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Abstract

We propose a multiview tracking method for rigid ob-
jects. Assuming that a part of the object is visible in at
least two cameras, a partial 3D model is reconstructed in
terms of a collection of small 3D planar patches of arbi-
trary topology. The 3D representation, recovered fully au-
tomatically, allows to formulate tracking as gradient mini-
mization in pose (translation, rotation) space. As the object
moves, the 3D model is incrementally updated. A virtuous
circle emerges: tracking enables composition of the partial
3D model; the 3D model facilitates and robustifies the mul-
tiview tracking.

We demonstrate experimentally that the interleaved
track-and-reconstruct approach successfully tracks a 360
degrees turn-around and a wide range of motions. Monoc-
ular tracking is also possible after the model is constructed.
Using more cameras, however, significantly increases sta-
bility in critical poses and moves. We demonstrate how to
exploit the 3D model to increases stability in the presence
of uneven and/or changing illumination.

1 Introduction

Existing multiview approaches mostly represent objects
as blobs. Blob representation assumes that the appearance
of an object does not significantly change when the object
rotates. Global object position is sought and the methods do
not attempt to recover the orientation of the object [3, 9].

Most model-based tracking methods use 3D models pre-
pared offline. An overview of such methods was recently
published by Lepetit et al. [7]. Vacchetti et al. [16] pro-
pose a tracker based on matching with keyframes. The
method demonstrates impressive results on out-of-plane ro-
tation data. Still, it cannot track complete turn of the object
and needs offline manual selection of keyframes which are
essential for its stability. Muñoz et al. [10] suggest a method
that track even deformable objects. Their model is com-
posed of small textured planar patches, a set of shape bases,

Figure 1. Interleaved model contruction and
tracking: Camera image with reprojected
model, trajectory of the head and two differ-
ent views of the automatically constructed
model.

and a set of texture bases. The tracking procedure needs
a reference image and optimizes over local shape deforma-
tions, colour/texture changes and overall motion. Results on
real data show successful tracking only of small variations
in object pose and negligible local deformations.

Several approaches build elaborated 3D models from
multiple views. The methods rely heavily on carefully con-
structed and expensive setup and require special scene ar-
rangement since they are based on scene/object segmenta-
tion [1, 5, 8, 17]. Würmlin et al. [17] propose dynamic 3D
point samples for streaming 3D video. This point based rep-
resentation somehow resembles our model. However, the
method does not track object and needs many cameras and
very precise pixel-wise motion segmentation.
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We propose a combined method that tracks objects in 3D
and constructs a point based appearance model simultane-
ously. The primary interest is object tracking and detec-
tion. The model is rather simple, a set of 3D points asso-
ciated with 3D orientation and albedo. Despite its simplic-
ity, the model is rich enough for recovering orientation of
the object. The tracking can follow a complete 360 degree
turn of object. Rothganger et al. [12] also compose a 3D
model from small planar patches. The patches are recon-
structed from multiview correspondences. Objects are pho-
tographed an object from several viewpoints, corresponding
image patches are found by affine covariant feature match-
ing. Finally, patches are reconstructed in 3D. In fact, it
would be possible to use this model in our tracking. Any
complete off-line built model [11] could be used, too.

Cobzas and Jagersand [2] propose a monocular,
registration-based, 3D camera tracking of the planar 3D
patches. The 3D planar patches are estimated from tracks.
Although the formulation of the tracking resembles our
method, there are several differences. The patch based
model is initialized at the beginning of the sequence (in
about 100 frames) by using a standard 2D patch based
tracker. Then the algorithm switches to tracking and re-
fine the model using 3D model-based tracking. Cobzas et
al. estimate camera pose, assuming a rigid scene. Unlike
our method which models illumination changes, Cobzas et
al. assume constant illumination and intensity of observed
points. Our method builds the model from the very begin-
ning of the sequence. Tracked objects change their position
and orientation w.r.t. to light sources. In this case, con-
stant pixel intensities cannot be assumed even for Lamber-
tian surfaces and our method reflects this.

2 3D tracking

An object O is modelled as a triplet (X, α, N) where
X is a set of 3D points, α : X → R assigns albedo and
N : X → S2 a normal to each point x ∈ X , where S2 is a
sphere. During tracking, intensity T (x) of point x in a given
frame is predicted from its albedo α(x) and an estimated
illumination as detailed in section 3.

