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1. Motion Detection

1.1. Introduction

In surveillance applications with omnidirectional cameras it is necessary to
transform the omnidirectional images into panoramic ones, which are more
suitable for human inspection. This transformation is redundant when using a
camera with a space variant imager, i.e. with a log-polar density (SVAVISCA).
Compared with a conventional camera, images taken with an omnidirectional
camera have lower resolution due to the mapping of the larger field of view to
a similar sized imager. The image is in general resolution non-uniform. Addi-
tionally, for omnidirectional cameras with space variant imager the resolution
can not be better than for cameras with standard imagers and is often inferior
for large parts in image due to bigger pixel sizes. Hence the following report
investigates by simple simulation if motion detection is possible with such low-
resolution images.

The report is organized as follows. The principles of omnidirectional cameras
are presented in Section 1.2. Existing systems with an omnidirectional camera
performing object detection and tracking are listed in Section 1.4. In Section 1.5
a similar algorithm as used in the existing systems is derived. The moving object
detection is done in two steps, first by a temporal change detection presented
in Section 1.5.2 and second by a background change detection presented in
Section 1.5.2. Both methods use a threshold to discern between foreground and
background objects. An automatic threshold selection is derived in Section 1.5.3.
Further in this section the influence of the noise on the detection algorithm is
discussed. Particularly considered is the case for the SVAVISCA sensor as space
variant imager. Summary is given in Section 1.6.

1.2. Omnidirectional Camera

One approach for an omnidirectional camera is the combination of a curved
mirror and a conventional camera in order to obtain a large field of view, see
Figure 1. Such a camera is also known as a catadioptric sensor. Due to the
symmetry of the sensor – the optical axis of the camera and the symmetric axis
of the mirror coincide – the omnidirectional image in the image plane is best
described by polar coordinates. For standard cameras the imagers pixel disposal
is Cartesian and the uniform sampling of the imager results in a non-uniform
sampling of the field of view. Hence this implicates (i) that the resolution
is a function of the radius and (ii) that a mapping from polar to Cartesian
coordinates is necessary to obtain panoramic images. Both is considered when
using a space variant imager with pixel sizes varying with the radius and with a
pixel disposal of equal numbered concentric rings. Instead of adapting the pixel
sizes for a given mirror shape to equalize the image resolution, as discussed by
Bruckstein and Richardson in [4], an existing imager can be used in combination
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with an adapted mirror shape. Chahl and Srinivasan propose in [5] to use an
imager with log-polar pixel density. Such an imager is the SVAVISCA [23, 15]
showing a similar pixel distribution as the human retina receptors. For the
imager retina the pixels are located by rings with equal number but linear
increasing size from the centre to the rim as depicted in Figure 2. The linear
increase implies a logarithmic mapping in the radius. In the fovea the pixels have
a uniform distribution. With a catadioptric sensor composed of such an imager
and an adapted mirror – see [7] for a possible design – the obtained images have
uniform but lower resolution as images taken with conventional omnidirectional
cameras because the varying pixel size limits the density; the considered number
of pixels in the retina at present is 27720. Due to the manufacturing process of
the imager the resolution in the retina cannot be better than in the fovea or as
for a standard imager.

In the present case the panoramic images are obtained by simulation. Omni-
directional images taken with a catadioptric sensor composed of a conventional
camera and a hyperboloidal mirror are resampled according to the pattern of
the SVAVISCA sensor as described by Pajdla and Roth in [18]. Not considering
the foveal part, the original images are divided in a number of equal sized sectors
where the sectors are divided in linear increasing sized areas. The new images
are the intensity mean values for each area spanned by polar coordinates of the
centroids.

1.3. Motion Detection

In motion detection the task is to detect a region of interest embodied in a region
of awareness, where the region of awareness, or in terms of the camera geometry,
the field of view, is defined as the portion of environment being monitored. The
region of interest is in the present case the portion of the environment with
activity. For the sake of simplicity and generality, recognition-based detection
is not assumed. A region of interest can be therefore a person, an animal, or an
artefact; circumscribed with the term moving objects.

To obtain a maximum region of awareness an omnidirectional camera is used.
This sensor provides the image stream necessary for detection and tracking.
The detection of moving objects is done by an appropriate algorithm. The
possible algorithms are based either on a difference or a statistical method. If
it is assumed that the omnidirectional camera is stationary, when the motion
detection can be done by taking the difference between successive images or
the difference between the current image and a modelled background image.
Existing algorithms for temporal and background difference methods can be
found in [12, 10, 8, 27]. Statistical methods accumulate with the ongoing image
stream a distribution model for each image point and discern between moving
and stationary objects by hypothesis testing. Existing algorithms can be found
in [13, 6, 16, 21, 11]. Often in applications both methods are merged to use
advantages each.
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(a)

(b)

(c)

Figure 1: The setup of a catadioptric sensor consisting of a conventional camera and a
hyperboloidal mirror is depicted in Figure (a). Images taken by such an omnidirectional
camera are shown in (b) and (c). Figure (b) depicts the omnidirectional image. Figure
(c) depicts the corresponding panoramic image.
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Figure 2: An imager – similar to the SVAVISCA – with a pixel density of the form log-
polar is depicted in (a). Figure (b) depicts the geometry. The fovea ρ ≤ ρ0 has a
uniform pixel density where the retina ρ0 < ρ ≤ ρ1 a logarithmic one, i.e. the pixel size
is linear increasing from the centre to the rim whereas the pixels are arranged by equal
numbered concentric rings.
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1.4. Existing Systems

Using an omnidirectional camera for moving object detection and tracking is
evident. The large field of view permits a stationary camera and it is not
necessary to use multiple conventional cameras or to use a pan-tilt camera to
cover the same size of field of view. A stationary camera simplifies the detection
and tracking algorithms and is most suitable to difference or statistical methods.

In the last years different systems with an omnidirectional camera had been
developed. In this section they are briefly presented. All of them are used for
surveillance, i.e. detecting and tracking moving persons.

System developed at the Leigh University
The system was developed at the Vision and Software Technology Lab, Leigh
University for a military use [3, 2]. The systems goal is to detect and track cam-
ouflaged persons in an outdoor environment. For the monitoring a catadioptric
sensor is used composed of a paraboloidal mirror and an orthographic camera
manufactured by Cyclovision Inc.1. The detection is done by background sub-
traction. The algorithm deals with the omnidirectional images to gain speed.
Nevertheless the system also generates for each detected person a perspective
panoramic image for human inspection.

System developed at the University of Massachusetts
The system was developed at the Computer Vision Research Laboratory, Uni-
versity of Massachusetts for rescue assistance [1]. The systems goal is to detect
fire, exits and persons in a room and track their behaviour. For the monitoring
an annular lens and a perspective camera is used. The algorithm for detec-
tion and tracking is not further described but it seems that it is based on a
background subtraction and that it does work with panoramic images.

System developed at the Nara Institute of Science and Technology
The system was developed at the Graduate School of Information Science, Nara
Institute of Science and Technology for surveillance [17]. The system has three
different kinds of interfaces: a moving person is detected and tracked by a human
observer, a moving person is detected by a human observer and tracked auto-
matically, or a moving person is detected and tracked completely automatically.
For the monitoring a catadioptric sensor is used composed of a hyperboloidal
mirror and a perspective camera. The algorithm for detection and tracking is
based on a background subtraction and does work with perspective panoramic
images.

System developed at the Michigan State University
The system was developed at the Computer Science and Engineering Depart-
ment, Michigan State University for surveillance [9]. The system detects and

1 It seems, that Cyclovision Inc. no longer exists. Former link is replaced by http://www.
remotereality.com/(12.2.2001).

