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Abstract—We address the problem of text localization and
retrieval in real world images. We are first to study the retrieval
of text images, i.e. the selection of images containing text in large
collections at high speed. We propose a novel representation,
textual visual words, which describe text by generic visual words
that geometrically consistently predict bottom and top lines of
text. The visual words are discretized SIFT descriptors of Hessian
features. The features may correspond to various structures
present in the text - character fragments, individual characters or
their arrangements. The textual words representation is invariant
to affine transformation of the image and local linear change
of intensity. Experiments demonstrate that the proposed method
outperforms the state-of-the-art on the MS dataset. The proposed
method detects blurry, small font, low contrast, noisy text from
real world images.

I. INTRODUCTION

Automatically reading text in natural scene images is an
open research problem. Detecting (and recognizing) text has
many applications: image retrieval, annotation for text-based
image search, mobile vision aids, navigation, etc. Reading text
from images is commonly broken into main steps. The first –
text localization – involves identifying the location of the text
in the image, and the second deals with recognizing the words
or characters. In this paper we focus on the first step. Despite
the effort in the text localization, it remains a challenging
open research problem primarily because the images taken
in unconstrained setting have large font variations, blurry and
low resolution text, noise, small or almost non-readable fonts,
occlusion, different orientation, etc.

Current approaches to text localization can be broadly
divided into two categories: sliding window methods and Con-
nected Component based. The sliding window approaches [1],
[2], [3], [4] scan rectangular regions in the image at different
scales. Image regions are classified as text or non-text, based
on the features computed from the window. Since rectangular
regions are used as processing units, these approaches are
robust to pixel level distortions. However, handling geometric
transformations like rotation and aspect change is computa-
tionally expensive. The state-of-the-art method based on this
approach reported processing time of 15 seconds for an 800
× 1200 image [4].

The connected component based approaches [5], [6], [7],
[8] identify the character candidates by filtering out the large
background region of image based on certain heuristic prop-
erty computed at pixel level. Different heuristics have been
designed for the character candidate filtering such as Stoke
Width Transform (SWT) [5], Color Consistency, Maximal
Stable regions [7], [8]. The main advantage of these methods is

Fig. 1: An example of features whose visual words were
learned to predict the position of a text line (from top to
bottom): top of the text line, both top and bottom, and bottom.

that the computational complexity is reduced to O(N) because
of the filtering step. Its limitations are: (1) heuristics are
engineered by assuming certain text property which do not
cover the large variations in natural images. For example, color
consistency based approaches fail on multi-colored characters
and SWT, which assumes constant stoke width fails for non-
uniform fonts. (2) Heuristic operations (such as SWT, MSER)
are pixels based and hence sensitive to noise, occlusion, etc.
These generally involves certain manually tuned parameters
which do not work across different dataset. (3) Blurred or
low resolution text is difficult to detect because the candidates
character regions cannot be identified separately.

We seek to learn the characteristic image patches which
appear as parts of text. To learn the patches, an image
is represented using Bag-of-Words (BoW) model [9] with
Hessian affine region detectors and SIFT descriptor [10]. The
Hessian and SIFT features are robust to illumination, blur,
affine transformation and scale variations. The number of
interest regions detected is higher for Hessian than for the
Harris affine and MSER [11], the probability of missing a
textual region in first stage is lower.

In the training stage, visual words which correspond to a
textual region (textual visual words) are learned. Fig. 1 shows
examples of the learned textual regions. In the test images, first
the textual regions are identified and based on the geometry of
the textual region we estimate the top and bottom line position
for textual region. Then, a voting algorithm is proposed to
estimate the text lines by aggregating the feature geometry.
The proposed approach can be seen as a hybrid of the Region
and Connected component based approach. We identify the
textual regions (elliptical and not rectangular) and then filter
out background region as done in the connected component
approach.
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Fig. 2: Detection stage flowchart: Affine covariant features are detected in an image, features described by visual words predicting
text lines are selected, text lines are robustly estimated, and text boxes are finally classified based on all content.

The main advantages of the proposed approach are: (1)
generality: the proposed method does not assume any specific
property of the text, like color or text width, rather it learn
the appearance of textual regions from the training images.
No parameter tuning is required across different datasets. (2)
Robustness to blur, low contrast and noise. (3) Speed: the
proposed approach does not use the sliding window to identify
the textual regions in the image. The complexity of finding
the textual region is O(N). (4) Retrieval application: The BoW
representation used in the proposed approach is the state-of-
the-art method for the image retrieval system. Therefore, the
proposed approach can be seemlessly integrated into a system
for retrieval of the text images [12]. (5) Extendable: since
the approach is data-driven it can be easily extended to other
languages as long as the training data is available for it.

