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1. Introduction

This report describes the design of a specific omnidirectional camera. An om-
nidirectional camera is a combination between a conventional camera and an
axially symmetric mirror. In the present case, the mirror projects to the conven-
tional camera a cylinder by preserving its geometry. Therefore, a linear relation
exists between the vertical position of a world point and the radial position of
an image point. The design considers also the pixel density of the imager. One
solution is presented for a uniform pixel density and an other for a non-uniform
pixel density, especially for the log-polar density of the SVAVISCA sensor. For
both solutions, the existence of a perspective projection is investigated.

The report is organized as follow, in Section 2 a general description of om-
nidirectional cameras is given. One approach for omnidirectional cameras, the
catadioptric, is further investigated in Section 2.1. Different existing mirror
shapes are presented in Section 2.1.1. The design in Section 3 treats first (Sec-
tion 3.1) the problem of cylindrical projection without concerning the imager.
Then, in Section 3.2 a solution for a uniform pixel density and in Section 3.3 a
solution for a non-uniform pixel density is presented. Conclusions are given in
Section 4.

2. Omnidirectional Camera

Cameras with a wide field of view are commonly called omnidirectional. The
term omnidirectional is misleading. Strictly spoken, it means a field of view
covering the whole space around the sensor but most omnidirectional cameras
cover only a certain region. In Figure 1 there are depicted three possible field
of views. Suppose that the camera is at the origin and points in the z direction
and that the grey surface represents its field of view, when figure (a) depicts the
small field of view of a conventional camera, and figure (b) and (c) depict the
field of view as a hemisphere respectively as a panorama. The last two are the
most commonly used for real omnidirectional cameras.

2.1. Catadioptric Sensor

There are roughly three different approaches used to obtain omnidirectional im-
ages; use of multiple standard cameras, use of a camera with special lenses, and
use of a conventional camera along with a mirror1. The latter combination is
also known as a catadioptric sensor2. Compared with the other two approaches,
this one allows, by the law of geometric optics, a simple realization of demanded

1 See [24, 15] for a detailed survey.
2 Dioptrics is the science of refracting elements (lenses) whereas catoptrics is the optics
of reflecting surfaces (mirrors). The combination of refracting and reflecting elements is
therefore referred to as catadioptrics [11, 1].
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field of view for competitive costs. This is mainly the reason for increased inter-
est in research of catadioptric sensors and their applications3. In the following,
the omnidirectional camera is based on the catadioptric approach; a combina-
tion of a conventional camera and an axially symmetric mirror where the optical
axis of the camera and the symmetric axis of the mirror coincide. The omnidi-
rectional image is then circular and must be unwrapped to obtain a panoramic
image, as depicted in Figure 2.

2.1.1. Mirror Shapes

The conventional camera is supposed to be perspective and approximated by
the pinhole camera model. The geometry of the pinhole camera is defined by the
image plane, perpendicular to the optical axis, and the focal length. All points
in the field of view are projected proportionally to the focal length to image
points. Using the mirror to enlarge the field of view does change the projection
characteristic and in general the pinhole model is not valid for omnidirectional
cameras. A central perspective projection, however, is still valid for specific
mirror shapes. Such mirrors are derived by Baker and Nayar in [1]. The shape
of practical use is hyperboloidal4. Any image by such a camera is consistent
with the way we are used to see images, which is desirable in surveillance and
teleconferencing. Further, the central perspective projection is required by most
techniques in machine vision.

The hyperboloidal shape is a specific solution of the family of polynomial
mirror shapes derived by Chahl and Srinivasan in [4]. These mirrors do not
provide a central perspective projection, except for the hyperbolic one, but still
guarantee a linear mapping between the angle of elevation φ and the radial dis-
tance from the center of the image plane ρ, when referring to Figure 4. Another
approach is to guarantee a uniform resolution for the panoramic image. The
resolution in the omnidirectional image is increasing with growing eccentricity
when using a camera with an imager of homogenous pixel density as it is visible
in Figure 2.

The mirror shapes, that equalize the resolution, is derived by Conroy and
Moore [5]. This family achieves solid angle pixel density invariance. A similar
approach by Hicks and Bajcsy in [13] guarantees a uniform resolution in a plane
that is parallel to the image plane. Further, this family preserves the geometry
of the projected plane. They show in [12] that these mirrors approximate per-
spective projection. This is also achieved approximately with spherical mirrors
as pointed out by Derrien and Konolige in [7].

