experiments, but still is
short of description of combining components with similarity matrix.

Understanding of this method also needs more knowledge from com-
puter vision, i.e. about loopy belief propagation (LBP), Markov random
field (MRF) etc.

32

Appendix B

Hidden Markov Models

Hidden Markov Models are used in a wide variety of applications where a
sequence of observable events is correlated with or caused by a sequence
of unobservable underlaying states. In our example the observable events
are likelihoods of very site (and every transformation) and the unobservable
states are their beliefs. A major obstacle in scaling Hidden Markov Models
up to larger spaces is the computational cost of implementing the basic prim-
itives associated with them: given an n-state Hidden Markov Model and a
sequence of T observations, determining the probability of the observations,
or the state sequence of maximum probability, takes time O(Tn2) using the
forward-backward and Viterbi algorithm. The quadratic dependence on the
number of states is a bottleneck that necessitates a small state set, often
artificially coarsed.

An Hidden Markov Models can be represented by a 5-tuple λ = (S, V,A,B, π),
where S = (s1, s2, · · · , sn)is a finite set of (hidden) states, V = (v1, v2, · · · , vn)
is a finite set of observable symbols, A is an n×n matrix with entries aij cor-
responding to the probability of going from state i to state j, {B = (bi(k))}
where bi(k) specifies probability of observing symbol vk in state si, and π is an
n-vector with each entry πi corresponding to the probability that the initial
state of the system is si. The vector π is not important in our application.
Let gt denote the state of the system at time t, while ot denotes the observed
symbol at time t. Given a sequence of observations O = (o1, o2, · · · , oT)
there are three standard estimation (or inference) problems that have wide
application:

• Find a state sequence Q = (q1, q2, · · · , qT) maximizing P (Q | O, λ).

• Compute P (O | λ), the probability of an observation sequence being
generated by λ

• Compute the posterior probabilities of each state, P (qt = si | O, λ).

33

34 CHAPTER 5. CONCLUSION

Our application of the Hidden Markov Model is the first task of the itemiza-
tion: find state sequence (labels) of the patches, which maximize the equation
2.1.

Bibliography

[1] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast aproximate energy
minimization via graph cuts. IEEE, 2001.

[2] R.T. Collins and et al. A system for video surveillance and monitoring:
Vsam. Technical Report CMU-RI-TR-00-12, Carnegie Mellon Univer-
sity., 2000.

[3] D. Cremers and S. Soatto. Variational space-time motion segmentation.
In IEEE International Conference on Computer Vision (ICCV), pages
886–892. IEEE Computer Society Press, 2003.

[4] I. Haritaoglu, D. Haewood, and L. S. Davis. A real time system for
detecting and tracking people. In Pattern Anal. Mach. Intell, volume 2,
pages 809–830, 2000.

[5] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Learning layered motion
segmentations of video. In Proceedings of the International Conference
on Computer Vision, volume 1, pages 33–40, 2005.

[6] Pawan Kumar. Personal communication, 2006.

[7] Bastian Leibe, Edgar Seemann, and Bernt Schiele. Pedestrian detection
in crowded scenes. Multimodal Interactive Systems, 2005.

[8] D.R. Magee and R.D. Boyle. Detecting lameness using re-sampling con-
densation and multi-stream cyclic hidden markov models. In IVC, vol-
ume 8, pages 581–594, June 2002.

[9] A. Meygret and M. Thonnat. Segmentation of optical flow and 3d data
for the interpretation of mobile objects. In International Conference on
Computer Vision, December 1990.

[10] Judea Pearl. Probabilistic reasoning in intelligent systems : networks of
plausible inference. The Morgan Kaufmann series in representation and
reasoning. Morgan Kaufmann, San Francisco, 1988.

35

36 BIBLIOGRAPHY

[11] H Sidenbladh and M. J. Black. Learning the statistics of people in
images and video. In IJCV, volume 1, pages 181–207, September 2003.

[12] C Stauffe and W. E. L. Grimson. Adaptive background models for real-
time tracking. In Conference on Computer Vision and Pattern Recogn-
tion, volume 2, pages 2242–2252, June 1999.

[13] A. Verri, S. Uras, and E. DeMicheli. Motion segmentation from optical
flow. In Fifth Alvey Vision Conference, pages 209–214, 1989.

[14] Yair Weiss. Beliefs propagation and revision in networks with loops.
Technical Report A.I. Memo No. 1616, Massachusets Institute of Tech-
nology, Artificial Intelligence Laboratory, MA, November 1997.

[15] J. Wills, S. Agarwal, and S. Belongie. What went where. IEEE Computer
Society, 2003.

.

	Introduction
	Evolution of the diploma thesis
	How to read a thesis

	Layered image representation
	Layered representation
	Overview of the algorithm
	 Initial estimation of parameters
	Loopy Belief Propagation

	Combining components
	Refining shape
	Overview
	Energy minimization via graph cuts

	Implementation of the algorithm

	Implementation issues
	Computation complexity of the likelihood estimation
	Understanding equation of messages calculation
	Normalization of the likelihood
	Overflowing and underflowing of beliefs
	Reducing complexity of LBP Œ- Coarse to fine strategy

	Experiments
	Testing likelihood calculation
	Testing progress of belief calculation in every step of iteration without normalization of beliefs
	Results with normalized messages in LBP
	Components processing
	Using frames with large resolution
	Dilution caused by one wrongly segmented frame
	Experiment with more frames and different articulated object in scene

	Conclusion

