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Abstract

Approximating non-linear kernels1 by finite-dimensional
feature maps is a popular approach for speeding up train-
ing and evaluation of support vector machines or to en-
code information into efficient match kernels. We propose
a novel method of data independent construction of low di-
mensional feature maps. The problem is cast as a linear
program which jointly considers competing objectives: the
quality of the approximation and the dimensionality of the
feature map.

For both shift-invariant and homogeneous kernels the
proposed method achieves a better approximations at the
same dimensionality or comparable approximations at
lower dimensionality of the feature map compared with
state-of-the-art methods.

1. Introduction
Kernel machines, such as support vector machines

(SVMs), can approximate any function or decision bound-
ary arbitrarily well when provided with enough training
data. However, such methods scale poorly with the size of
the training set. On the other hand, it was shown [6] that lin-
ear SVMs can be trained in linear time with the number of
training examples, which allows its application to very large
datasets. Approximate embeddings, or feature maps, can
preserve the accuracy of kernel methods and enable scaling
to large datasets at the same time.

The demand for linear approximations of non-linear ker-
nel functions is not limited to SVM classification. The idea
of efficient match kernels [2] has been used in various areas
of computer vision. Examples where linear approximation
of non-linear kernels plays an important role, are kernel de-
scriptors of interest points proposed in [1]. In the domain
of image retrieval, [15] proposes to encode the dominant
orientation of regions of interest into aggregated image de-
scriptors, such as VLAD [5] or Fisher vectors [12].

1I would like to thank Tomáš Werner for his valuable opinions and
interesting discussions. This work was supported by MSMT LL1303 ERC-
CZ grant.

Formally, for a positive definite kernel [14] K : Rn ×
Rn → R there exists a Hilbert space H and a mapping
Ψ : Rn → H, so that K(x,y) = 〈Ψ(x),Ψ(y)〉H, where
〈·, ·〉H is a scalar product in H. We address the problem
of finding a low-dimensional mapping Ψ̂ : Rn → RD so
that Ψ̂(x)>Ψ̂(y) ≈ 〈Ψ(x),Ψ(y)〉H. A natural requirement
from the accuracy point of view is to introduce as little error
as possible by the approximation. On the other hand, from
the practical point of view, the dimensionality of the approx-
imate feature map should be as low as possible. These two
criteria are clearly competing. We propose an optimization
approach which is relaxed into a linear program, that trades
off both criteria.

1.1. Related work

We briefly review the most relevant work on data inde-
pendent (no training data needed) methods of kernel ap-
proximation. Random Fourier features were introduced by
Rahimi and Recht in [13]. The feature map is a Monte Carlo
approximation of the kernel where each dimension of the
feature map represents a cosine function drawn from the
distribution given by the spectrum of the kernel signature.
The Monte Carlo approach requires relatively high num-
ber of samples to provide accurate approximation, how-
ever, unlike most other approaches, is directly applicable
to very high dimensional input data. The idea has been
extended form shift-invariant kernels to skewed multiplica-
tive histogram kernels in [9]. Maji and Berg in [11] ap-
proximate the intersection kernel by a sparse feature map
in closed-form. In [19] high dimensional sparse feature
maps are derived and their relation to product quantisation
is shown. In [18] Vedaldi and Zisserman introduced a gen-
eralization of explicit feature maps to the family of additive
homogeneous kernels. In our paper, considerably better ap-
proximations with feature maps of the same dimensional-
ity or equally good approximation with lower dimensional-
ity of the feature maps is achieved compared with results
of [18] implemented in [17]. We also show that the pro-
posed method allows for optimization of meaningful errors
measured on the homogeneous kernel output, rather than
solely approximating the kernel signature.
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2. Problem formulation
In this section, the problem of shift-invariant kernel ap-

proximation is outlined, and then the proposed approach is
described. For now, we will focus only on one dimensional
kernels K(x, y) : R×R→ R. Kernels in more dimensions
are discussed in section 6.

Consider a family of shift-invariant (or stationary) ker-
nels

K(x, y) = K(x+ c, y + c) ∀x, y, c ∈ R. (1)

A signature k(λ) : R → R of a shift invariant kernel
K is defined as k(λ) = K(−λ/2, λ/2). Such a one-
dimensional signature function fully specifies the kernel,
since K(x, y) = k(x− y).