6



tracks a moving person and shifts a pan-tilt camera in this direction for identi-
fication by face-recognition. For the monitoring a catadioptric sensor composed
of a paraboloidal mirror and an orthographic camera manufactured by Cyclo-
vision Inc. is used. The algorithm for detection and tracking is based on a
background subtraction and does work with perspective panoramic images.

System developed at the University of Veszprém
The system was developed at the Image Processing and Neurocomputing De-
partment, University of Veszprém for surveillance and smoke detection [14]. For
the monitoring an annular lens and perspective camera is used. The algorithm
for detection and tracking is based on a background subtraction and does work
with panoramic images.

Two conclusions result from the presented systems. First, for all systems the
monitoring ends with a human visual inspection. Therefore panoramic images
obtained by mapping the omnidirectional images are necessary. One approach
for the mapping is to use a catadioptric sensor consisting of a camera with a
space variant imager and an appropriate mirror as mentioned in Section 1.2.

Second, all systems use the background substraction method to detect mov-
ing objects in a sequence of images. The detection is achieved by taking the
difference between the current image and a modelled background image. This
method is also suitable for the present case because similar conditions are on
hand. A distinction must be performed between foreground and background
objects, where roughly classified the foreground objects are moving and the
background objects stationary. The more accurate criterion is formulated as
how long an object has been stationary. In the expected scene – a room with
natural and artificial illumination change – the foreground objects are persons
and the background objects are the furniture and other equipment.

1.5. Concepts

The motion detection algorithm is based on background change detection, i.e.
the difference method by background subtraction. This assumes that the back-
ground model for the expected image sequence is known in advance and that it
does not change over time. Such conditions are rarely given for an indoor scene,
e.g. when illumination changes occur and objects are moved around. Hence a
confident adaption method is required. An adaption region must be specified
that discerns between foreground and background objects. By definition the
background change detection itself yields that distinction but is inappropriate
because undetected foreground objects will be falsely adapted to the modelled
background image. Therefore the discrimination must be done by a different
method.

The temporal change detection discerns between moving and stationary ob-
jects by comparing consecutive images. But stationary foreground objects are
not detected as such and to obtain a similar behaviour as the background change
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detection a temporal change history must be accumulated. Hence background
change detection classifies the scene into foreground and background objects
and temporal change detection classifies into moving and stationary objects.

The temporal change history reflects regions in the image sequence that
did not change for a certain time and is used as criterion for the distinction
between foreground and background objects. Therefore the temporal change
region corresponds to the adaption region.

An algorithm with these concepts is presented by Huwer and Niemann in
[12]. This algorithm gives also the structure for the following – schematically
depicted in Figure 3 – but is different in certain parts to consider the conditions
when using an omnidirectional camera, especially when using the SVAVISCA
imager.

fi

fi−1

Di Ai µi Bi

Figure 3: The different steps for motion detection by background subtraction. The
background change region Bi is obtained by comparing the current image fi with the
background model µi. The model is adapted according the current image confined
to the adaption region Ai. This region is the union of a limited number of temporal
change regions Di obtained by differencing consecutive images.

In the present case a sequence of images f0, . . . , fi−1, fi taken by an omnidi-
rectional camera is available. Here f0 is the initial image and fi is the current
image of the sequence. All images are defined on the domain I ⊂ N

2. An
image point fi(m,n) with (m,n) ∈ I is defined on the range G, where G is
the greyscale with 256 normalized and discrete values. Further m respectively
n denotes the vertical respectively the horizontal image coordinate.

Weighted Accumulation
The weighted accumulation is a moving average with a constant adaption length
and appears in the temporal as the background change detection but for different
reasons. In the first case because the difference of two consecutive images when
a moving object is present results in the moving contour. The complete shape,
necessary for the temporal change history, is obtained by accumulating the
difference images. In the second case the weighted accumulation is used for the
adaption so that the background is modelled by an average image. Therefore
changes in the background are adapted with a constant rate during the ongoing
process.
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One function ψ that accomplishes the weighted accumulation is given by

f̂i = ψ(f̂i−1, fi, τ)

= f̂i−1e
− 1

τ + fi(1 − e−
1
τ ) ,

(1)

where f̂i is the accumulation image, fi is the current image, and τ ∈ N is the
accumulation length. If the accumulation length τ → 0 when the accumulated
image corresponds to the current image. Reciprocally, if τ → ∞ when the
accumulated image rests unmodified. In the present case an image fi is defined
on the domain I. However, the accumulation can be restricted to a subset
R ⊂ I and equation (1) becomes

∀(m,n) ∈ I : ψ(f̂i−1, fi, τ,R)(m,n) =

{
ψ(f̂i−1(m,n), fi(m,n), τ) ; (m,n) ∈ R

f̂i−1(m,n) ; (m,n) ∈ I \ R .

(2)

1.5.1. Temporal Change Detection

The temporal change detection is carried out in two steps. First the accu-
mulation image di is updated by computing di = ψ(di−1, |δfi|, τd, I), where
|δfi| = |fi − fi−1| is the absolute value of the difference between the consecutive
images fi and fi−1. In a second step the temporal change region Di is identified
by comparing di with the threshold εd.

Di = {(m,n) ∈ I | di(m,n) > εd} (3)

Thus the temporal change detection depends on two parameters:

1. τd describing the temporal range for accumulation of the absolute differ-
ence images |δfi|.

2. εd controls the sensitivity to identify the temporal change region Di.

1.5.2. Background Change Detection

The identification of the background change region Bi is done by comparing
the absolute difference between the current image fi and the mean background
image µi with the threshold εb.

Bi = {(m,n) ∈ I | |µi(m,n) − fi(m,n)| > εb} (4)

Background Adaption
For the background model update the reliable determination of the correct adap-
tion region Ai is essential. The region Ai is defined by means of the temporal
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change history as the region that did not change for a specified period of time
and therefore seems to represent background. The adaption region is specified
– on the basis of the temporal change regions Dk where k ≤ i – as the image
region whose image points were not part of any Dk for the last η ∈ N images,
where η is called the depth of adaption.

Ai = I \
i⋃

k=max(0,i−η)

Dk (5)

The adaption of the background image is realized by accumulating the cur-
rent background representation µi with fi restricted to the adaption region Ai.

µi = ψ(µi−1, fi, τb,Ai) (6)

The accumulation length τb ∈ R must be chosen according to the expected
types of image changes. The adaption takes place only in region where the
number of the processed images is larger than the depth of adaption η. Thus
the background change detection depends on three parameters:

1. τb describing the temporal range for background adaption in the adaption
region Ai.

2. η weighting how long a region in an image sequence is considered as a
moving object.

3. εb controls the sensitivity to identify the background change region Bi.

Therefore five parameters depending on the expected frame rate and image
changes have to be specified. To consider is the parameters interdependence.
The accumulation length τd has to be chosen together with the threshold εd

such that a connected adaption region Ai is obtained. Consequently for fast
frame rates τd must be large and reciprocally for slow frame rates τd must be
small. Whereas fast and slow is relative to the expected rate of change in the
image sequence. Another criterion for the parameters is the noise present in the
images. The noise appears as erroneous detected regions in Di and they have
to be minimized by the correct selection of the threshold. Its computation is
described in Section 1.5.3.

