LO-RANSAC Software Library Manual
(Building and Usage)
Karel Lebeda, karel@lebeda. sk

The code of LO-RANSAC is now publicly available under the GNU GPL license. The home
page can be found at http://cmp.felk.cvut.cz/software/LO-RANSAC/. In case you use this
software in an academic work, please cite the following paper: [4]. This manual was originally
published as a part of Karel Lebeda’s Master’s Thesis [3].

1 Dependencies

The library has only one dependency — LAPACK: Linear Algebra Package [I]. In Linux distribu-
tions, this is often available via package management system (e.g. package liblapack). We were
informed that on Windows it is possible to replace LAPACK by Intel MKL library. Then, besides
changing the path in a Makefile (see below), it is necessary to replace LAPACK #includes by
<mkl.h>. This was reported as working with MS Visual Studio 2008 on Windows 7 x64. Another
possibility is to use LAPACK for Windows. However, we were not able to check reliability of
either of these solutions.

The LO-RANSAC library also uses several procedures from CCMATH library [2]. Nevertheless,
since this is included in the distribution archive, it is not necessary to be concerned about those
at all.

2 Building the library

The unpacked LO-RANSAC directory contains a license file, information about authors with contact
information, README file with content similar to this chapter and src subdirectory, containing the
source files. In the src directory, the Makefile is prepared for an easy build. The debug/release
build can be switched there by simply (un)commenting lines (turning on/off optimization or de-
bugging information).

As the LAPACK installation usually does not include the header files, it is necessary to obtain
those elsewhere. E.g., Matlab carries a set of headers along. The path to the headers should be
specified in the Makefile as well.

Running the Makefile compiles all the source files into C objects and then link these together
with LAPACK library. A file libransac.a is the result. Then it is possible to link this file to
other software using -1ransac -L. E.g. for the use in Matlab, MEX-sources are prepared. These
should be compiled as follows:
mex loransacH.mex.c -o loransacH.mexglx -lransac -L. -llapack.

This example is for 32-bit Linux. The proper MEX-file extension should be used, according to the
particular platform (use the mexext command in Matlab).

The following error has been reported when trying to run LO-RANSAC MEX-files from Mat-
lab (Matlab 2013a on Ubuntu 12.04):

Invalid MEX-file ’/.../loransacF.mexa64’:

libgfortran.so.3: version ‘GFORTRAN_1.4’ not found (required by liblapack.so.3gf)
In such a case, it is necessary to preload the gfortran dynamic library before Matlab is started.
One solution is to type

export LD_PRELOAD=’/.../libgfortran.so.3’

in the command line, before starting Matlab (from the command line; replace ... with your path
to libgfortran.so.3).

http://cmp.felk.cvut.cz/software/LO-RANSAC/index.xhtml
http://icl.cs.utk.edu/lapack-for-windows/

3 Application Programming Interface

The main gateway to the library consists of two functions for geometry estimation: ransacH and
ransacF for homography and epipolar geometry estimation (respectively). Their arguments are
summarized in Table (3] Since the library is often called from Matlab MEX-files, the matrices are
stored column-wise (in a column-major order). In these arguments, all the essential RANSAC
parameters are possible to set. Also, the ransac* functions return inliers/outliers bipartitioning
of the data points by filling the inl array by ones and zeroes, and runtime statistics (number
of samples drawn, local optimisations performed and models rejected). The score of the best
geometry hypothesis found is returned in a special structure, containing the number of inliers I
and the widened truncated quadratic score J (note that this is implemented as a gain function to
be maximized, to be consistent with the inlier count). Its definition is:

typedef struct { unsigned I; double J; } Score;

If it is necessary to change some of the inner LO-RANSAC constants or parameters (e.g. the
number of inner samples in LO, or the cost function), this can be done in the file rtools.h. On
the other hand, for the cases when an “as simple as possible” interface is needed, we have prepared
wrapping functions ransacHsimple and ransacFsimple. In these, all the parameters are set to
their default values wherever it makes any sense. Furthermore, nothing but the geometry matrix
is returned. The default values can be found in the Table [as well.