We will study approximations K̂ : R× R→ R to shift-
invariant kernels, in particular such approximations that can
be written as an inner product of low-dimensional feature
maps Ψ̂ : R→ RD

K̂(x, y) = Ψ̂(x)>Ψ̂(y) ≈ K(x, y).

The kernel K will be approximated via approximating the
kernel signature k by k̂ : R→ R in the form

k̂(λ) =
∑
ω∈Ω

αω cos(ωλ), (2)

where ω is a frequency, Ω is a finite set of frequencies
Ω ⊂ [0, ωmax], and αω ∈ R+

0 are non-negative weights.
Kernels in the form of (2) can be directly converted into
feature maps

Ψ̂ω(x) =

( √
αω cos(ωx)√
αω sin(ωx)

)
.

From the identity

cos(x− y) = cos(x) cos(y) + sin(x) sin(y)

it follows that

Ψ̂ω(x)>Ψ̂ω(y) = αω cos(ω(x− y)).

The feature map Ψ̂(x) defined by the signature k̂ is a
concatenation of Ψ̂ω for all ω ∈ Ω. The dimensionality
D(k̂) of the feature map Ψ̂(x) is

D(k̂) =
∑
ω∈Ω

δ(αω)Dω , (3)

where δ(αω) = 0 for αω = 0, and δ(αω) = 1 otherwise,

Dω =

{
1 ω = 0
2 ω > 0.

Here Dω denotes the dimensionality of feature map for a
particular frequency ω. The value of Dω = 1 for ω = 0

comes from the fact that Ψ̂0 =
(√
αω, 0

)>
, where the zero

can be dropped from the embedding.

Input domain. The input x for the kernel function is typ-
ically some measurement, such as coordinates of a point in
a canonical patch (of fixed size), angle of the dominant ori-
entation, or an entry of a normalized histogram. We make
the assumption that the measured features x come from a
bounded interval x ∈ [a, b]. This assumption is natural
for many practical problems. Given the properties of the
shift-invariant kernels, x ∈ [a, b] implies that the kernel sig-
nature k needs to be approximated on interval [−M,M ],
M = b− a.

Error function. The similarity of the original signature
function k and its approximation k̂, is measured by an error
function C(k, k̂) ∈ R+

0 . In order to use discrete optimiza-
tion methods, the error function used in the paper will only
depend on a finite number of points z from an evaluation
set Z, z ∈ Z ⊂ [0,M ]. The points z are non-negative, as
both k and k̂ are symmetric. The discretization of the in-
put domain is optimal for quantities that are discrete, such
as for pixel coordinates. In many domains, sufficiently fine
discretization introduces negligible error compared to the
error introduced by the measurement estimation, e.g., the
angle of the dominant orientation of a feature patch. If a
continuous input domain is essential, the number |Z| of the
points z has to be adjusted with respect to the maximal fre-
quency ωmax and the spectrum of the kernel signature k.

In the paper, the two following error functions will be
used

C1(k, k̂) =
∑
z∈Z

w(z) · |k(z)− k̂(z)|, (4)

C∞(k, k̂) = max
z∈Z

w(z) · |k(z)− k̂(z)|, (5)

where w(z) ∈ R+
0 are weights that adjust the relative im-

portance of the approximation error at point z. For all
w(z) = 1 constant, (4) represents L1 norm and (5) rep-
resents L∞ norm.

2.1. Optimization

Two antagonistic objectives have to be considered in the
approximation task: keeping the dimensionalityD(k̂) of the
embedding low and obtaining as close an approximation,
measured by C(k, k̂), of the kernel as possible.

SinceD(k̂) is not convex, not even continuous, we apply
an LP relaxation [16] to make the optimization tractable.
Instead of dealing with the dimensionality D(k̂), which is a
weighted L0 norm (3), a weighted L1 norm

D̄(k̂) =
∑
ω∈Ω

Dωαω (6)

is used, recall that αω ≥ 0.



The task of finding approximation k̂ that minimizes
D̄(k̂) while preserving a defined quality of the approxima-
tion is formulated as a linear program

min
k̂
D̄(k̂) subject to C(k, k̂) ≤ Cmax ∈ R+.