3 See [6, 24, 9, 23, 16, 17, 10, 2, 3, 20] for more information about applications such as robot
navigation, surveillance, model acquisition for virtual reality, and teleconferencing.

4 If instead of the perspective camera an orthographic is used, then the mirror shape is
paraboloidal.
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Figure 1: Different field of views. The camera is supposed to be at the origin
and pointing into the z direction. The grey surface represents its field of view.
Figure (a) is the small field of view of a conventional camera, figure (b) is a
hemispheric field of view, and figure (c) is a panoramic field of view.

(a)
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Figure 2: Images taken by an omnidirectional camera with an hyperboloidal
mirror shape. Figure (a) depicts the omnidirectional image. Figure (b) depicts
the corresponding panoramic image.

4



3. Design

In this project, the omnidirectional camera is used to detect and track a moving
object. This is simplified, when the objects representation in the images rests
equal. The aim of the system is, to detect and track moving objects, e.g. human
faces, therefore it is suitable to have an omnidirectional camera providing images
with a uniform representation of the object forefront. If only small objects
are assumed, then the objects forefront lie approximately on a cylinder surface
as depicted in Figure 3. Therefore the catadioptric sensor has to project the
cylinder to preserve its geometry. Due to the axial symmetry, the problem is
restricted to the ρz-plane and the mirror shape has to be designed such that at
a given distance d from the origin, the vertical dimension h is linearly mapped
to the radial distance from the center of the image plane ρ, when referring to
Figure 4.

3.1. Derivation

The relation between a world point with coordinates [d h]T , the cross section
function F (t) with t(ρ), and an image point with coordinates [ρ 0]T is defined
by the law of reflection, when referring to Figure 4 and Figure 5. Instead of
deriving directly F (t), first an expression for h(t) is sought. This is not the
most obvious way to find the cross section function but it results in some useful
equations for the simulation of the sensor.

Referring to Figure 4, the world point at a distance d is given by the following
relation

h(t) = F (t) − cot(φ)(d − t) . (1)

This means that a ray emanating from an image point is reflected by the
mirror and reaches a world point on the cylinder. The incident and coincident
rays on the mirror as depicted in Figure 6 are described by their directional
vectors ~i respectively ~c, both of norm equal one. The law of reflection imposes
that the angle between the incident ray and the normal to the surface is equal
to the angle between the normal and the coincident ray. The normal vector ~n
corresponds to a function of derivatives of the cross section function F (t) at the
point t. Expressed by the scalar product, the following condition must hold

−~i · ~n = ~n · ~c . (2)

The components of the vectors are as follows

~i =
~r

|~r|
=

[

iρ
iz

]

, ~r =

[

t

F (t) − f

]

,

~n =

[

dF (t)
−dt

]

, ~c =

[

cρ
cz

]

.
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Figure 3: Cylinder surface for which an object forefront has to preserve its
geometry.
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Figure 4: Schematic diagram of the catadioptric sensor.
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Looking at (1), the term cot(φ) has to be expressed as a function of the
given geometry. Because tan(φ) corresponds to the slope cz

cρ
of the coincident

ray5 and because the slope of the incident ray can be expressed either by the
vector ~i or ~r the following equation is obtained when solving (2).

cz

cρ
= F ′(t) +

iρ

cρ

(

F ′(t) −
F (t) − f

t

)

(3)

The condition for two unity vectors, ‖~i‖ = ‖~c‖ = 1, gives the expression for
the fraction iρ

cρ
,

(

iρ

cρ

)2

=

1 +

(

cz

cρ

)2

1 +

(

F (t) − f

t

)2 . (4)

Combining equation (3) and (4) results in a cubic expression





(

F ′(t) −
F (t) − f

t

)2

−



1 +

(

F (t) − f

t

)2








(

cz

cρ

)2

+2F ′(t)



1 +

(

F (t) − f

t

)2




cz

cρ

+





(

F ′(t) −
F (t) − f

t

)2

− F ′(t)2



1 +

(

F (t) − f

t

)2






 = 0 .

(5)

One solution of this equation corresponds to the slope of the transmitted ray
and the other to the slope of the reflected ray. Where the latter is the sought
one.

cz

cρ
=
F (t) − f

t

cz

cρ
=

2tF ′(t) − (F (t) − f)(1 − F ′(t)2)

2(F (t) − f)F ′(t) + t(1 − F ′(t)2)

The expression for h(t) can now be written as follows.

h(t) = F (t) +
2tF ′(t) − (F (t) − f)(1 − F ′(t)2)

2(F (t) − f)F ′(t) + t(1 − F ′(t)2)
(d − t) (6)

Solving this equation for the derivative of the cross section function F ′(t)
results in a cubic differential equation.