Assuming rigidity, the motion of points x ∈ X between
two time instances t1 and t2 is

xt2 = Rxt1 + d,

where R represents rotation and d translation. When the
rotation is small [4] (e.g. between two consecutive video
frames), the motion equation simplifies to

xt = (I + D)xt−1 + d, (1)

where the rotation matrix R is replaced by an antisymmetric
matrix D and an identity matrix I. Matrix D is defined by

Figure 2. Model (template) T is projected by
projection function f and compared to the
current observation I.

three parameters u = [D1, D2, D3]T ;

D =

 0 D3 −D2

−D3 0 D1

D2 −D1 0

 .

Tracking in 3D is defined as the process of finding motion
parameters D,d minimizing the following image dissimilar-
ity ∑

x∈X

[
T

(
xt−1

)
− I

(
f
(
xt

))]2

, (2)

where I : R2 → R assigns intensity to each pixel, T :
X → R assigns intensity to each 3D point. The projection
function f : R3 → R2 maps 3D points to image coordi-
nates and depends on internal and external parameters of
the camera, see Appendix A for details.

Substituting from equation (1) for xt in the dissimilarity
function (2) and simplifying notation by setting xt−1 = x,
a cost function in six unknowns is obtained

J(u,d) =
∑ [

T (x)− I
(
f (x + Dx + d)

)]2

, (3)

where the sum is over all x ∈ X as in (2); starting from (3)
the summation range is omitted for brevity. We seek motion
parameters u and d that minimize dissimilarity J(u,d). At
the minimum, the partial derivatives with respect to all vari-
ables must be zero:

∂J(u,d)
∂d

= 0,
∂J(u,d)

∂u
= 0,

which yields the following two vector equationsX h
T (x)−I

`
f(x+Dx+d)

´i∂I
`
f(x + Dx + d)

´
∂d

= 0, (4)



X h
T (x)−I

`
f(x+Dx+d)

´i∂I
`
f(x + Dx + d)

´
∂u

= 0, (5)

There is no closed-form solution for (u,d). We there-
fore apply Newton-Raphson minimization, approximating
I
(
f(x + Dx + d)

)
by its first-order Taylor expansion

I
(
f(x + Dx + d)

)
≈ I

(
f(x)

)
+ gT (Dx + d), (6)

where
gT = I ′T

(
f(x)

)
f ′(x); (7)

I ′ : R2 → R2 is the gradient of image I and f ′ : R3 →
R2×3 is the Jacobian of the projection function f .

Differentiating the linear approximation (6) leads to

∂I
(
f(x + Dx + d)

)
∂d

≈ g, (8)

∂I
(
f(x + Dx + d)

)
∂u

≈ ∂gTDx
∂u

. (9)

Applying the approximations (8), (9), equations (4), (5) are
simplified toX ˆ

T (x)− I
`
f(x)

´
− gT

Dx− gT d
˜
g = 0 .(10)X ˆ

T (x)− I
`
f(x)

´
− gT

Dx− gT d
˜∂gT Dx

∂u
= 0,(11)

Simple algebraic manipulations confirms that the following
two identities hold

gTDx = (g × x)T u,

∂gTDx
∂u

= (g × x) ,

where × is the cross product. Equations (11) and (10) can
be compactly represented as a system of six linear equa-
tions A.

A

[
u
d

]
= b , (12)

where

A =
∑ [

(g × x)(g × x)T (g × x)gT

g(g × x)T ggT

]
, (13)

b =
∑ [

T (x)− I
(
f(x)

)] [
(g × x)

g

]
. (14)

Assuming regular A, the solution approximately minimizing
equation J(u,d) is [

u
d

]
= A−1b . (15)

The 6× 6 matrix A consists of four 3× 3 sub-matrices and
is block-wise symmetric. Unknown motion parameters d,

u are both 3 × 1 column vectors and b is a 6 × 1 column
vector.

At least six points are required for rank(A) = 6. In prac-
tice, many more points are visible. If the object is weakly
textured back-projected image derivatives g may get close
to zero and matrix A becomes nearly singular. Texture prop-
erties needed for reliable tracking of the object are discussed
in [14]. Unlike [14], we optimize over the whole object not
just over a small patch.