Finding an approximation k̂ of fixed dimensionality Dmax

of the feature map is sought while minimizing C(k, k̂) is
approximated by a linear program

min
k̂
D̄(k̂) + γC(k, k̂),

where γ ∈ R+ is a constant controlling the trade-off be-
tween the quality of the approximation and the relaxed di-
mensionality D̄ of the feature map. A version of binary
search for the appropriate weight γ is used: the LP is exe-
cuted with an initial value of γ. The output is checked for
the value of D (not D̄), if D ≤ Dmax the value of γ is
increased (higher importance to the fit cost), otherwise the
value of γ is decreased (higher importance to the solution
sparsity). The solution with the best fit is selected among
LP outputs with D ≥ Dmax, for outputs with D > Dmax

considering only top largest values of αω so that the dimen-
sionality is at most Dmax.

3. Periodic kernels
Let k be a kernel signature that is periodic with period

2M . The task in this section is to approximate k on interval
[−M,M ], which is equivalent to approximating on all of
R since k is periodic. The spectrum of k is restricted to
harmonics of the base frequency π/M , and hence

Ω0 =
{
i
π

M

∣∣∣ i ∈ N0

}
. (7)

A standard approach to this problem is to project the func-
tion k to an orthogonal basis cos(iπ/Mλ). The function k
is then approximated using basis functions with the highest
values of the coefficients. Such an approach is efficient for
one dimensional kernels and the method proposed in this
paper does not bring any contribution to this problem. Re-
sults for multiplicative kernels (Section 6) are applicable to
periodic functions.

4. Aperiodic kernels
In this section, an approximation of kernels on interval

[−M,M ] with signature that is not periodic (or do not have
period 2M ) is derived. Many shift invariant kernels, includ-
ing the RBF kernel, are not periodic.

4.1. Discrete frequencies

Following [18], for an aperiodic kernel signature k, there
is a function g with period 2M and g(λ) = k(λ) for
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Figure 1. Kernel signature k = cos(0.6λ) (solid black curve) that
is not periodic on interval [−π, π] is approximated via approximat-
ing periodic function g (solid black and dashed black) using only
harmonic angular frequencies Ω = N0. Frequencies with negative
coefficients are truncated which leads to poor approximation (red
curve).

λ ∈ [−M,M ]. Then approximating periodic g, as in the
previous section, using harmonic frequencies Ω0 (7) only,
approximates k on [−M,M ].

This approach has two drawbacks: First, even though k
has a non-negative spectrum due to Bochner’s theorem, this
does not hold for g. All frequencies with negative weights
have to be left out [18]. As a consequence, the approxima-
tion of the signature function k cannot be arbitrarily precise,
even for very high dimensional feature maps. Second, ap-
proximating g instead of k is not optimal with respect to the
dimensionality of the feature map. To demonstrate these
claims, consider the toy example in Figure 1. The kernel
signature k(λ) = cos(0.6λ) approximated on [−π, π] is not
periodic with the period of 2π. The approximation of peri-
odic g by harmonic frequencies ω ∈ N0 with non-negative
coefficients is not satisfactory. The exact feature map, orig-
inating from k̂ = cos(0.6λ), is two-dimensional, but the
optimal frequency ω∗ = 0.6 /∈ Ω = N0

2.
A simple generalization of the above approach increases

the number of possible frequencies with increasing j ∈ N

Ωj =
{
i
π

2jM

∣∣∣ i ∈ N0

}
. (8)

Since Ωj ⊂ Ωj+1, approximation with frequencies Ωj+1

will not be worse than with Ωj . With j approaching infinity,
the set Ωj will contain frequencies arbitrarily close to any
real-valued frequency. However, sets Ωj with large j are
impractical in real problems. Sets Ωj of practical use lead
to better approximations than Ω0, but still can only reach a
discrete subset of possible frequencies.