5 The law of reflection impose 2γ + θ+ φ = π and therefore the slope of the coincident ray is
given by cz

cρ
= cot(2γ + θ) = − cot(φ).
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F ′(t)2 + 2
t(d − t) + (F (t) − f)(F (t) − h(t))

(F (t) − f)(d − t) − t(F (t) − h(t))
F ′(t) − 1 = 0

The differential equation, which defines the convex mirror shape, is conse-
quently given by the following expression

F ′(t) +
t(d − t) + (F (t) − f)(F (t) − h(t))

(F (t) − f)(d − t) − t(F (t) − h(t))

−

√

√

√

√

(

t(d − t) + (F (t) − f)(F (t) − h(t))

(F (t) − f)(d − t) − t(F (t) − h(t))

)2

+ 1 = 0 .

(7)

Three parameters influence the mirror shape, the focal length f of the cam-
era, the distance d, which corresponds to the perimeter of the projected cylinder,
and the function h(t), which corresponds to the vertical dimension of a world
point. The parameter h(t) defines also the characteristic of the catadioptric
sensor. To have a linear relationship between the coordinate of a world point
and the coordinate of an image point, the following condition must hold

h(ρ) = aρ+ b . (8)

When substituting this expression in (7), the image coordinate ρ must be
replaced by t. The relation between ρ and t results from the projection by a
conventional camera.

ρ =
ft

F (t) − f
(9)

A closed form solution for (7) seems not possible, when combined with (8)
and (9). Therefore, the problem is solved numerically. The solution for the
above differential equation is computed with the MatLab function ode45.m.
This gets the best result compared with the other solvers of MatLab and that of
Mathematica. The MatLab files for the numerical solution and the simulation
are listed in Section B.

3.2. Solution for Uniform Pixel Density

What is the best mirror shape? As studied by Svoboda [21] for a hyperbolic
mirror and a perspective camera, the mirror has to be designed such that a best
combination between field of view and focal length is attained. The present
case is different. A numeric solution for the cross section function is available
and it is therefore not straight forward to find the optimal conditions between
the different parameters. Nevertheless, the mirror shape has to guarantee a
sufficient field of view and to be as flat as possible to avoid focusing problems,

9



which are present for a real perspective camera and have not been considered
in the design.

Four unknown parameters specify the mirror dimensions; the focal length
f , the radius of the mirror rim t1, the gain a, and the offset b of the function
h(ρ). The distance d is fixed and its influence is studied later. For the following
simulation d is 2 m and f is 12.5 mm. To simplify the task, the radius of the
mirror rim is chosen t1 = 3 cm as used by Svoboda in [21, 22]. F0 depends now
on the focal length, the cross section function, the mirror rim, and the dimension
of the imager. For the given camera6, the maximal useful imager dimension is
ρ1 = 2.4 mm. Because F (t) is not known a priori, F0 has to be estimated.
F0 is fixed in the present case to 15.5 cm. The remaining two parameters, the
gain a and the offset b, define entirely the field of view. The minimal angle of
elevation φ0 is set by the offset b and the distance d. The maximal angle φ1 is
set by the gain a and the maximal imager dimension ρ1. To have a large field
of view, the minimal elevation angle must be as small as possible. Further the
maximum elevation angle φ1 should be as big as possible. Once b is fixed, the
gain should be big enough to span the field of view over the whole considered
vertical dimension. For a hemisphere, φ0 is zero, but then b should be −∞ and
a consequently ∞. Hence technical realizable is only a panoramic field of view
as depicted in Figure 1.

The cross section function for a mirror with a field of view of approximately
79.2◦ is depicted in Figure 7 and the distribution of the reflected rays in figure
Figure 8. The technical drawing for the mirror is depicted in Figure 15. In
figure Figure 9 is depicted the inverse projection of equidistant image points to
the vertical dimension for different distances. It is not visible but the difference
between the points is slightly varying. To have a feeling about that, the ratio
between the numerical derivation of the function h(ρ), ∆h

∆ρ
, given by (6) and the

theoretical derivation of the function h(ρ), dh
dρ

= a, given by (8) is computed.