Newton-Raphson iterations are carried out until conver-
gence or a maximum number of steps N . Experiments
showed the process converged usually in 8 − 10 iterations.
Convergence may require more iterations when the motion
is fast, so N was set to 20.

The tracking method was derived for an intensity image
and single camera. Extension to RGB tracking is straight-
forward. The single sum in solution (13,14) is replaced by
summations over all visible points, cameras and all RGB
channels.

3 Compensation of Illumination

Intensity recorded during model acquisition depends, be-
sides the object shape and reflectance, on light sources. We
treat the intensity as albedo. As the object moves, the set
of light sources visible from a point and their photometric
angles change. When modeling these effects we assume:

• cast shadows can be ignored,

• the light sources are distant,

• no specular reflectance.

Under these assumptions, intensities of all points with iden-
tical normals will be scaled by a common matrix (for
grayscale images only scalar is considered). We adopted
a simple method for estimation of the matrix, which per-
formed well in experiments. The method clusters the points
X into n groups G1, . . . , Gn according to their normals and
compensates the illumination of i-th cluster in each opti-
mization step (15) by a color correction matrix

E∗i = arg min
Ei

∑
x∈Gi

‖EiI(f(x))− T (x)‖22. (16)

Let us denote

F (Ei) =
∑
x∈Gi

‖EiI(f(x))− T (x)‖22 =

∑
x∈Gi

IT (f(x))ET
i EiI(f(x))−2TT (x)EiI(f(x))+TT (x)T (x),



then minimization yields the following matrix equation

∂F (Ei)
∂Ei

=
∑
x∈Gi

−2T (x)IT (f(x))+2E∗i I(f(x))IT (f(x)) = 0

(17)
and the least square solution is

E∗i =

[ ∑
x∈Gi

I(f(x))IT (f(x))

]−1 ∑
x∈Gi

T (x)IT (f(x)).

(18)

4 Tracking-Modeling Algorithm

A minimal configuration able to build the model must in-
clude at least one stereo pair. For tracking, a single camera
is sufficient.

If no model is available from a previous tracking-
modeling session, the processing starts with a stereo-based
reconstruction [6] of the visible part of the object. Albedo
of each point is determined from the average of intensities at
its projections onto images used for 3D reconstruction. The
reconstructed points are clustered and replaced by points
on fish-scales [13]. Fish-scales are small oriented planar
patches obtained by local clustering of the cloud of points.
Small clusters of points are replaced by ellipses with half-
axes corresponding to the two main eigenvectors of their co-
variance matrix. The third eigenvector defines the surface
normal. Note that, computation of fish-scale representa-
tion is much simpler then a complete surface triangulation.
Still the fish-scales are experimentally shown to be suffi-
cient representation for 3D tracking. Knowledge of surface
orientation at each points allows:

• Efficient visibility calculations for convex objects.

• Compensation of illumination effects.

Once the partial model is known, it can be used for pose
estimation. If observed motion in the image indicates that a
part of the image moves consistently with points currently
in the model, stereo is invoked again and newly recon-
structed patches are merged into the model. The complete
algorithm is summarized in Figure 3.

Note, that the system never knows when the model is
completed, because another consistently moving rigid part
of the object can appear later. The system only detects that
no reconstruction is currently needed.

5 Experiments

The sequences were captured in an office. We used four
firewire cameras with resolution of 640 × 480 pixels con-
nected to Linux operated computers. The acquisition was

1. Capture images

2. If needed, invoke stereo reconstruction and merge
it to the model.

3. Estimate the pose of the object by iterating least
square solution (15).

4. Update matrices E1, . . . , En and for all i and each
x ∈ Gi recompute object intensity T (x) ←
EiT (x). goto 1.

Figure 3. Tracking-Modeling Algorithm

TCP/IP synchronized and the setup was calibrated. The to-
tal cost of the setup (without computers) is less than 500
dollars and calibration is easy since a free software for au-
tomatic (self)calibration exists [15].

Two different sequences were used. In the human se-
quence, a person makes a variety of motions. The individual
walks around, shakes and tilts his head. The camera setup
consists of two narrow-baseline cameras for stereo recon-
struction and two other cameras spanning approximately a
half-circle.