Using the set of frequencies in (8) can be interpreted
as approximating a periodic function g(λ) with period of

2The problem can be alleviated by approximating the signature k =
cos(0.6λ) on interval [−5π, 5π]. This toy example was selected as an
extreme case to demonstrate the drawbacks of the standard approach.
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Figure 2. Approximating kernel signature k = cos(0.6λ) (solid
black curve) on [−π, π] via approximation of periodic function g
(solid black and dashed black) with period 4π using harmonic fre-
quencies F = {i/2 | i ∈ N0}. There are no constraints imposed
on g on (π, 3π). Approximation by 4D feature map drawn in red.

2j+1M , where g(λ) = k(λ) for λ ∈ [−M,M ], and no con-
straints imposed on g(λ) in interval λ ∈ (M, 2jM). The
situation is depicted in Figure 2 for j = 1.

4.2. Continuous frequencies

In the framework of discrete optimization used in this
paper, the pool of frequencies Ω is required to be finite and,
for practical reasons, not extremely large. To access any real
frequency while preserving finite Ω, we will slightly modify
the form of the approximation of the kernel signature k̂ to

k̂(λ) =
∑
ω∈Ω

αω cos((ω + dω)λ), (9)

where
|dω| ≤ dmax (10)

is a small difference in the frequency. The differences dω
are estimated jointly with the weights αω by the linear pro-
gram. That is, instead of using exactly frequency ω in the
approximation, any frequency within interval [ω−dmax, ω+
dmax] can be used. The first order Taylor expansion of the
cosine function in the frequency variable ω (not in λ) reads

cos((ω + dω)λ) ≈ cos(ωλ)− dωλ sin(ωλ). (11)

Such an approximation is good only in a small neighbour-
hood of ω, which is controlled by the size dmax of the“trust
region” (10). By substituting (11) into (9), we obtain

k̂(λ) =
∑
ω∈Ω

αω cos(ωλ)−
∑
ω∈Ω

dωαωλ sin(ωλ). (12)

By introducing an auxiliary variable βω = dωαω , equation
(10) transforms to

|βω| ≤ αωdmax. (13)

Both (12) and (13) in variables (αω , βω) are in a form that
can be written as a linear program. Compared to the origi-
nal formulation, |Ω| variables βω , and 2|Ω| constraints (13)
were introduced in the linear program.

Implementation details. In our experiments, we first ap-
ply an approximation with a discrete set Ω of frequencies
equally spaced in [0, ωmax], with spacing at most dmax =
0.1, as described in section 2.1. Then, an iterative process is
executed. Each iteration is composed of execution of the LP
approximation using the first order Taylor expansion formu-
lation (9) followed by a frequency update

dω = βω/αω ... compute d’s
ω ← ω + dω ... update frequencies

dmax ← dmax/2 ... reduce the max step.
The iteration is used to eliminate the approximation error in-
troduced by the Taylor expansion. In each step, the allowed
difference in frequency dmax is halved, which guarantees
the convergence.

5. Homogeneous kernels
A homogeneous kernel is a positive definite kernel K :

R+
0 × R+

0 → R+
0 satisfying

Kh(cx, cy) = cKh(x, y) ∀x, y, c ≥ 0.

Following [18], by setting c =
√
xy, any homogeneous ker-

nel can be decomposed as

Kh(x, y) =
√
xy ·Kh

(√
x/y,

√
y/x

)
=

=
√
xy · kh(log y − log x), (14)

where kh(λ) is a signature of Kh

kh(λ) = Kh(e−λ/2, eλ/2).

The signature of the homogeneous kernel (14) resembles
the signature of the shift-invariant kernel after transforming
the input domain into log-space. The homogeneous kernel
can be approximated [18] via approximating the signature
kh(λ) by k̂(λ) in a similar manner as in (2). The resulting
feature map is then

Ψ̂ω(x) =

( √
αωx · cos(ω log x)√
αωx · sin(ω log x)

)
.

While for shift-invariant kernels optimizing the signa-
ture approximation was equivalent to optimizing the kernel
approximation, we show that for homogeneous kernels the
situation is different. We will demonstrate it on the L∞ er-
ror measure, as it is independent of the data distribution.
Derivation for other error measures is straightforward.