This ratio is normalized to the distance by dividing with the factor di
d
, where

di ∈ {1 m, 1.5 m, 2 m, 3 m, 4 m}. The result is depicted in Figure 10. The gray
surface is the hull of the result for the reference distance d = 2 m. Because of
the numeric derivation, the results are strongly oscillating, therefore only the
averages are reproduced. The optimal ratio should be one and constant over
whole range of ρ, this is even not the case for the reference distance. Thus,
due to the numeric solution, a systematic error exists. The normalized ratios
are somewhat linear and are decreasing with increasing ρ, hence the differences
between the points are increasing in the top-to-bottom direction in Figure 9.
The difference between the points is varying more for distances smaller than the
reference, and less for distances greater than the reference. This is due to the
fact, that for the first case a smaller and for the second case a bigger part of
the cylinder is projected to the constant size of the imager. The slope of the
graph is approximately inverse proportional to the distance and therefore the

6 See [19].
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Figure 7: Cross section function for a = 2000 and b = −400 cm results in a field
of view of approximately 79.2◦ (φ0 = 25.9◦ and φ1 = 105.1◦).
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projection is dependent on the distance.

3.3. Solution for Non-uniform Pixel Density (SVAVISCA)

For the precedent solution of the mirror shape, the pixel density of the imager
is supposed to be uniform, otherwise there is no proportional relationship be-
tween the world and image dimension. When using a non-uniform pixel density,
equation (8) must be modified. Using an imager with a log-polar pixel density7,
as described in [18, 8], the condition has to be of the following form

h(ρ) = a logk

(

ρ

ρ0

)

+ b , (10)

when referring to Figure 11, where ρ is the radius, ρ0 innermost circle of the
log-polar layout and k the growth rate of the pixel size. The pixel size is linearly
increasing from the foveal region towards the periphery. As before, a is the gain
and b the offset. The foveal region of the SVAVISCA sensor has a uniform pixel
density up to the radius ρ0 = 272.73 µm. For simplicity in the mirror design,
this region is assumed to have a log-polar pixel density. The growth rate is
k = 1.02337 for the discrete pixel density, when the condition is assumed to be
the continuous approximation. Further specifications are given in [14].

The same parameter as before influence the mirror design; the focal length
f , the radius of the mirror rim t1, the gain a, and the offset b. For the following
solution, d is 2 m and f is 25 mm. The mirror rim is t1 = 3 cm, the maximal
imager dimension ρ1 is 3.6 mm and F0 is fixed to 21.5 cm. The resulting cross
section function is depicted in Figure 12 and the distribution of the reflected
rays in Figure 13. The technical drawing for the mirror is depicted in Figure
16. The field of view is approximately 69.6◦ assuming that only log-polar part
of the imager is used.

The mirror is designed for a fixed distance d. Therefore it is of interest how
the mirror is behaving for objects outside the reference cylinder. As a criterion,
the ratio between the numerical derivation of the function h(ρ), ∆h

∆ρ
, given by

(6), and the theoretical derivation of the function h(ρ), dh
dρ

= a
ln(k)

1
ρ
, given by

(10) is computed. This ratio is normalized to the distance by dividing with
the factor di

d
, where di ∈ {1 m, 1.5 m, 2 m, 3 m, 4 m}. The result is depicted

in Figure 14. The optimal ratio should be one and constant over the whole
range of ρ. This is even not the case for the reference distance d. Thus, due
to the numeric solution, a systematic error exists. The mapping between the
world and image dimension is only approximately linear. The deviation of the
ratios from the optimal ratio, which is equal one, is decreasing with increasing
ρ, therefore the distortion in the mapping is increasing in the top-to-bottom

7 The advantage to use a log-polar pixel density is, that the pixel read-out results directly in
the panoramic image and no additional computing for unwrapping is necessary.
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Figure 11: Pixel density of the form log-polar for the camera imager. Figure
(a) depicts the geometry and figure (b) an example imager similar to the
SVAVISCA.
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direction. The ratios do not vary much with the distance. Therefore, the mirror
has approximately a perspective projection.

4. Conclusion

This report has presented the design of two mirrors for a catadioptric sensor.
These mirrors project a cylinder by considering the pixel density of the cameras
imager. The geometry of the cylinder is only approximately preserved because of
the limits of the numeric solutions. One mirror fits together with a conventional
imager, the other with the SVAVISCA sensor. The design parameters for both
mirrors yield in similar field of views, which are panoramic, and similar mirror
dimensions. The mirrors are designed for a fixed cylinder radius. However as it
is shown, the mirror for the SVAVISCA sensor is approximately independent of
the radius.