The adaption depth η depends on the chosen adaption length τb. For small η
only moving objects are considered as foreground objects; stationary foreground
objects are adapted to the background model. Hence for a small τb, necessary
when rapid background change is expected, the foreground objects are entirely
defined by η. The threshold εb depends on the noise as ηd does and is conse-
quently determined in the same manner. For a further discussion about the
parameter choice see Section 2.2.
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Background Model Reset
The so far presented algorithm has some conceptual lacks. Mostly the strong
interdependence of the different parameters. Therefore the algorithm is best
applicable for fast frame rates when the background is slowly varying. But this
is hardly given for an indoor scene in particular when artificial illumination
changes. To robusten the algorithm when the background activity abruptly in-
creases an immediate update of the background model is done and the adaption
region Ai is restricted to the last background change region Bi−1. The back-
ground activity is measured by computing the least median of squares of the
absolute difference image |δfi|. The mean background image µi−1 is updated
by the multiplication with the ratio ri = fi/fi−1 between consecutive images.
Regions in µi−1 corresponding to foreground objects are updated differently be-
cause the ratio at these regions does not represent the true ratio for the occluded
background. The regions in ri for those hold (m,n) ∈ Bi−1 \ I are modelled by
interpolation. So when the background activity exceeds the given threshold εa

the mean background image is updated as follows,

µi−1(m,n) =




riµi−1(m,n) ; (m,n) ∈ Bi−1 \ I
Regions in ri are filled
by interpolating from

their borders.
; (m,n) ∈ Bi−1

. (7)

The fill operation uses an interpolation method based on Laplaces equation.
This method results in the smoothest possible fill, given the values of the ratio
ri on the region borders2.

1.5.3. Thresholds

The thresholds εd and εb for the change detection are proportional to the noise
present in the difference images. The noise is modelled by a normal distribution
N(0, σ2) with zero mean and described by the standard deviation σ. Further
details are discussed later. The standard deviation is estimated by the least
median of squares of the absolute difference images. The same approach is
presented by Rosin in [20, 19] in case of motion detection but using edge images.

Because the difference images contain not only noise but also foreground
objects a robust estimation technique for the standard deviation is required.
The least median of squares rests unaffected while the moving part in the image
constitutes less than the half of all image points. As derived in [22] it is computed
by determining the centroid of the shortest range in the sorted sample {ak}m·n

k=1,
i.e. a1 ≤ . . . ak ≤ . . . ≤ am·n includes all image points of the absolute difference
image.

2 For the interpolation function refer to the MatLab function roifill.m in the Image Toolbox.
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aLMS = 1
2
(akmin

+ ah+kmin
)

where kmin = arg min
k

(ak+h − ak) and h =
[

m·n
2

]
+ 1

(8)

Differencing noisy images followed by taking the absolute values produce
the normal distribution 2N(0, 2σ2) for positive values only. The least median
of squares for this distribution is 0.3372 and thus the standard deviation is
determined by σ = aLMS/0.3372. When thresholding at ε the probability of
incorrectly classifying noise as foreground is given by the error function

P (|.| > ε) = 1 − 2√
π

ε√
2σ∫

0

e−t2dt . (9)

If assuming a probability of 1� then the threshold is given by ε = 2.576σ
and the thresholds εd and εb are computed as follows:

εd = 2.576
0.3372

aLMS where a = {|δfi(m,n)|} ∀(m,n) ∈ I

εb = 2.576
0.3372

aLMS where a = {|µi(m,n) − fi(m,n)|} ∀(m,n) ∈ I
(10)

Noise
Different noise sources disturb the images. These are mainly the photonic noise,
the thermal noise, and the quantization noise. For simplicity all are merged in
one noise source and modelled by a normal distribution.

For the SVAVISCA sensor as a space variant imager the noise is expected to
varying according to the pixel size. At the moment no specific data is available
but simulating the sensor demonstrates a varying repartition. The simulation is
performed by taking images with a catadioptric sensor using a hyperboloidal
mirror and a conventional camera. The omnidirectional images are resam-
pled with respect to the pattern of the SVAVISCA pixel density resulting in
panoramic ones as described by Pajdla and Roth in [18]. (For further informa-
tion about the used MatLab files in this section refer to Section A.1 and Section
A.2.1.)

To examine the noise the standard deviation is used as a criterion. Com-
puting σ(m,n) for each image point in a sequence of simulated images results
in a non-uniform repartition. The standard deviation in the panoramic image
is decreasing with increasing image coordinate m. Referring to the SVAVISCA
sensor the relation is inverse proportionally, i.e. decreasing standard deviation
with increasing pixel size. The result for a sequence of 60 images is depicted in
Figure 4. Figure 4(a) represents the graph of the standard deviation at three
different image positions emphasized as white lines in 4(b). The decreasing
standard deviation in the graph corresponds to the decreasing intensity values
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in the image 4(b). The black regions in the panoramic image corresponds to
saturation due to artificial and natural illumination as visible in the mean back-
ground image in 4(c). These regions have consequently a standard deviation
equal zero. Further the progression of the standard deviation is not continuous.
Four steps are present at the positions m ∈ {31, 61, 79, 91}. They are visible as
bands with different intensities in the standard deviation image.

To further investigate the influence of the resampling a sequence of noise im-
ages is used. The noise in the omnidirectional images is modelled by a uniform
distribution. The panoramic images are obtained by resampling. The result
for the standard deviation σ(m,n) of a sequence with 60 images is depicted
in Figure 5. Figure 5(a) represents, as for the indoor scene, the graph for the
standard deviation at three different image positions emphasized as white lines
in 5(b). The horizontal dotted limit indicates the standard deviation for the
uniform noise in the omnidirectional images, i.e. σ =

√
1/12 = 0.2887. The de-

creasing standard deviation in the graph corresponds to the decreasing intensity
values in the image 5(b). Referring to the SVAVISCA sensor the standard de-
viation is decreasing with increasing pixel size in a range of 0.25 . . . 0.05. These
values are lower than the value for the imposed uniform distribution because
the resampling associates to an image point in the panoramic image a mean
value taken over a region in the omnidirectional image. The regions correspond
to the varying pixel size of imager. The averaging results in a decrease of
the standard deviation because the considered regions increase. Five different
bands occurs at the same positions as for the indoor scene. They are visible
as changes of the intensity values in image 5(b) and have the sizes from top to
bottom δm = {31, 30, 18, 12, 20}. It is not yet understood why the averaging is
not continuous with respect to the pixel size.

For the temporal and background change detection the noise is used as the
criterion to determine the thresholds. Using the same threshold for the entire
image results in false detected foreground objects. Such objects are present as
spurious particles. In Figure 6(b) the temporal change region Di when com-
paring the absolute difference image |δfi| with the threshold ε = 2.567σ, where
σ is the standard deviation of |δfi(m,n)| for ∀(m,n) ∈ I is depicted. The
particle size is increasing with increasing standard deviation of the noise in the
panoramic image. Figure 6(a) represents the histogram for the particle size
where the size is measured by counting the number of connected pixels.