We first derive minimization mink̂ εA of the absolute
L∞ error

εA = max
x,y∈(0,b]

|Kh(x, y)− K̂h(x, y)| = (15)

= max
x,y∈(0,b]

√
xy ·

∣∣∣kh (log
y

x

)
− k̂

(
log

y

x

)∣∣∣ .
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Figure 3. Comparison of kernel signature approximations of a symmetric 2D RBG kernel by projections, modulation, FastFood [7], and
modulation of harmonic frequencies . Only one quadrant of the kernel signature is shown.

Let λ = log y − log x ≥ 0 (which is equivalent to y ≥ x)
without a loss of generality, as kh is symmetric. The error
εA can be written as

εA = max
y∈(0,b],λ≥0

ye−λ/2|kh(λ)− k̂(λ)|

= b ·max
λ≥0

e−λ/2|kh(λ)− k̂(λ)|.

This is achieved by optimizing the approximation of signa-
ture kh with weighted C∞ error function (5) with weight

wA(λ) = e−λ/2. (16)

Similarly, we derive the minimization mink̂ εR of the rel-
ative L∞ error

εR = max
x,y∈(0,b]

|Kh(x, y)− K̂h(x, y)|
Kh(x, y)

= (17)

= max
λ

1

kh(λ)
|kh(λ)− k̂(λ)|.

Optimizing for L∞ of the kernel relative error (17) is equiv-
alent to optimizing weighted C∞ error of the kernel signa-
ture approximation with weight

wR(λ) =
1

kh(λ)
. (18)

While wA is decreasing, that is, the fit should be tighter
for small λ, wR is increasing and a better fit should be at the
tail of the kernel signature.

To apply the proposed approximation method, we need
to select the size of the interval [−M,M ] where the kernel
signature should be approximated. The optimal choice is
M = log(b/m), where b is the largest expected input value
and m is the smallest non-zero input value. For instance,
for histograms with 8bit entries, such as SIFT [10], M =
log(255/1).

6. Kernels in more dimensions
Measurements in many applications take the form of

high dimensional vectors x,y ∈ Xn, where X is R or R+
0

depending on the type of the input data. We will use xi to
denote i-th component of vector x. So far only one dimen-
sional kernels have been considered. These kernels can be

k̂
(λ

)
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Figure 4. Approximation of one-dimensional RBF kernel: (a)
the shape of the approximate kernel signature for 11D fea-
ture map via orthogonal projection onto angular harmonics and
Ψ̂RF(0)>Ψ̂RF(λ) for random feature maps [13], (b) approxima-
tion error for 17 dimensional feature map via orthogonal projec-
tion, the proposed 11 dimensional feature map for the discrete and
continuous methods respectively.

extended to higher dimensional input by either additive or
multiplicative combination.

Additive kernels are defined as

K(x,y) =

n∑
i=1

K(xi, yi).

In computer vision, the following homogeneous additive
kernels are commonly used: χ2, intersection, Hellinger, and
Jensen-Shannon kernels [18]. The feature map for the ad-
ditive kernel is a concatenation of feature maps for each
dimension. The additive construction of the feature map
increases the dimensionality D of the feature map linearly
with the input dimension n, which is acceptable and we will
not study the multi-dimensional additive feature maps fur-
ther.

Multiplicative kernels, such as multi-dimensional RBF
with diagonal Σ, can be written as

K(x,y) =

n∏
i=1

K(xi, yi).

The feature map is a tensor (Kronecker) product of the fea-
ture maps for each input dimension Ψ̂(x) =

⊗
Ψ̂(xi).

The construction of the multiplicative kernel, often called
modulation, is increasing the dimensionality of the final
feature map Ψ̂(x) exponentially with the number of input
dimensions. Therefore, multiplicative kernels constructed



by modulation are suitable for only low-dimensional input
data. We will discuss multiplicative kernels in detail in sec-
tion 6.2.