The simulation with MatLab gave an idea about the sensor behaviour but
only experimental results will show the usability of both mirror shapes. Further,
only the influence of one parameter, the radius of the cylinder, has been inves-
tigated, it is therefore difficult to say, how critical the calibration of the sensor
setup will be. Especially the calibration of the combination with SVAVISCA
sensor could be difficult, because the mirror shape and the pixel density must
match together to obtain a uniform projection.
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dimension. The imager pixel density is of the form log-polar.
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PSfrag replacements
60±0.2

20±0.2

M8

1
5
±
0
.2

1
0
±
0
.5

3
±
0
.2

(1
5
.1
7
)

2(R1)

G(t)

t

Figure 15: Technical drawing for the mirror matching with the uniform pixel
density.
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Figure 16: Technical drawing for the mirror matching with the non-uniform pixel
density (SVAVISCA).

19



B. Files

B.1. Uniform Pixel Density

%mirror uniform pix density.m - Author: Stefan Gachter

%

% batch file

%

5 % See also: deq csf uniform pixel density.m, sqd opt fct t rel r.m,

% get local max.m, get local min.m

% Author : Stefan Gachter, stefan.gachter@epfl.ch

% 00 Center for Machine Perception,

10 % Czech Technical University, Prague

% Documentation: Gaechter-TR-2001-03.pdf

% Language : Matlab 5.3.1.29215a (R11.1), (c) MathWorks

% Last change : 13/01/2001

% Status : Ready

15 %

clear all;
close all;

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% omnidirectional camera specifications

%% setup

25 d=200; % cm radius of the projected cylinder

% (distance)

F0=15.5; % cm distance image plane - mirror vertex

% (inital value of the mirror function at t0)

30 %% parameters function h(r)

a=2000; % gain

b=−400; % cm offset

%% camera

35 f=1.25; % cm focual length

%%% imager specification

r0=0; % cm minimal used dimension

r1=0.24; % cm maximal used dimension

40 %% mirror

t0=0.00001; % cm minimal mirror radius

t1=3; % cm maximal mirror radius

% simulation specifications

45

N=20; % nb of rays for the visualization

h=0.001; % correctional factor for numerical computation
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%% perspective projection investigation

50 Ndm=2; % nb of steps in direction to the mirror

sdm=50; % cm step size for distance variation

Ndp=2; % nb of steps in direction away from the mirror

sdp=100; % cm step size for distance variation

55 No=15; % order of smoothing filter

% MatLab parameters

gray=[0.8 0.8 0.8];
60

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% cross section function

65 %% numerical solution

options=odeset(’Refine’,16,’RelTol’,1e−12,’AbsTol’,1e−24);
[t,F]=ode45(’deq_csf_uniform_pixel_density’,[t0 t1],F0,[ ],f,d,a,b);

figure(gcf+1);
70

plot(t,F−F0);

ylabel(’F(t)-F_0 [cm]’);
xlabel(’t [cm]’);

75 axis equal

dF=diff(F)./diff(t);
dt=t(1:length(dF));

80 % buffer

Fb=F;
tb=t;
dFb=dF;
dtb=dt;

85 clear F t dF dt;

% simulation

%% range for position of points on the mirror

90 %% (restricted to the corss section function)

t0a=(1+h)*dtb(1);
t1a=(1−h)*dtb(length(dtb));

%% range for position of image points

95 %% (restricted to the imager dimension)

r0a=f*t0a/(interp1(tb,Fb,t0a)−f);
if r0a<r0

r0a=r0;
end
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100 r1a=f*t1a/(interp1(tb,Fb,t1a)−f);
if r1a>r1

r1a=r1;
end

105 %% equidistant image points

sr=(r1a−r0a)/(N−1);
R=[r0a:sr:r1a];

%% equidistant mirror points

110 %%% inital values for numerical solution

st=(t1a−t0a)/(N−1);
Ta=[t0a:st:t1a];
T=[ ];
%%% find mirror points

115 options=optimset(’TolX’,1e−12,’Display’,’off’);
for i=1:length(R);
t=fminsearch(’sqd_opt_fct_t_rel_r’,Ta(i),options,tb,Fb,f,R(i));
T=[T t];

end

120 T=T(find(isfinite(T)));
R=R(find(isfinite(T)));

%% world points

F=interp1(tb,Fb,T);
125 dF=interp1(dtb,dFb,T);