The book sequence poses slightly different challenges.
The book is a relatively thin object and in some poses the
dominant planes (front and back cover) are invisible. The
camera setup consists of three cameras located near each
other. Two of them are used for stereo, all of them are used
for tracking. The model of the book is incrementally con-
structed from a stereo pair and tracked in all cameras.

Objects are tracked successfully in both sequences and
their shapes are correctly reconstructed. We performed ex-
periments to assess the accuracy and robustness of multi-
view and monocular tracking. Section 5.1 shows that the
accuracy of multiview tracking is sufficient for incremen-
tal model construction without additional alignment. Sec-
tion 5.2 compares monocular and polynocular tracking. We
show that monocular tracking often estimates poses which
are incorrect but look correct in the tracking camera. Ro-
bustness is tested in section 5.3 on the book sequence where
the tracking survives even in frames where dominant planes
are absent. Experiments showing illumination compensa-
tion are described in section 5.4. Tracking speed is con-
sidered in section 5.5. Experiments in sections 5.4,5.5 are
conducted with illumination compensation.

In Figures 3-5, projections of visible points are depicted
in blue and invisible in yellow. Readers are encouraged to
zoom-in the Figures in the electronic version of the docu-
ment and watch the accompanying video sequences.



5.1 Interleaved Tracking and Model Con-
struction

The first experiment demonstrates the interleaved opera-
tion of tracking and model construction. The process starts
with a partial reconstruction in the first frame, see the left-
most column of Figure 4. The tracker is initialized using
this partial model. As the human is turning Fig.4(b), the
model, is augmented by adding further partial reconstruc-
tions Figs. 4(c,d). Once the 360 turn is finished, the model
is complete and further reconstruction are not required.

The 3D model is only a side product of the tracking. Its
visual appearance cannot match models created with spe-
cialized stereo algorithms or visual-hull based algorithms.

5.2 Monocular Model-Based 3D Tracking

In the case of monocular tracking, a 3D model and its ini-
tial position are considered to be known in advance (e.g. we
use the model from previous experiment). The head was
successfully tracked over 630 frames, despite the fact that
both 3D translation and out-of-plane rotation were present
in the sequence. Tracking results are shown in Figure 5.
In images from the tracking camera, the projected model
poses seem correct. However, since only a single camera
was used, the recovered 3D position is inaccurate, see row
2 in Figure 5. Naturally, the more cameras are used for the
optimization, the more accurate 3D pose becomes. Results
from the same sequence with the object tracked by all cam-
eras are depicted in the last row of Figure 5.

5.3 Robustness against Critical Poses

A thin object like the book used in the experiment may
easily appear in poses which are inherently challenging for a
tracking algorithm. If only the back is visible, the tracking
may get unstable. Even during multiview tracking it may
happen that most of the object is visible only in a single
camera. We call such poses critical.

In a critical pose, the book has to be tracked virtually
from the single view. The position of the model does not
correspond to the projection in the cameras where only a
small fraction of the book is observable. After the object
leaves critical pose, the model converges to the true posi-
tion, see Figure 6.

5.4 Compensation of Illuminance Effects

The model points are clustered in 14 equally distributed
clusters according to their normals. Each cluster is associ-
ated with illuminance constant Ei which changes during the
tracking to best fit the observed data.

a) Multiview tracking; blue are visible, yellow invisible
(occluded) projections

b) Corresponding poses and path recorded

c) Incremental construction of the model, as seen from top

d) Incremental construction of the model, an random view

Figure 4. Incremental model construction from
partial 3D reconstructions and registered by 3D
tracking. Rows 1-3: Different views with pro-
jected model. Row 4: Position and orienta-
tion in 3D space. Rows 5-6: incrementally
constructed 3D model. Columns correspond
to frames 1, 100 and 310.

Figure 8-left shows a view with a projected model. Gray
levels of particular fish-scales correspond to the values of
illuminance constants. Higher values corresponds to the re-
cently illuminated points and vice versa. One can see that
in this case light sources were located on the left side of the
object which corresponds to the reality.



Tracking camera, in monocular tracking, this is the only one used
for optimization. Results of monocular tracking projected

Monocular tracking results as projected to a camera which
approximately orthogonal to the tracking one.

Polynocular tracking. The same camera as above. Note the
essentially more consistent 3D pose.