The proposed method of discrete optimization is not suit-
able for approximation of kernels with high-dimensional in-
put data. In practice, direct application is tractable for ker-
nels with up to 3 dimensions. Nevertheless, even with this
limitation, there are practical applications that would benefit
from our approach. Consider problems where low dimen-
sional geometric data, such as the position of a point in a
patch and the orientation of the gradient at that point, are to
be encoded, e.g., in interest point descriptors such as in [1]
or [3]. Two different approaches using different forms of
functions k̂ approximating the kernel signature will be con-
sidered. The optimization formulation is essentially identi-
cal to the one-dimensional case, including the extension ex-
ploiting entire continuous spectrum from section 4.2. The
difference is in the construction of the frequency pool Ω
and the discrete evaluation domain Z. The size of these
sets is the bottle neck of the discrete optimization approach,
as both sets grow fast with the increasing dimensionality n
of the input data. Two different forms of functions k̂ ap-
proximating the kernel signature will be considered. The
approaches are compared in section 7.3.

6.1. Approximation by projections

A general method directly approximating the n-
dimensional kernel signature uses form of the approxima-
tion k̂P similar to [13]

k̂P (λ) =
∑
ω∈Ω

αω cos(ω>λ), (19)

where λ = x − y ∈ Rn, Ω ⊂ Rn. Geometrically, k̂P can
be seen as projecting λ onto ω and then encoding the pro-
jection by a cosine with frequency ‖ω‖. Since (19) is only
symmetric on each line passing through the origin, that is
k̂P (λ) = k̂P (−λ), the evaluation set has to be constructed
as Z ⊂

∏n−1
i=1 [−Mi,Mi]× [0,Mn]. The finite pool of fre-

quencies is Ω ⊂ Rn. The projection method is capable of
approximating multi-dimensional kernels, even those that
are not multiplicative.

6.2. Approximation by modulation

For multiplicative kernels, the following form of k̂M is
useful

k̂M (λ) =
∑
ω∈Ω

αω

n∏
i

cos(ωiλi). (20)

Since (20) is symmetric along all axes, that is
k̂M ((λ1, . . . , λn)>) = k̂M ((±λ1, . . . ,±λn)>), it is
sufficient to optimize only in Z ⊂

∏n
i=1[0,Mi]. Let Ψ̂i be

a feature map optimized separately over the i-th dimension

from frequencies Ωi and corresponding weights αωi , and
let

Ω⊗ = {ω = (ω1, , . . . , ωn) | ωi ∈ Ωi}, (21)

αω =

n∏
i=1

αωi , Dω =

n∏
i=1

Dωi for ω=(ω1, . . . , ωn).

The feature map constructed from frequencies Ω⊗ and
weights αω is equivalent to Ψ̂(x) =

⊗
Ψ̂(xi).

The dimensionality of feature map Ψ̂ can be reduced by
dropping frequencies ω with small coefficient αω . Even
though frequencies with small αωi may be still impor-
tant for approximation in dimension i, the product of such
weights can exponentially lower the impact. We refer to this
greedy method as ’

⊗
no LP’ in the experiments. Better ap-

proximation results are achieved by executing the proposed
LP optimization. Using the frequency pool Ω⊗ (21) signif-
icantly increases the speed of the algorithm.

Note that frequencies from the modulation approach can
be transformed into frequencies of the projection approach
using identity cos(x) cos(y) = cos(x+y)/2+cos(x−y)/2.
However, while the left-hand side of the equation represents
one entry in the frequency pool Ω for modulation, it gener-
ates two entries for the projection case. Overall, the pro-
jection approach is more general at the cost of larger LP
problem (larger in both, the size of Ω and in the size of the
evaluation set Z, as discussed in section 6.1). Visual dif-
ference in the approximation is shown in Figure 3 (three
leftmost plots).

7. Experimental comparison
In this section, we evaluate the quality of the proposed

feature map construction for an RBF kernel as a represen-
tative of aperiodic functions, homogeneous kernels repre-
sented by χ2 kernel, and two dimensional RBF kernel.

