Exposure Time Estimation for High Dynamic Range Imaging with Hand Held Camera

Lukáš Cerman and Václav Hlaváč
Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague
121 35 Prague 2, Karlovo náměstí 13, Czech Republic
http://cmp.felk.cvut.cz

INTRODUCTION

- Image sensor cannot record details in all parts of a high contrast scene.
- Differently exposed images of the same scene can be captured.

- Every image represents a different portion of the dynamic range.
- Multiple images can be fused to one HDR image.

CAMERA SYSTEM

- Lens
- Electronic Sensor
- ADC
- In Camera Processing
- Pixel Values
- Raw Values

- Shutter attenuates irradiance E, $I = E \cdot \Delta t$.
- A nonlinear mapping $M = f(I)$ transforms light intensity I to pixel value M.
- Let $g = f^{-1}$ then $I = g(M)$.

COMPOSING HDR IMAGE

Denote a value of the pixel i observed in the image j by M_{ij}. Knowing $g(M)$ and the exposure times Δt_j, the irradiance values E_i can be computed using

$$E_i = \sum_j \omega(M_{ij}) \frac{v(M_{ij})}{\sum_j \omega(M_{ij})}.$$

Where $\omega(M_{ij})$ is a weighting criterion, it may be

- derivative of $g(M)$,
- a hat function, $\omega(M) = \begin{cases} M & \text{for } M \leq \frac{1}{2} \\ 1 - M & \text{for } M > \frac{1}{2} \end{cases}$
- SNR function, $\text{SNR} = \frac{\Delta t_i}{\sigma_i}$

EXPOSURE TIMES RECOVERY

- The knowledge of Δt affects the quality of composed HDR image.
- Cameras do not report Δt properly.
- We proposed a method estimating exposure ratio $k_j = \Delta t_{j+1}/\Delta t_j$ of two images captured using a linear response camera.

- Linear fit to the brightness transfer function T of the two images.

- $k_j \cdot M_A = T_j(M_A)$

Equations are weighted by $\sqrt{h_j(M_A)} \cdot \sqrt{h_{j+1}(M_B)}$.

- The outliers are removed by an iterative scheme.
- The proposed method does not require image registration.

CAMERA CALIBRATION

- Recovering $g(M)$ from the differently exposed images is a difficult task.
- We recommend to use linear RAW images as offered by modern cameras.

IMAGE REGISTRATION

We proposed a method for spatial registration of two differently exposed images. The proposed method enables to capture HDR images with a hand held camera.

- Compensate exposure difference using g and Δt.
- Initial estimate using correlation in Fourier space $(\Delta \theta_0, \Delta \phi_0) = \max(F^{-1}(F(I_1) \cdot F(I_2)))$.
- Find $\Delta x, \Delta y, \varphi$ by minimizing

$$\epsilon_{ij} = \frac{\sum (I(x, y) - W_2(x, y))^2}{n(x, y)}.$$

$$n(x, y) = \begin{cases} t & \text{for } \frac{h(x,y) + W_2(x,y)}{2} < t \\ t^2 & \text{for } \frac{h(x,y) + W_2(x,y)}{2} > t \end{cases}.$$

ACKNOWLEDGMENT

The authors wish to thank Jan Čech for advice with geometric image registration. The authors also acknowledge the critical and constructive comments by the reviewers. The second author was supported by the projects INTAS 04-77-7347, CAK 1M00567 and BcNoGo IST-2001-39184.

REFERENCES