%%% slope of coincident ray

C=(2.*T.*dF−(F−f).*(1−dF.^2))./(2.*(F−f).*dF+T.*(1−dF.^2));
%%% world points

H=F+C.*(d−T);
130

figure(gcf+1);
%%%% cross section function

plot(tb,Fb);
%%%% ray distribution

135 line([−R;T],[zeros(size(R));F],’Color’,gray);
line([T;d*ones(size(T))],[F;H],’Color’,gray);
%%%% world points

line([d*ones(size(T));d*ones(size(T))],[H;H],’Color’,’black’,’Marker’,’+’);
axis equal

140 ylabel(’z [cm]’);
xlabel(’\rho [cm]’);

% buffer

Tb=T;
145 Cb=C;

clear F t dF R T H C;

% field of view

% (approximatly)

150

%% minimal elevation angle
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if Cb(1)<0

P0=−acot(Cb(1))*180/pi;
else

155 P0=(pi−acot(Cb(1)))*180/pi;
end

%% maximal elevation angle

if Cb(length(Cb))<0

160 P1=−acot(Cb(length(Cb)))*180/pi;
else

P1=(pi−acot(Cb(length(Cb))))*180/pi;
end

fov=P1−P0;
165

disp text=[’field of view (approximately) : ’ num2str(fov) ’ degrees’];
disp(disp text);

% perspective projection investigation

170

%% distances

D=[[d−Ndm*sdm:sdm:d] [d+sdp:sdp:d+Ndp*sdp]];
%% corresponding world points

F=interp1(tb,Fb,Tb);
175 H=[ ];

for i=1:length(D);
H=[H;F+Cb.*(D(i)−Tb)];

end

180 figure(gcf+1);
plot(ones(length(H),1)*D,H’,’+’);
xlabel(’distance d [cm]’);
ylabel(’z [cm]’);

185 clear F H;

%% continous image points

T=[Tb(1):st/10:Tb(length(Tb))];

190 F=interp1(tb,Fb,T);
dF=interp1(dtb,dFb,T);

%% slopes of coincident rays

C=(2.*T.*dF−(F−f).*(1−dF.^2))./(2.*(F−f).*dF+T.*(1−dF.^2));
195

%% world points

H=[ ];
for i=1:length(D);
H=[H;F+C.*(D(i)−T)];

200 end

%% ratio between theoretical and numerical derivation

%%% numercial derivation
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r=f.*T./(F−f);
205 R=ones(length(D),1)*r;

dH=diff(H,1,2)./diff(R,1,2);
%%% normailzation factor

%%% (theoretical derivation and distance)

Rn=a.*D’*ones(1,length(dH))./d;
210

Ra=dH./Rn;

%%% smoothing

B=fir1(No,0.01);
215 A=sum(B);

Ras=filter(B,A,Ra,[ ],2);
Ras=Ras(:,No+1:length(Ras));
Nc=ceil(No/2)+1;

220 figure(gcf+1);
%%% hull for result of reference distance

ind max=get local max(Ra(Ndm+1,:),5);
ind min=get local min(Ra(Ndm+1,:),5);
patch([R(Ndm+1,ind min) fliplr(R(Ndm+1,ind max))],. . .

225 [Ra(Ndm+1,ind min) fliplr(Ra(Ndm+1,ind max))], . . .
gray,’EdgeColor’,gray);

%%% ratios

line([R(1,1) R(Ndm+Ndp+1,length(Ra))],[1 1],[0 0],’Color’,’black’, . . .
’LineStyle’,’:’);

230 hold on

plot(R(1:Ndm,Nc:length(Ras)+Nc−1)’,Ras(1:Ndm,:)’,’black-.’, . . .
R(Ndm+1,Nc:length(Ras)+Nc−1)’,Ras(Ndm+1,:)’,’black’, . . .
R(1:Ndm+Ndp+1,Nc:length(Ras)+Nc−1)’,Ras(1:Ndm+Ndp+1,:)’,’black--’);

xlabel(’\rho [cm]’);
235 ylabel(’\Deltah/\Delta\rho normalized by dh/d\rho and by d_i/d’);

hold off

close(1);

240

function dF=deq csf uniform pixel density(t,F,flag,f,d,a,b);

r=f*t/(F−f);
h=a*r+b;