7.1. RBF kernel

A number of different feature maps approximating a
one-dimensional RBF kernel with σ = 0.2 on interval
x, y ∈ [0, π] were compared. Figure 4(a) shows two
examples of rather poor approximations of the underly-
ing kernel signature: an orthogonal projection onto a co-
sine basis with angular frequencies Ω = {0, . . . , 5} re-
sulting in 11D feature map, and random explicit feature
map of 64 dimensions [8]. Since random explicit feature
maps are only approximately shift-invariant, the plot shows
Ψ̂RF(0)>Ψ̂RF(λ). Figure 4(b) shows the values of the abso-
lute error k(λ)−k̂(λ) for three comparable feature maps: an
orthogonal projection onto a cosine basis with angular fre-
quencies Ω = {0, . . . , 8} resulting in 17D feature map (la-
belled 17D harmonic), the 11D feature map by the proposed
discrete method (section 4.1), and the 11D feature map by
the proposed continuous method (section 4.2). All three ap-
proximations would be indistinguishable from the exact k
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Figure 5. Comparison of the absolute error of the χ2 approxi-
mation. Left column is the proposed method optimizing (15),
right column shows results for Vedaldi [18], VLFeat implemen-
taion [17]. The first two rows compare the proposed 5D map-
ping to 7D mapping of VLFeat on x, y ∈ {0, . . . , 127} and
x, y ∈ {0, . . . , 255} respectively. The third row shows the er-
ror of the 7D proposed mapping and 5D mapping of VLFeat for
comparison.

on Figure 4(a). It can be seen, that the proposed continu-
ous method is superior to the orthogonal projection, despite
the fact that it uses only 11 dimensions compared to 17 of
the orthogonal projection. The continuous method reduces
the optimized C∞ error function over the discrete method
to approximately one half in this case (from 6.7 · 10−3 to
3.3 · 10−3).

7.2. Homogeneous kernels

We thoroughly evaluate the proposed method on a χ2

kernel approximation χ2(x, y) = 2xy/(x + y). We com-
pared approximation by the proposed method with the state-
of-the-art method of [18] available in VLFeat [17]. Our ap-
proach allows the error function on the kernel to be opti-
mized, while the competing method approximates the ker-

χ2 intersect J-S
L∞ RMS L∞ RMS L∞ RMS

Ours 5D 0.163 0.081 10.922 5.376 0.019 0.009
VLFeat 5D 3.205 1.251 30.119 6.679 2.911 1.203
Ours 7D 0.011 0.005 8.238 4.053 9e−4 3e−4
VLFeat 7D 0.143 0.053 22.287 4.436 0.127 0.070

Table 1. Comparison of approximation precision of different ho-
mogeneous feature maps. Maximal error L∞ and root mean
square RMS error are compared on x, y ∈ {0, . . . , 255}.

nel signature. The comparison on the commonly used ho-
mogeneous kernels is summarized in Table 1.

First, we compare the absolute error of the approxima-
tion. For this experiment, the εA error (equation (15)) was
minimized for the proposed method. The approximation er-
rors are plotted in Figure 5. The first row compares our 5D
feature map to the 7D feature map of VLFeat [17] on input
data x, y ∈ {0, . . . , 127}. Note that the input values can
be arbitrarily scaled, only the smallest non-zero ratio of the
values is relevant. The kernel signature for the proposed
method was optimized on interval [−M,M ], M = log 127.
Even though the proposed method provides a lower dimen-
sional feature map and L∞ error was optimized, it outper-
forms (on this interval) the method VLFeat [17] in L∞ error
(maxx,y |χ2(x, y)− χ̂2(x, y)| : 0.048 vs. 0.071) as well as
inL2 error (

∑
x,y(χ2(x, y)−χ̂2(x, y))2 : 9.121 vs. 11.272).

The middle row of Figure 5 compares the proposed 5D
feature map (M = log 255) and the 7D feature map of
VLFeat [17] on input data x, y ∈ {0, . . . , 255}. The 7D
feature map provides a slightly better approximation than
the 5D map; however, the error range of the two feature
maps is approximately the same. Replacing a 7D feature
map by 5D feature map reduces the memory requirements
and kernel evaluation time by 28% .

For a full comparison, we have included (bottom row
of Figure 5) the proposed 7D feature map (M = log 255)
with error order of magnitude lower that the two previously
compared feature maps, and also the 5D feature map of
VLFeat [17] with an order of magnitude higher error that
the two previous feature maps. From this experiment, we
see that (1) the proposed approximation outperforms the
state-of-the-art feature maps, and (2) the feature map should
be optimized for the input domain of particular application.