For an example of a typical LO-RANSAC usage see the files testH.c and testF.c. Further-
more, these indicate a proper function of the LO-RANSAC library. The Makefile compiles them
with the library, thus they can be easily run from the system terminal (e.g. ./testH for homogra-
phy). Small deviations from the expected values in the exact tests do not mean necessarily that
there is a problem. There can be differences, e.g. between platforms. The reported values were
obtained on 32b Linux.

Score ransacH (double * u, int len, double th, double conf,

int max_sam, int do_lo, int inlLimit,

double * H, unsigned char * inl, unsigned * stats);
Score ransacF (double * u, int len, double th, double conf,

int max_sam, int do_lo, int inlLimit,

double * F, unsigned char * inl, unsigned * stats);
void ransacHsimple (double *u, int len, double th, double *H);
void ransacFsimple (double *u, int len, double th, double *F);

Table 1: Application Programming Interface. A user can choose between a more detailed parame-
ter settings and the simple variant where as many as possible parameters are set to their respective
default values. See table [3| for a description of the arguments.

[H] = loransacH(TC_PAIRS, THRESHOLD)
[H, INL, STATS] = 1loransacH(TC_PAIRS, THRESHOLD

[, LOON, CONF, INL LIMIT, MAX_SAM, RAND_SEED])
[F] = loransacF(TC_PAIRS, THRESHOLD)

[F, INL, STATS] loransacF(TC_PAIRS, THRESHOLD

[, LO_ON, CONF, INL_LIMIT, MAX_SAM, RAND_SEED])

Table 2: Matlab MEX-files Application Programming Interface. Again, the only mandatory inputs
are the tentatively corresponding pairs of points (here called TC_PAIRS instead of u) and the
inlier /outlier error threshold. A matrix, representing the geometry, is always returned; optionally
also with the inliers/outliers separation. One additional parameter is present here — the seed for
pseudorandom generator (srand in C).

Name Direction Type Size Default value (F/H)

F/H output double 3x3 NA
fundamental matrix / homography matrix (M™*)

inl output binary 1xlen NULL (not returned)
inliers/outliers separation (Z*)

stats output unsigned 1x3 NULL (not returned)
runtime statistics (#samples, #LOs, #rejected models)

u input double 6xlen NA
input data — tentative correspondences

len input int scalar NA
length of input tentative correspondences (V)

th input double scalar NA
squared inlier-outlier error threshold (62, px?)

conf input double scalar 0.95
user-required probability of obtaining the best solution (n)

max_sam input int scalar 1000 000
maximal number of samples drawn

do_lo input binary scalar 1
LO on/off switch

inlLimit input int scalar 49/28

maximal number of inliers for iterative lest squares, 0 = no limit

Table 3: The list of LO-RANSAC arguments. This table applies to C interface, all the properties
nevertheless hold even for the MEX interface. For the interface of the MEX-files please refer to
the Table 2L

The input matrix u is of size 6 x N. It consists of the homogeneous coordinates of both tenta-

tively corresponding points — i** column can be expressed as [z;, y;, w;, =4, yl,w!] " or [x], x/T]T.

7 7
On the output, a model of the desired geometry is returned, satisfying
rankH = 3 |
x; xHx, =0 Vi:inl(i) =1

for the homography estimation, and
rankF = 2,

x;Fx,=0 Vi:inl(i)=1

for the epipolar geometry estimation, with the tolerance 6 of the correspondence Sampson’s error
(€2 < 6?). Please note that the notation used in the CMP WBS-Demo is used here, instead of the
more common x; X Hx; = 0 and x’ j Fx;, = 0.

References

[1] LAPACK: Linear algebra package.
http: / /www.netlib.org/lapack/.

[2] D. A. Atkinson. CCMATH: Mathematics software library.
http://freecode.com /projects/ccmath.

[3] K. Lebeda. Robust Sample Consensus. Master’s thesis, Czech Technical University in Prague,
2013.

[4] K. Lebeda, J. Matas, and O. Chum. Fixing the locally optimized RANSAC. In Proceedings of
the British Machine Vision Conference, pages 95.1-95.11, 2012.

	Dependencies
	Building the library
	Application Programming Interface