Increasing the global threshold eliminates the spurious particles but also
suppresses useful information. Reminding the statistical method where for each
image point a distribution model is accumulated and an individual threshold for
each image point can be determined. In the present case the global threshold is
deduced from spatial information in the difference image and not from temporal
information in the sequence. Therefore image points of foreground objects with
intensity values falling between the individual thresholds and the global thresh-
old are not detected even though it would be possible. In especially foreground
objects in the lower part of the image having the same size as the spurious parti-
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Figure 4: The standard deviation σ(m, n) of the panoramic images for a sequence of 60
omnidirectional background images is depicted in (b). The standard deviation along
the vertical image coordinate m is depicted in (a). Three different positions n ∈
{68, 136, 236} are selected in (b), where the origin in (b) is at the upper left corner.
The first line corresponds to the solid line in (a), the second to the dashed, and the
third to the dash dotted. In (c) is depicted the mean of the sequence of background
images. (Image sequence source /home.stud/qqgechte/omni/movie/simulation/
pan/movie_8 frame no. 139-199).
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Figure 5: The standard deviation σ(m, n) of the panoramic images for a sequence of 60
omnidirectional images with uniform noise is depicted in (b). The standard deviation
along the vertical image coordinate m is depicted in (a). Three different positions
n ∈ {60, 130, 220} are selected in (b), where the origin in (b) is at the upper left
corner. The first line corresponds to the solid line in (a), the second to the dashed,
and the third to the dash dotted. In (c) is depicted the mean of the sequence of noise
images. (Image sequence source /home.stud/qqgechte/omni/movie/simulation/
noise/pan/movie_1 frame no. 0-59).
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cles in the upper part are getting lost. Thus the image is split along the vertical
image coordinate and each subimage is treated separately. The subimages cor-
respond to the observed bands in Figure 5(b). In Figure 7(b) the temporal
change region Di when splitting the absolute difference image |δfi| is depicted.
The splitting takes place at the positions of the five observed bands. Each part
is considered as an independent image with an own threshold εj = 2.567σj for
j ∈ 1, . . . , 5, where σj is the standard deviation of each independent image. The
independent thresholding results in spurious particles for the lower part of the
panoramic image. Furthermore less particles appear in the upper part and their
size is slightly minimized. Comparing the histograms Figure 6(a) and Figure
7(a) the increase of the number of spurious particles is evident. The sensitivity
for change detection is increased and is adapted to the variation in noise.

For the automatic threshold selection a normal distribution for the noise is
assumed. Two histograms for absolute difference images are depicted in Figure
8. Only a clipping of a possible range [0, 1] containing 256 bins is represented.
The first corresponds to |δfi| for the temporal change detection and the second
to |µi − fi| for the background change detection. As depicted by the current
image fi in Figure 8(a) no foreground object is present in the scene. Therefore
the differences correspond to noise. Both histograms are bounded at zero and
falling off with increasing difference values. They corresponds not to a normal
distribution as assumed. For the temporal change detection the differences are in
the range of the greyscale values. Thus the differences appear in the histogram at
bins that are multiples of 1/255 = 0.0039. For the background change detection
the difference values are spread because the background adaption results in a
mean background image with intensity values in the range of R. An erroneous
peak is present at zero. This corresponds to the number of image points in
saturated image regions with zero standard deviation as visible in Figure 4(b).
In both cases the performance of the least median of squares computation is
affected.

Due to the discrete intensity values of the images the automatic threshold
selection fails when the noise distribution is too narrow. In such a case more
than the half of the difference values is zero. Consequently the least median of
squares is likewise zero instead to be greater and it is not possible to estimate
correctly the standard deviation. Further the least median of squares is a distri-
bution independent criterion and an erroneous peak that does not correspond to
an outlier does influence the result. In the presence of saturated image regions
the standard deviation is underestimated. For the temporal as for the back-
ground change detection the threshold must be increased. Therefore a minimal
threshold is added to the noise dependent threshold given by equation (10) and
the adjusted thresholds are computed as follows,

εd = εdmin + 2.576σd ,
εb = εbmin + 2.576σb .

(11)

A more sophisticated solution for the discrete case is to compute the standard
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Figure 6: In (b) is depicted the thresholded image of the absolute difference image
|δfi|. The threshold is ε = 2.567σ, where σ is the standard deviation of |δfi(m, n)|
for ∀(m, n) ∈ I. In (a) is depicted the corresponding histogram of the particle
sizes in the thresholded images. (Image source /home.stud/qqgechte/omni/movie/
simulation/pan/movie_8 frame no. 140).
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Figure 7: The thresholded and merged subimages of the absolute difference image |δfi|
is depicted in (b). The thresholds are εj = 2.567σj , where σj is the standard deviation
for each subimage when j ∈ 1, . . . , 5. The corresponding histogram of the particle sizes
in the merged thresholded subimages is depicted in (a). (Image source /home.stud/
qqgechte/omni/movie/simulation/pan/movie_8 frame no. 140).

18



deviation directly when no foreground object is present. In the peak case an
appropriate test – regions with zero standard deviation – must exclude the values
for the least median of squares computation.

1.6. Summary

This section has presented the derivation of the motion detection algorithm for
a catadioptric sensor. The algorithm performs background change detection,
where the background model is adapted to stationary objects during the ongoing
process. To robusten the adaption a temporal change detection is used to discern
between moving and stationary objects. Further for fast background changes
a reset method for the algorithm is derived. The thresholds for the temporal
and background change detection are determined depending on the noise in the
images, where the noise is characterized by the standard deviation estimated
with the least median of squares. A minimal threshold has been introduced
because the estimation fails when the noise tends to zero or saturated regions in
the images are present. In the case where the panoramic images are simulated
a non-uniform noise repartition results. Therefore it is necessary to adapt the
threshold locally for that the detection sensitivity rests constant over the entire
image.
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Figure 8: The histograms for absolute difference images. The histogram for |δfi| in case of
the temporal change detection is depicted in (b) and the histogram for |µi−fi| in case of
the background change detection is depicted (c). In (a) is depicted the current image
fi. (Image source /home.stud/qqgechte/omni/movie/simulation/pan/movie_8
frame no. 140).
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2. Simulation

2.1. Introduction

The kernel of the motion detection algorithm derived in Section 1.5 is not ap-
plication specific. Hence the algorithm suits to a vast range of problems. In the
present case the application is motion detection in an indoor scenario. Mov-
ing persons, moving and moved objects and varying illumination in account to
artificial as natural light sources can be expected. To handle are these events
the algorithm offers a set of parameters. That are, for the temporal and the
background change detection, the accumulation lengths εd and εb, the minimal
thresholds εdmin and εbmin, and the adaption depth η. Their specification is done
with the help of the simulation. The resulting reference values simplify the setup
for the latter experiments. Further the performance of the algorithms extension
is tested with the simulation, i.e. the reset procedure in case of abrupt illumi-
nation change. An additional parameter to specify is therefore the threshold for
the background activity εa.

The size of the minimal detectable object is as well of interest. The motion
detection algorithm does not modify the image quality. Therefore the limit
is given by the image resolution and noise. In case of the resampled images
both have a non-uniform repartition and it is necessary to treat the image by
subdivided regions.

The section is organized as follow, the setup of the simulation is presented
in Section 2.2.1. In Section 2.2.2 are discussed the results of a simulation with
a image sequence, where the background update is treated in more details.
Conclusions are given in Section 2.3.

2.2. Motion Detection

The different parameters for the temporal change detection depend on the ex-
pected frame rate and object motion as discussed in Section 1.5.2. The frame
rate specifies the temporal succession of the image sequence. The rate of change
in the scene – the moving objects velocity – has to be regarded with respect to
the frame rate. In case of the temporal change detection the moving contour is
proportional to that relative velocity; a slow frame rate and fast rate of change
leads to a large contour, and a fast frame rate and slow rate of change to a small
one. Hence to obtain a constant temporal change region Di the accumulation
length τd must be inverse proportional to the relative velocity.

For the background change detection the parameters are coupled. The adap-
tation depth η is proportional to the expected duration for a foreground resting
state. Further the accumulation length τb is proportional to the velocity of
background change. Therefore fixing one parameter restricts the range of the
other. In case of fast background variation and long expected rest states the
adaption region Ai is small and the background model is not adapted correctly.
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A remedial is the background model update as presented in Section 1.5.2.
The remaining three parameters depend on the noise present in the difference

images. For simplicity the minimal thresholds εdmin, εbmin, and εa correspond
approximately to 6 · σmin, where σmin is the smallest standard deviation of the
noise present in the difference images. The smallest standard deviation is ex-
pected in regions generated with the largest pixel sizes as discussed in Section
1.5.3 and visible in Figure 6.