In the next experiment, we study how the approximation
behaves outside the region for which it was optimized. The
approximation error for different methods is plotted in Fig-
ure 6 for values of the ratio x/y up to 1/107. It can be
observed that outside the optimal region, the error of the
kernel signature approximation |k̂(λ)−k(λ)| increases and
thus the error of the kernel

√
xy|k̂(log y/x) − k(log y/x)|

also increases. Since k(λ) decays and k̂(λ) is bounded,
|k̂(λ) − k(λ)| is also bounded. As a result, for sufficiently
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Figure 6. Comparison of different χ2 approximations: (a) the absolute error for large ratios of the input values; (b) a close up with three
dotted vertical lines at 1/512, 1/256 and 1/128 respectively; (c) relative error of the approximation. The error range colour mapping is
fixed for first and for second row. Logarithm of the number in brackets states the size M of the interval on which the kernel signatures
were approximated.

large |λ| the error of the kernel is dominated by
√
xy and ap-

proaches zero. In Figure 6, the green curve corresponds to a
kernel signature that has been optimized for a large enough
interval so that the upper bound on the error is less than the
optimized L∞ inside the interval, thus having optimal error
bound everywhere. This is only possible for error measures,
such as εA (15) with decreasing weight w(λ) (16).

The last experiment with χ2 kernel considers the relative
error εR of the kernel fit (17). Three feature maps are com-
pared: proposed 5D and 7D constructed to minimize the
relative error, and 7D by VLFeat [17]. Plot in Figure 6 (c)
show that the proposed method significantly outperforms its
competitor.

7.3. Symmetric RBF kernel in 2D

Four methods approximating the symmetric 2D RBF
kernel with σ = 0.2 with kernel input variables x,y ∈
[0, π]2 were compared: two using the projection method de-
scribed in section 6.1, and two using the modulation method
(section 6.2). For the projection method, two different ini-
tialization of the frequency pool Ω were used: a general
initialization by discretization of angle and frequency ‖ω‖
of ω, referred to as ’Proj’; and by frequencies equivalent to
Ω⊗ (21), obtained as a Cartesian product Ω⊗ = Ω1D×Ω1D,
where Ω1D correspond the the 11D feature map form sec-
tion 7.1 (referred to as ’Proj

⊗
’). For both methods, full

LP optimization on 2D input, including the continuous ex-
tension was executed.

Both modulation methods (section 6.2) were initialized
by Ω⊗. One method (’

⊗
’) exploits the full LP optimiza-

tion on 2D input, including the continuous extension. For
the last method (’

⊗
no LP’) the feature map is selected

greedily based on the estimate αω = αω1αω2 . The quanti-
tative result are summarized in Table 2, and the qualitative
results of approximations by 31 dimensional feature maps
is shown in Figure 3 leftmost column.

The fastest approach ’
⊗

no LP’ is the least precise. The

D(k̂) Proj Proj
⊗ ⊗ ⊗

no LP
31 0.1199 0.0984 0.1061 0.2370
73 0.0292 0.0148 0.0137 0.0439
101 0.0092 0.0038 0.0038 0.0122

Table 2. Comparison of the L∞ error of 2D RBF kernel approxi-
mation.

most general approach ’Proj’ is the slowest and performs
slightly worse than the two approaches initialized by results
of 1D optimization.

We made the following observations for the modulation
methods: (1) the linear program selects different compo-
nents than the greedy approach, (2) after the continuous ex-
tension, the frequencies in Ω are no longer on a grid, origi-
nally defined by the Cartesian product Ω1 × Ω2.

Finally, the comparison with other methods show in Fig-
ure 3 demonstrates that any of the proposed methods is su-
perior to existing methods.

8. Conclusions

A novel method of data independent construction of low
dimensional feature maps was proposed. The problem is
cast as a linear program that jointly considers competing
objectives: quality of the approximation and the dimension-
ality of the feature map. The proposed discrete optimization
exploits the entire continuous spectrum of frequencies and
achieves considerably better approximations with feature
maps of the same dimensionality or equally good approx-
imations with lower dimensional feature maps compared
with the state-of-the-art methods. It was also demonstrated
that the proposed method allows for optimization of mean-
ingful errors measured on the homogeneous kernel output,
rather than solely approximating the kernel signature.

Any application that uses explicit features maps would
benefit from the results of this paper. The code is available
[4].
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