Figure 5. Comparison of monocular (rows 1-2)
and polynocular (row 3) tracking. Monocular:
Row 1: view from the tracking camera, Row
2: observing camera (shows that, accuracy
in orthogonal direction is low). Polynocular:
Row 3: The same camera with the projected
model from multiview tracking.

The office has several light sources placed on opposite
walls and oriented to the irregularly arched ceiling. Cor-
responding changes of the illuminance constant E6 dur-
ing 360 turn are shown at Figure 8-right. Two significant
changes during the turn corresponding the light sources are
clearly visible. The function of illumination changes is not
smooth because during the turn, fish-scales visibility in par-
ticular cameras changes and in different times different sets
of fish-scales are used for the compensation of illuminan-
tion effects. Another reason is local inaccuracy of track-
ing caused by image discretization. Tracking trajectories
as well as illumination changes could be smoothed using a
motion model, but in our experiments only the output of the
optimization is used.

5.5 Speed Evaluation

The speed of the algorithm shown in Figure 3 was tested
on the sequence introduced in the first two experiments
(i.e. 4 cameras, RGB images). Slightly-optimized imple-

Figure 6. Book tracking: Rows 1-2: differ-
ent cameras with projected model, row 3:
shows position and orientation in 3D space,
columns correspond to frames 55, 205 and
265. The second column shows the book in a
critical position where dominant plane is vis-
ible only in one camera.

mentation in Matlab runs cca 1.8 s/frame on an AMD-64b
linux running machine. We experimentally show that the
tracking of the same sequences in graysacle is successful as
well as in RGB. Since one of the most important property
of the tracking is the framerate, we increase it 3 many times
by considering only grayscale model/sequence.

Tracking of grayscale sequence takes approximately
800 ms/frame. Typically, multiple cameras are connected
to different computers. Hence, all the contributions to the
A,b from equation (13,14) can be computed independently
on the particular computers. Using such a system, a frame
rate of 5 frames per second can be achieved with the current
Matlab implementation.

6 Conclusions

We proposed a fully automatic approach of multi-
view/monocular 3D object tracking interleaved with incre-
mental model construction. Neither model nor initialization
are needed to be known in advance. We formulated track-
ing as a gradient based method minimizing dissimilarity of
the observe image and projected 3D point intensities. We
showed that the fish-scale 3D model [13] is accurate enough
to support stable 3D tracking.

We experimentally demonstrated that the proposed in-
terleaved approach, successfully tracks a complete 360 turn
and a wide range of motion without a need for pre-prepared



Figure 7. Book Model: Different views of the
book model. Small non-planarity in one cor-
ner is the reconstructed hand.

Figure 8. Left: The image with projected
model. Colors correspond to the com-
puted illuminance Ei of each particular clus-
ter. Right: Values of E6 during the the 360
turn.

3D model. A 3D model is delivered as a side product.
We demonstrated the robustness of our method on a se-
quence with a thin object where the dominant plane was
often tracked only from one view.

We showed that monocular tracking is possible if the
model is available. The model projection to the tracking
camera often looks correct, projections to other cameras re-
veals 3D inaccuracies. Still, monocular tracking can pro-
vide results acceptable for some applications. Using more
cameras significantly increases stability and accuracy in
critical poses and moves. Exact 3D pose may be neces-
sary in many application ranging from virtual reality, human
computer interfaces to visual surveillance.
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Appendix A

A 3D point x is projected to 2D image (pixel) coordi-
nates p as [

λp
λ

]
= P

[
x
1

]
,

where P is 3 × 4 camera matrix [4] and λ ∈ R. Let the
camera matrix be parameterized as

P =

 mT
1 t1

mT
2 t2

mT
3 t3

 (19)

the function f : R3 → R2 projecting 3D point to the cam-
era coordinates is

f(x) =

 mT
1 x+t1

mT
3 x+t3

mT
2 x+t2

mT
3 x+t3

 . (20)

Differentiating f with respect to x we obtain f ′ : R3 →
R2×3 Jacobian matrix function, which consists of elements

f ′pq =
mpq(mT

3 x + t3)−m3q(mT
1 x + tp)

(mT
3 x + t3)2

(21)

where mpq, p = 1 . . . 2, q = 1 . . . 3 is q-th elements of mT
p .
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