2.2.1. Setup

The image sequence for the simulation is generated from images taken by a
conventional camera [26], a hyperboloidal mirror [24], and with conventional
data acquisition equipment [25]. The process is controlled with the help of
MatLab batch files and functions. For further information about them refer to
Section A.1.1 and Section A.2.

The catadioptric sensor is placed on a level of about 1m in the centre of
the monitored room. The orientation of the sensor results to a field of view
that includes the upper part of the room. The omnidirectional image sequences
is recorded with the fastest possible frame rate. With MatLab the rate of
approximately 5 frames per second is attained. The intensity values of the
images are represented by the normalized greyscale with 256 steps. Different
scenes are monitored. The sequences are resampled to obtain panoramic images
and merged in one array to speed up the access time during the simulation.
Therefore the sequence length is restricted to 200 images. The initial values for
the algorithm are the mean background image µ0 and the image f0. The latter
corresponds to the first recorded image in the sequence. The former is obtained
by computing the mean value for each image point over a sequence of 60 images.
During this sequence no foreground object is present in the scene. This initial
mean background image will be adapted with the ongoing process.

The parameters are chosen for fast moving objects and slow background
variations. For the attained frame rate walking persons in naturally illumi-
nated environment are expected. Artificial illumination is constant or varying
in an abrupt way, i.e. switched on or off. The Table 1 summarize the val-
ues deduced by experience. The images are split in bands with the widths
δm = {31, 30, 18, 12, 20} pixels to equalize the sensitivity, where the images
have originally a width of 252 pixels and a height of 111 pixels.

2.2.2. Results

Depending on the chosen accumulation lengths and adaption depth the algo-
rithm needs time to adjust the initial background model. For the current pa-
rameters the duration corresponds to about one third of the sequence length.
During this period no reliable detection is possible. After the adjustment spuri-
ous detections are mainly due to an outdated background model. One problem
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accumulation length τd 0.002 part of unit sequence step
adaption depth η 25 number of frames
minimal threshold εdmin 0.0196 part of normalized greyscale

accumulation length τb 5 part of unit sequence step
minimal threshold εbmin 0.0098 part of normalized greyscale
background activity threshold εa 0.0196 part of normalized greyscale

Table 1: Parameters for the temporal and background change detection.

is when the assumptions do not hold and persons are stationary for a too long
time period. Hence foreground objects are falsely added to background. An-
other problem is when objects as equipment and furniture are displaced in the
scene. The objects at the new location are not fast enough adapted and are
therefore falsely detected as foreground objects. These two problems are incon-
sistent and are only concurrently solvable by recognition based detection; as it
is for correctly, but not desirable, detected moving shadows. Consequently the
algorithm with the chosen parameters performs mediocre when both cases are
present in the image sequence3.

The consecutive steps – at one position in the image sequence – from the
current image to the detected moving objects are depicted in Figure 9. The
images are panoramic and thus the left and right image boarder are mapped
to the same place in the scene. Further they are not perspective, hence the
geometry of the room is not preserved. Figure 9(a) represents the scene. In the
current image two persons are observable; one is in the centre in front of the
door and the second one is on the right. In Figure 9(b) the absolute difference
image |δfi| between the current and the precedent image is depicted. For both
persons their moving contours are visible. The sizes indicate a slow motion for
the person in front of the door and a fast motion for the person on the right
side of the image. The image is split into the different parts and for each part
the threshold εd is computed. The thresholded parts are merged. The result
is the temporal change region Di depicted in Figure 9(c). The horizontal lines
indicate the borders of the split parts. Further the image is slightly smoothed
by morphological erosion and dilation4. On the basis of this image the adaption
region Ai is updated. The temporal change history for the last 25 images is
depicted in Figure 9(d). Black regions in the image correspond to robustly
detected foreground objects. These regions are excluded in 9(a) for the adaption
of the background model that is the mean background image as depicted in
Figure 9(e). Subtracting this image 9(e) from the current image 9(a) and taking
the absolute values results in Figure 9(f). The absolute difference |µi − fi|

3 Different animations are available at /home.stud/qqgechte/omni/movie/animation/
which illustrate this discussion.

4 The structuring element is the minimal possible disc.
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contrary to 9(b) results in complete shapes. The image 9(f) is split into the
different parts and for each part the threshold εb is computed. The thresholded
parts are merged. The result is the background change region Bi depicted in
Figure 9(g). The horizontal lines again indicate the borders of the split parts.
The image is slightly smoothed by morphological erosion and delation. Both
persons, as the shadow for the person at the door, are clearly detected. Labelling
this image by seeking connected regions results in Figure 9(h). Finally two
objects are detected, both enclosed in a white frame, one is the person standing
at the door and its shadow, the other is the person moving in the right side of
the image.

Background Update

To minimize the adaption time for the background model in case of abrupt
and large changes the algorithm performs an update of the mean background
image and the adaption region. Without this the algorithm would fail after an
interrupt for a certain period depending on the chosen parameters. These are
fitted to the normal processing and therefore the period is at least equal to the
initialization time.

In Figure 10 the scene before and after a abrupt illumination change is
depicted; the person in the room turns off the lamps in the room. After the
change the scene is still illuminated by natural light. Figure 10(a) shows the
detected objects before the change. The object detected immediately after the
change is shown in Figure 10(b). It is the same person at the same place.
Without the update it is not possible to distinguish between foreground and
background objects. The background subtraction would be performed with a
slightly adapted model that is similar as the image depicted in Figure 10(c) and
the scene depicted in 10(b). The changes are too large and the whole scene
would be detected as a foreground object. The mean background images before
and after are depicted in Figure 10(c) and 10(d). The regions of the background
occluded by a foreground object during the change are smoothly approximated.
The adaption region Ai is set to the last background change region Bi−1 as
visible in Figure 10(e) and Figure 10(f). Hence no erroneous detected temporal
change region is associated to the history.

The main problem in this approach is how to model the occluded back-
ground. The algorithm interpolates these regions from the border to the center
of the shapes where the regions are identical with the last background change
region Bi−1. The interpolation leaves still some error appearing when the for-
mer occluded regions are left by the moving objects. In Figure 10(g) the mean
background image 10 images after the interrupt is depicted. The result of the
background change detection with this model is depicted in Figure 10(h). A
moving person and a spurious object at his precedent position are detected.
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Figure 9: Phases of the algorithm – at one position in the image sequence – how to arrive
from the current image to the detected moving objects. (Image source /home.stud/
qqgechte/omni/movie/simulation/pan/movie_9 frame no. 193).
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Figure 10: Images of the background model and the temporal change history in case
of abrupt illumination change. (Image source /home.stud/qqgechte/omni/movie/
simulation/pan/movie_12 frame no. 193).
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2.3. Conclusion

This section has presented the simulation of the motion detection in an image
sequence. The image sequence consists of panoramic images obtained by resam-
pling the omnidirectional images with the pattern of the SVAVISCA imager.
Therefore the panoramic images have a similar resolution as images should have
when recorded with the SVAVISCA camera. The SVAVISCA images have a
lower resolution compared to conventional cameras but the simulation shows
that motion detection in a room with the size of 40m2 is possible. A minimal
object is not specified. The performance is not restricted by the object size
but rather by the strong dependence between the expected scenario and the
algorithm parameters. Once the parameters are chosen for a scene, e.g. for fast
moving objects and slowly varying background, the algorithm performs poorly
when the assumption changes, e.g. instead of fast slowly moving objects are
present. However the algorithm suits to a vast range of problems but each has
an independent sets of parameters. The simulation shows that the problem is
eased with the reset procedure of the background model.