5 dF=−(t*(d−t)+(F−f)*(F−h))/((F−f)*(d−t)−t*(F−h))+. . .
sqrt((t*(d−t)+(F−f)*(F−h))^2/((F−f)*(d−t)−t*(F−h))^2+1);
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function y=sqd opt fct t rel r(t,tb,Fb,f,r)

F=interp1(tb,Fb,t);

y=((F−f)*r−f*t)^2;
5

B.2. Non-Uniform Pixel Density

%mirror non uniform pix density.m - Author: Stefan Gachter

%

% batch file

%

5 % See also: deq csf non uniform pixel density.m, sqd opt fct t rel r.m,

% get local max.m, get local min.m

% Author : Stefan Gachter, stefan.gachter@epfl.ch

% 00 Center for Machine Perception,

10 % Czech Technical University, Prague

% Documentation: Gaechter-TR-2001-03.pdf

% Language : Matlab 5.3.1.29215a (R11.1), (c) MathWorks

% Last change : 13/01/2001

% Status : Ready

15 %

clear all;
close all;

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% omnidirectional camera specifications

%% setup

25 d=200; % cm radius of the projected cylinder

% (distance)

F0=21.5; % cm distance image plane - mirror vertex

% (inital value of the mirror function at t0)

30 %% parameters function h(r)

a=4; % gain

b=−400; % cm offset

%% camera

35 f=2.5; % cm focual length

%%% imager specification (SVAVISCA)

pw=0.00068; % cm minimal pixel witdh

Na=252; % nb of cells per circle

r0=Na*pw/(2*pi); % cm minimal used dimension

40 r1=0.356772; % cm maximal used dimension

k=1.02337; % pixel growth rate (approximative k=(Na+2*pi)/Na)

25



%% mirror

t0=0.00001; % cm minimal mirror radius

45 t1=3; % cm maximal mirror radius

% simulation specifications

N=20; % nb of rays for the visualization

50 h=0.001; % correctional factor for numerical computation

%% perspective projection investigation

Ndm=2; % nb of steps in direction to the mirror

sdm=50; % cm step size for distance variation

55 Ndp=2; % nb of steps in direction away from the mirror

sdp=100; % cm step size for distance variation

No=15; % order of smoothing filter

60 % MatLab parameters

gray=[0.8 0.8 0.8];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

65

% cross section function

%% numerical solution

options=odeset(’Refine’,16,’RelTol’,1e−12,’AbsTol’,1e−24);
70 [t,F]=ode45(’deq_csf_non_uniform_pixel_density’,[t0 t1],F0,[ ],f,d,a,b,r0,k);

figure(gcf+1);

plot(t,F−F0);
75

ylabel(’F(t)-F_0 [cm]’);
xlabel(’t [cm]’);
axis equal

80 dF=diff(F)./diff(t);
dt=t(1:length(dF));

% buffer

Fb=F;
85 tb=t;

dFb=dF;
dtb=dt;
clear F t dF dt;

90 % simulation

%% range for position of points on the mirror

%% (restricted to the corss section function)

t0a=(1+h)*dtb(1);
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95 t1a=(1−h)*dtb(length(dtb));

%% range for position of image points

%% (restricted to the imager dimension)

r0a=f*t0a/(interp1(tb,Fb,t0a)−f);
100 if r0a<r0

r0a=r0;
end

r1a=f*t1a/(interp1(tb,Fb,t1a)−f);
if r1a>r1

105 r1a=r1;
end

%% log distributed image points

sr=(log(r1a)−log(r0a))/(log(k)*N);
110 R=r0*k.^[0:sr:N*sr];

%% equidistant mirror points

%%% inital values for numerical solution

st=(t1a−t0a)/N;
115 Ta=[t0a:st:t1a];

T=[ ];
%%% find mirror points

options=optimset(’TolX’,1e−12,’Display’,’off’);
for i=1:length(R);

120 t=fminsearch(’sqd_opt_fct_t_rel_r’,Ta(i),options,tb,Fb,f,R(i));
T=[T t];

end

T=T(find(isfinite(T)));
R=R(find(isfinite(T)));

125

%% world points

F=interp1(tb,Fb,T);
dF=interp1(dtb,dFb,T);
%%% slope of coincident ray

130 C=(2.*T.*dF−(F−f).*(1−dF.^2))./(2.*(F−f).*dF+T.*(1−dF.^2));
%%% world points

H=F+C.*(d−T);

figure(gcf+1);
135 %%%% cross section function

plot(tb,Fb);
%%%% ray distribution

line([−R;T],[zeros(size(R));F],’Color’,gray);
line([T;d*ones(size(T))],[F;H],’Color’,gray);