Because of the automatic threshold selection the motion detection is robust.
Spurious particles appear seldom, errors are mainly due to falsely adapted ob-
jects. For the simulation short sequences are used (40s), hence these errors can
be reduced in a real time application by adjusting the accumulation length and
adaption depth.
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A. Files

A.1. MatLab Files

A.1.1. Simulation

%main simulation.m - Author: Stefan Gachter

%

% Simulation of the motion detection algorithm.

%

5 % batch file

%

% See also: acc still bgd region, bmp to gif, difference image,

% display frame, display frame in figure,

% display histogram, fix format int str,

10 % insert frame, insert number, label mov objects,

% merge frame, n2s, reset mean bgd image, scalar lms,

% split frame, weighted accumulation

% Author : Stefan Gachter, stefan.gachter@ieee.org

15 % 00 Center for Machine Perception,

% Czech Technical University, Prague

% Documentation: Gaechter-TR-2001-07.pdf

% Language : Matlab 5.3.1.29215a (R11.1), (c) MathWorks

% Last change : 17/02/2001

20 % Status : Ready

%

clear all;
close all;

25

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% image sequence parameters

30 nb movie=14; % number of the image sequence

height=[31 30 18 12 20]; % heights of the subimages

%height=1;

nb frames=200; % total number of images in the sequence

35 nb frame start display=1; % begin display at this image number

nb frame stop display=nb frames; % end display at this image number

animation=1; % generate animated gif

nb frame start animation=1; % begin animation at this image number

40 nb frame stop animation=200; % end animation at this image number

% temporal change detection parameters

acc length d=0.002; % accumulation length

45 adapt depth=25; % adaption depth

min sensitivity threshold d=5/255; % minimal threshold
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% background change detection parameters

50 acc length b=5; % accumulation length

min sensitivity threshold b=2.5/255; % minimal threshold

activity threshold=5/255; % background activity threshold

55 % morphological filter parameters

struct element= . . .
[0 1 0;
1 1 1;

60 0 1 0];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% path specifications

65

load path=[’/home.stud/qqgechte/omni/movie/’ . . .
’experiment/pan/movie_’ n2s(nb movie) ’/’];

load init path=[’/home.stud/qqgechte/omni/movie/’ . . .
’experiment/pan/init/movie_’ n2s(nb movie) ’/’];

70 save path=[’/home.stud/qqgechte/omni/movie/’ . . .
’animation/movie_’ n2s(nb movie) ’/’];

% file name specifications

75 stream name=[’stream_pan_’ n2s(nb movie) ;];
animation name=[’mov_objects_movie_’ n2s(nb movie) ;];
init mean bgd img name=’init_mean_bgd_img’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

80

% misc

map bw=[0 0 0;1 1 1];

85 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% motion detection simulation

%% image sequence

90 file name=[load path stream name ’.mat’];
eval([’load ’ file name ’ stream map’]);

frame size=[size(stream,1),size(stream,2)/nb frames];
nb subframes=length(height);

95

%% initialization

acc frame j=zeros(frame size);
tmp chg region hist=zeros([frame size,adapt depth]);
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tmp change region=zeros(frame size);
100

file name=[load init path init mean bgd img name ’.mat’];
eval([’load ’ file name ’ init_mean_bgd_img’]);
mean bgd img j=init mean bgd img;

105 bgd change region=zeros(frame size);

reset=0;
frame j=stream(:,1:frame size(2));
for i=2:nb frames

110

display=0;
if ((i−1)>=nb frame start display)&((i−1)<nb frame stop display)&˜animation
display=1;

end
115

if animation|˜display
disp([’Frame no.’ fix format int str(i−1,3) ’.’]);

end

120 %% temporal change detection

frame i=stream(:,(i−1)*frame size(2)+1:i*frame size(2));
abs diff image d=abs(difference image(frame i,frame j));
acc frame i=weighted accumulation(acc frame j,abs diff image d,acc length d);

125 acc subframe i=split frame(acc frame i,height);
abs diff subimage d=split frame(abs diff image d,height);

for k=1:nb subframes;
eval([’lms_abs_diff_subimage_d=’ . . .

130 ’scalar_lms(abs_diff_subimage_d.no’ n2s(k) ’(:));’]);
eval([’sensitivity_threshold_d.no’ n2s(k) ’=’ . . .

’2.576*lms_abs_diff_subimage_d/0.3372+min_sensitivity_threshold_d;’]);
eval([’tmp_change_subregion.no’ n2s(k) ’=’ . . .

’acc_subframe_i.no’ n2s(k) ’>sensitivity_threshold_d.no’ n2s(k) ’;’]);
135 end

[tmp change region,border coordinates tmp]= . . .
merge frame(tmp change subregion,nb subframes,’border’);

140 tmp change region=erode(tmp change region,struct element);
tmp change region=dilate(tmp change region,struct element);

bgd activity=scalar lms(abs diff image d);
if bgd activity<activity threshold

145 reset=0;
end
if (bgd activity>=activity threshold)&(˜reset)
reset=1;
disp([’Reset at frame no.’ fix format int str(i−1,3) . . .

150 ’ when level ’ n2s(bgd activity) ’.’]);
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mean bgd img j= . . .
reset mean bgd image(mean bgd img j,frame j,frame i,9,bgd change region);

tmp change region=zeros(frame size);
end

155

[still bgd region mask,tmp chg region hist]= . . .
acc still bgd region(tmp change region,tmp chg region hist);

%% background change detection

160 mean bgd img i= . . .
weighted accumulation(mean bgd img j,frame i,acc length b,still bgd region mask);

abs diff image b=abs(difference image(mean bgd img i,frame i));

abs diff subimage b=split frame(abs diff image b,height);
165 for k=1:nb subframes;

eval([’lms_abs_diff_subimage_b=’ . . .
’scalar_lms(abs_diff_subimage_b.no’ n2s(k) ’(:));’]);

eval([’sensitivity_threshold_b.no’ n2s(k) ’=’ . . .
’2.576*lms_abs_diff_subimage_b/0.3372+min_sensitivity_threshold_b;’]);

170 eval([’bgd_change_subregion.no’ n2s(k) ’=’ . . .
’abs_diff_subimage_b.no’ n2s(k) ’>sensitivity_threshold_b.no’ n2s(k) ’;’]);

end

[bgd change region,border coordinates bgd]= . . .
175 merge frame(bgd change subregion,nb subframes,’border’);

bgd change region=erode(bgd change region,struct element);
bgd change region=dilate(bgd change region,struct element);

180 %% labeling

frame coordinates=label mov objects(bgd change region,’frame’);

%%% display

fig frame i=insert number(frame i,i−1,3,[2,2],’inverse’);
185 fig abs diff image d=insert number(abs diff image d,i−1,3,[2,2],’inverse’);

fig acc frame i=insert number(acc frame i,i−1,3,[2,2],’inverse’);
[fig tmp change region,map tmp change]= . . .
insert frame(uint8(tmp change region),border coordinates tmp,’red’,map bw);

fig tmp change region= . . .
190 insert number(fig tmp change region,i−1,3,[2,2],’transparent’);

fig still bgd region mask= . . .
insert number(still bgd region mask,i−1,3,[2,2],’transparent’);

fig mean bgd img i=insert number(mean bgd img i,i−1,3,[2,2],’inverse’);
fig abs diff image b=insert number(abs diff image b,i−1,3,[2,2],’inverse’);

195 [fig bgd change region,map bgd change]= . . .
insert frame(uint8(bgd change region),border coordinates bgd,’red’,map bw);

fig bgd change region= . . .
insert number(fig bgd change region,i−1,3,[2,2],’transparent’);

[fig labeled change region,map change region]= . . .
200 insert frame(bgd change region,frame coordinates,’red’,map bw);

fig labeled change region= . . .
insert number(fig labeled change region,i−1,3,[2,2],’transparent’);
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[fig labelled frame i,map frame]= . . .
insert frame(frame i,frame coordinates,’green’,map);

205 fig labelled frame i= . . .
insert number(fig labelled frame i,i−1,3,[2,2],’inverse’);

if display

210 %display frame(uint8(255*fig frame i),map,1);

%display frame(uint8(255*fig abs diff image d),map,2);

%display frame(uint8(255*fig acc frame i),map,3);

%display frame(uint8(fig tmp change region),map tmp change,4);

%display frame(uint8(fig still bgd region mask),map bw,5);

215 %display frame(uint8(255*fig mean bgd img i),map,6);

%display frame(uint8(255*fig abs diff image b),map,7);

%display frame(uint8(fig bgd change region),map bgd change,8);

%display frame(uint8(fig labeled change region),map change region,9);

%display frame(uint16(255*fig labelled frame i),map frame,10);

220

frames=sequence to struct(uint8(255*fig frame i), . . .
uint8(255*fig abs diff image d), . . .
uint8(fig tmp change region), . . .
uint8(fig still bgd region mask), . . .

225 uint8(255*fig mean bgd img i), . . .
uint8(255*fig abs diff image b), . . .
uint8(fig bgd change region), . . .
uint16(255*fig labelled frame i));

230 map fig= . . .
sequence to struct(map,map,map tmp change,map bw, . . .

map,map,map bgd change,map frame);

display frame in figure(frames,map fig,8,[4 2],11);
235

display histogram(abs diff subimage d,nb subframes, . . .
sensitivity threshold d,[0 0.05],12);

xlabel(’absolute difference for two consecutive images’);
display histogram(abs diff subimage b,nb subframes, . . .

240 sensitivity threshold b,[0 0.05],13);
xlabel(’absolute difference for background subtraction’);

pause;
end

245

%%% animation

if ((i−1)>=nb frame start animation)&((i−1)<nb frame stop animation)&animation

%red map frame=[gray(255);name to rgb(’green’)];

250 %frame=imapprox(uint16(255*fig labelled frame i),map frame,red map frame);

frames=sequence to struct(uint8(255*fig frame i), . . .
uint8(255*fig abs diff image d), . . .
uint8(fig tmp change region), . . .
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255 uint8(fig still bgd region mask), . . .
uint8(255*fig mean bgd img i), . . .
uint8(255*fig abs diff image b), . . .
uint8(fig bgd change region), . . .
uint16(255*fig labelled frame i));

260

map fig=sequence to struct(map,map,map tmp change,map bw, . . .
map,map,map bgd change,map frame);

fig rgb=display frame in figure(frames,map fig,8,[4 2],’not_display’);
265 red map frame=[gray(254);name to rgb(’red’);name to rgb(’green’)];

frame=rgb2ind(fig rgb,red map frame);

file name=[save path animation name ’_’ fix format int str(i−1,3) ’.bmp’];
imwrite(frame,red map frame,file name,’bmp’);

270 end

%% update

frame j=frame i;
acc frame j=acc frame i;

275 mean bgd img j=mean bgd img i;

end

%%% animation

280 if animation
start stop=[nb frame start animation nb frame stop animation−1];
bmp to gif(save path,animation name,start stop, . . .
’animate_whirlgif’,’erase_bmp’,’erase_gif’);

end

Temporal Change History

function [still bgd region mask,tmp chg region hist]= . . .
acc still bgd region(tmp change region,tmp chg region hist);

% [still bgd region mask,tmp chg region hist]= . . .

5 % accumulate still background region(tmp change region,tmp chg region hist);

%

% Creates region that did not change for a period of time.

%

% stefan.gachter@ieee.org

10

hist size=size(tmp chg region hist);
adapt depth=hist size(3);

tmp chg region hist(:,:,1:adapt depth−1)=tmp chg region hist(:,:,2:adapt depth);
15 tmp chg region hist(:,:,adapt depth)=tmp change region;

still bgd region mask=sum(tmp chg region hist,3)<1;
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Difference Images

function diff img=difference image(frame i,frame j);

% diff img=difference image(frame i,frame j)

%

5 % Computes the difference image between the frame i

% and the frame j.

%

% stefan.gachter@ieee.org

10 diff img=frame i−frame j;

Label Moving Objects

function varargout=label mov objects(change region,varargin);

% [{labeled change region,frame coordinates}]= . . .

% label mov objects(change region,{’frame’})
5 %

% Label objects in the change region and generates the coordinates of the

% frames around each object.

%

% stefan.gachter@ieee.org

10

frame=0;
for k=2:nargin
if isstr(varargin{k−1})

15 frame=strcmp(varargin{k−1},’frame’);
end

end

[labeled change region,nb objects]=bwlabel(change region);
20

if (nargout==1)&˜frame
varargout{1}=labeled change region;
return

end
25

if frame
frame coordinates=[ ];
frame size=size(change region);
for i=1:nb objects;

30 [coord m,coord n]=find(labeled change region==i);
max m=max(coord m);
min m=min(coord m);
max n=max(coord n);
min n=min(coord n);

35 left=min n;
bottom=frame size(1)−max m+1;
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width=max n−min n+1;
height=max m−min m+1;
frame coordinates=[frame coordinates;[left bottom width height]];

40 end
if nargout==1
varargout{1}=frame coordinates;

return
end

45 if nargout==2
varargout{1}=labeled change region;
varargout{2}=frame coordinates;

return
end

50 end

Merge Frame

function [frame,varargout]=merge frame(varargin);

% [frame,{border coordinates}]=merge frame(subframe 1,. . .,subframe n,{’border’})
% [frame,{border coordinates}]=merge frame(subframe.no1. . .n,n,{’border’})

5 %

% Merges n subframes vertically in one frame and generates

% optionally the border coordinates around each subframe.

%

% stefan.gachter@ieee.org

10

border=0;
if strcmp(varargin{nargin},’border’)
border=1;

end
15

if ˜isstruct(varargin{1})
n=nargin;
if border
n=nargin−1;

20 end
frame=[ ];
subframe size=[ ];
for i=1:n
eval([’subframe_tmp=varargin{’ num2str(i) ’};’]);

25 subframe size=[subframe size;size(subframe tmp)];
frame=[frame;subframe tmp];

end
end

30 if isstruct(varargin{1})
n=varargin{2};
subframe=varargin{1};
frame=[ ];
subframe size=[ ];
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35 for i=1:n
eval([’subframe_tmp=subframe.no’ num2str(i) ’;’]);
subframe size=[subframe size;size(subframe tmp)];
frame=[frame;subframe tmp];

end
40 end

if border
frame size=size(frame);
border coordinates=[ ];

45

left=1;
bottom=1;
width=subframe size(n,2);
height=subframe size(n,1);

50 border coordinates=[border coordinates;[left bottom width height]];

for i=n−1:−1:1
left=1;
bottom=bottom+height−1;

55 width=subframe size(i,2);
height=subframe size(i,1)+1;
border coordinates=[border coordinates;[left bottom width height]];

end
varargout{1}=border coordinates;

60 end

Reset Background Model

function mean bgd img j= . . .
reset mean bgd image(mean bgd img i,frame j,frame i,digits,varargin);

% mean bgd img j= . . .