140 %%%% world points

line([d*ones(size(T));d*ones(size(T))],[H;H],’Color’,’black’,’Marker’,’+’);
axis equal

ylabel(’z [cm]’);
xlabel(’\rho [cm]’);

145

% buffer
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Tb=T;
Cb=C;
clear F t dF R T H C;

150

% field of view

% (approximatly)

%% minimal elevation angle

155 if Cb(1)<0

P0=−acot(Cb(1))*180/pi;
else

P0=(pi−acot(Cb(1)))*180/pi;
end

160

%% maximal elevation angle

if Cb(length(Cb))<0

P1=−acot(Cb(length(Cb)))*180/pi;
else

165 P1=(pi−acot(Cb(length(Cb))))*180/pi;
end

fov=P1−P0;

disp text=[’field of view (approximately) : ’ num2str(fov) ’ degrees’];
170 disp(disp text);

% perspective projection investigation

%% distances

175 D=[[d−Ndm*sdm:sdm:d] [d+sdp:sdp:d+Ndp*sdp]];
%% corresponding world points

F=interp1(tb,Fb,Tb);
H=[ ];
for i=1:length(D);

180 H=[H;F+Cb.*(D(i)−Tb)];
end

figure(gcf+1);
plot(ones(length(H),1)*D,H’,’+’);

185 xlabel(’distance d [cm]’);
ylabel(’z [cm]’);

clear F H;

190 %% continous image points

T=[Tb(1):st/10:Tb(length(Tb))];

F=interp1(tb,Fb,T);
dF=interp1(dtb,dFb,T);

195

%% slopes of coincident rays

C=(2.*T.*dF−(F−f).*(1−dF.^2))./(2.*(F−f).*dF+T.*(1−dF.^2));

28



%% world points

200 H=[ ];
for i=1:length(D);
H=[H;F+C.*(D(i)−T)];

end

205 %% ratio between theoretical and numerical derivation

%%% numercial derivation

r=f.*T./(F−f);
R=ones(length(D),1)*r;
dH=diff(H,1,2)./diff(R,1,2);

210 %%% normailzation factor

%%% (theoretical derivation and distance)

Rn=a./log(k)./R(:,1:length(R)−1).*(D’*ones(1,length(dH))./d);

Ra=dH./Rn;
215

%%% smoothing

B=fir1(No,0.01);
A=sum(B);
Ras=filter(B,A,Ra,[ ],2);

220 Ras=Ras(:,No+1:length(Ras));
Nc=ceil(No/2)+1;

figure(gcf+1);
%%% hull for result of reference distance

225 ind max=get local max(Ra(Ndm+1,:),5);
ind min=get local min(Ra(Ndm+1,:),5);
patch([R(Ndm+1,ind min) fliplr(R(Ndm+1,ind max))],. . .

[Ra(Ndm+1,ind min) fliplr(Ra(Ndm+1,ind max))], . . .
gray,’EdgeColor’,gray);

230 %%% ratios

line([R(1,1) R(Ndm+Ndp+1,length(Ra))],[1 1],[0 0],’Color’,’black’, . . .
’LineStyle’,’:’);

hold on

plot(R(1:Ndm,Nc:length(Ras)+Nc−1)’,Ras(1:Ndm,:)’,’black-.’, . . .
235 R(Ndm+1,Nc:length(Ras)+Nc−1)’,Ras(Ndm+1,:)’,’black’, . . .

R(1:Ndm+Ndp+1,Nc:length(Ras)+Nc−1)’,Ras(1:Ndm+Ndp+1,:)’,’black--’);
xlabel(’\rho [cm]’);
ylabel(’\Deltah/\Delta\rho normalized by dh/d\rho and by d_i/d’);
hold off

240

close(1);

function dF=deq csf non uniform pixel density(t,F,flag,f,d,a,b,r0,k);

r=f*t/(F−f);
h=a*(log(r)−log(r0))/log(k)+b;
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5 dF=−(t*(d−t)+(F−f)*(F−h))/((F−f)*(d−t)−t*(F−h))+. . .
sqrt((t*(d−t)+(F−f)*(F−h))^2/((F−f)*(d−t)−t*(F−h))^2+1);

function y=sqd opt fct t rel r(t,tb,Fb,f,r)

F=interp1(tb,Fb,t);

y=((F−f)*r−f*t)^2;
5

30