5 % reset mean bgd image(mean bgd img i,frame j,frame i,digits, . . .

% {mask exclude bgd region});
%

% Reset mean background region.

%

10 % stefan.gachter@ieee.org

struct element= . . .
[0 1 0;
1 1 1;

15 0 1 0];

frame j(find(frame j<10^(−digits)))=1;
ratio=frame i./frame j;

20 if nargin==4;
mean bgd img j=mean bgd img i.*ratio;
return
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end

25 if nargin==5;
mask=varargin{1};
mask=dilate(mask,struct element);
smoothed ratio=roifill(ratio,mask);
mean bgd img j=mean bgd img i.*smoothed ratio;

30 return
end

Least Median of Squares for Scalar Values

function lms=scalar lms(scalar set);

% function lms=scalar lms(scalar set)

%

5 % Computes the Least Median of Squares for a set of scalars.

%

% see Rousseeuw, P., Leroy, A., Robust Regression and Outlier Detection,

% Wiley, 1987

%

10 % stefan.gachter@ieee.org

scalar vect=scalar set(:);
sort scalar vect=sort(scalar vect);

15 n=length(scalar vect);
h=fix(n/2)+1;
g=ceil(n/2);
diff=sort scalar vect(h:n)−sort scalar vect(1:g);

20 [dummy,min diff index]=min(diff);
lms=0.5*(sort scalar vect(min diff index)+sort scalar vect(min diff index+h−1));

Split Frame

function [varargout]=split frame(frame,varargin);

% [subframe 1,. . .,subframe n]=split frame(frame)

% [subframe 1,. . .,subframe n]=split frame(frame,[height1,. . .,heightn])

5 % [subframe.no1. . .n]=split frame(frame,n)

% [subframe.no1. . .n]=split frame(frame,[height1,. . .,heightn])

%

% Split the frame vertically in n subframes.

%

10 % stefan.gachter@ieee.org

if nargout>1
if nargin==1
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15 n=nargout;
frame size=size(frame);
step=fix(frame size(1)/n);
for i=1:n−1
eval([’subframe_’ num2str(i) . . .

20 ’=frame((’ num2str(i) ’-1)*step+1:’ num2str(i) ’*step,:);’]);
eval([’varargout{’ num2str(i) ’}=subframe_’ num2str(i) ’;’]);

end
eval([’subframe_’ num2str(n) . . .

’=frame((’ num2str(n) ’-1)*step+1:frame_size(1),:);’]);
25 eval([’varargout{’ num2str(n) ’}=subframe_’ num2str(n) ’;’]);

return
else
height=varargin{1};
n=length(height);

30 frame size=size(frame);
ind begin=1;
ind end=0;
for i=1:n
ind begin=ind end+1;

35 ind end=ind begin+height(i)−1;
eval([’subframe_’ num2str(i) ’=frame(ind_begin:ind_end,:);’]);
eval([’varargout{’ num2str(i) ’}=subframe_’ num2str(i) ’;’]);

end
return

40 end
end

if (nargout==1)&(nargin==1)
n=nargout;

45 varargout{n}=frame;
return

end

if (nargout==1)&(nargin==2)
50 if length(varargin{1})==1

n=varargin{1};
frame size=size(frame);
step=fix(frame size(1)/n);
for i=1:n−1

55 eval([’subframe.no’ num2str(i) . . .
’=frame((’ num2str(i) ’-1)*step+1:’ num2str(i) ’*step,:);’]);

end
eval([’subframe.no’ num2str(n) . . .

’=frame((’ num2str(n) ’-1)*step+1:frame_size(1),:);’]);
60 eval([’varargout{1}=subframe;’]);

return
else
height=varargin{1};
n=length(height);

65 frame size=size(frame);
ind begin=1;
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ind end=0;
for i=1:n
ind begin=ind end+1;

70 ind end=ind begin+height(i)−1;
if ind end>frame size(1)
ind end=frame size(1);

end
eval([’subframe.no’ num2str(i) ’=frame(ind_begin:ind_end,:);’]);

75 end
eval([’varargout{1}=subframe;’]);
return

end
end

Weighted Accumulation

function acc frame i= . . .
weighted accumulation(acc frame j,frame j,acc length,varargin);

% acc frame i=weighted accumulation(acc frame j,frame j,acc length,region)

5 %

% Computes the weighted accumulation of a frame stream restricted to the

% defined region. The length of accumulation is the number of past values

% to be considered.

%

10 % stefan.gachter@ieee.org

mask=ones(size(frame j));
if nargin==4

mask=varargin{1};
15 end

a=exp(−1/acc length);

region acc frame i=((1−a)*frame j+a*acc frame j).*mask;
20 non region acc frame i=acc frame j.*˜mask;

acc frame i=region acc frame i+non region acc frame i;
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A.2. File Index

A.2.1. MatLab Files

The file name is listed in the first column, the file path in the second, and the
reference of the corresponding section in the third.

acc still bgd region /home.stud/qqgechte/omni/matlab/ 1,2
bmp to gif /home.stud/qqgechte/matlab/tools/image/ 2
circle /home.stud/qqgechte/matlab/tools/graphics/ 1,2
create init images /home.stud/qqgechte/omni/matlab/simulation/ 1,2
create noise frames /home.stud/qqgechte/omni/matlab/simulation/ 1
create stream /home.stud/qqgechte/omni/matlab/simulation/ 1,2
define center /home.stud/qqgechte/omni/matlab/simulation/ 1,2
difference image /home.stud/qqgechte/omni/matlab/ 1,2
display frame /home.stud/qqgechte/matlab/tools/image/ 1,2
display frames /home.stud/qqgechte/omni/matlab/simulation/ 1,2
display frame in figure /home.stud/qqgechte/matlab/tools/image/ 2
display histogram /home.stud/qqgechte/matlab/tools/graphics/ 2
fix format int str /home.stud/qqgechte/matlab/tools/general/ 1,2
fixed point conv /home.stud/qqgechte/omni/matlab/tools/general/ 2
insert frame /home.stud/qqgechte/matlab/tools/image/ 1,2
insert number /home.stud/qqgechte/matlab/tools/image/ 1,2
isdouble /home.stud/qqgechte/matlab/tools/general/ 1,2
isuint8 /home.stud/qqgechte/matlab/tools/general/ 1,2
label mov objects /home.stud/qqgechte/omni/matlab/ 2
main simulation /home.stud/qqgechte/omni/matlab/simulation/ 2
merge frame /home.stud/qqgechte/matlab/tools/image/ 1,2
n2s /home.stud/qqgechte/matlab/tools/general/ 2
name to rgb /home.stud/qqgechte/matlab/tools/image/ 1,2
plot hist /home.stud/qqgechte/matlab/tools/graphics/ 1
quantify noise /home.stud/qqgechte/omni/matlab/simulation/ 1
record frames /home.stud/qqgechte/omni/matlab/simulation/ 1,2
reformat image /home.stud/qqgechte/omni/matlab/simulation/ 1,2
reset mean bgd image /home.stud/qqgechte/omni/matlab/ 2
scalar lms /home.stud/qqgechte/matlab/tools/statistic/ 1,2
size filter /home.stud/qqgechte/matlab/tools/image/ 1
split frame /home.stud/qqgechte/matlab/tools/image/ 1,2
svsim /home.stud/qqgechte/omni/matlab/simulation/ 1,2
weighted accumulation /home.stud/qqgechte/omni/matlab/ 2
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A.2.2. Miscellaneous

The file name is listed in the first column, the file path in the second, and the
reference of the corresponding section in the third.

whirlgif /home.stud/qqgechte/matlab/tools/image/whirlgif/ 2
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