The rest of the paper is organized as follows. In section
II, we describe the proposed method for text detection. The
experimental setup and the results are discussed in section III.
Finally, the paper is concluded in section IV.

II. THE PROPOSED APPROACH

The main steps of the proposed approach are: (1) extraction
of candidate textual regions using Hessian-SIFT features and
Textual visual words. (2) Transformation of the textual features
into Textlines Point Estimates (TPE). The TPE estimates the
relative position of the top and bottom lines w.r.t. feature
center. (3) Estimation of the Top and Bottom lines by grouping
the TPEs using a RANSAC-based voting algorithm [13]. (4)
Verification tests to discard non-text bounding boxes. The
structure of the proposed pipelines is presented in Fig. 2. In
the training stage we learn the textual visual words which are
used in Step (1) and (2) of the proposed pipeline.

A. The Training Stage

For the BoW representation of the training images, first,
the Hessian affine-invariant regions are detected and SIFT
descriptor are extracted. A feature corresponding to an ellip-
tical region in the image is described by three parameters:
scale (s), position (r) and visual word (v). The scale of
the feature is defined as the square root of the ellipse area.
It is normalized with respect to the bounding box height to
make the formulation invariant to the font size. The position
parameters is defined as r = fy/BH , where fy is the distance
of the feature center from the bottom line of the bounding box
and BH is the height of the bounding box. The visual word

is assigned by mapping the features descriptor to the nearest
entry in the visual vocabulary.

Given the dictionary of the visual words V and the features
extracted from the training image, we select a subset of
the visual words T ⊂ V which encodes the textual region
in the images and for each textual visual word determine
the characteristic scale and position. The characteristic scale
defines the size of the text height relative to the size of the
features, while the position determines the vertical location of
text lines with respect to the feature center. These parameters
are used to specify the TPE in the text stage.

A visual word is labeled as textual if it has a high likelihood
to be in a text region. The likelihood of the visual word, vi ∈
V , to be textual is defined as pi = ti/ni, where ni is the count
of vi in the training data and ti is the count of vi in a bounding
box. The visual words corresponding to the N largest values
of pi are selected as the textual. We chose a large value for
N (N = 60000), so the visual words which correspond to
blurred, low resolution and challenging text are retained.

Based on the position between the text lines, the textual
visual words are further categorized as: Top, Bottom and
Middle. The idea behind the categorization is illustrated in
Fig. 3, where the features close to the top and bottom lines
are shown in green and black, the rest are marked blue. It can
be observed that the features whose centers are close to top or
bottom lines encode upper or lower end of the text respectively.
The position of these features is found to be consistent only
with respect to one line, therefore, these are used to estimate
the location of that particular line. The features in ithe middle
of the text line (denoted in blue) are consistent with both top
and bottom line and provide a correct estimate for both the
lines. The TPE corresponding to the three kind of features
are shown in Fig. 3 where it can be observed that the Upper
(green) and Lower (black) visual words provide a very precise
estimate of the top and bottom location of the text, while the
Middle (red and blue) visual words provide a good estimate
for both the top and the bottom line.

To find a robust estimate of the characteristic scale and
position, the features corresponding to each visual word are
clustered together. The features are parameterized using: (1)
length of major axis ax, (2) length of minor axis ay , (3) vertical
position of top line w.r.t feature center lt = r/s, (4) vertical
position of bottom line w.r.t feature center lb = (r−1)/s. The
first two parameters correspond to the size of the features in X
and Y direction, while the next two denote the vertical position
of the feature center between text lines. All the parameters are



Fig. 3: Three types of visual words are learned (left): predicting
only top of the text line (green), predicting only bottom of the
text line (black) and predicting both top and bottom (blue).
Feature classification based on location. Each feature provides
an estimate of the position of the text line (right). Estimates
from features estimating only top (green) or bottom (black)
are typically reliable.

normalized by bounding box height to make the formulation
invariant to font size. The motivation behind the choice of the
parameters is that the features used for estimation of scale
and position must be similar in their shape and invariable in
their location between text line. However, the invariance of
the location can be described with respect to top or bottom or
both lines. In order to find weather the features are consistent
along the top, bottom or both lines, clustering is performed
using three different sets of parameters:

-CM ← Clustering(ax,ay, lt, lb): To group the features
whose position is consistent with respect to, both, top and
bottom lines (lt, lb). The size of the largest cluster is denoted
as SM .

-CT ← Clustering(ax,ay, lt, r): To group the features
whose position is consistent only with respect to top line (lt).
The size of the largest cluster is denoted as ST .

-CB ← Clustering(ax,ay, lb, r): To group the features
whose position is consistent only with respect to bottom line
(lb). The size of the largest cluster is denoted as SB .

The vectors ax,ay, lb, lt, r represent the parameters values
for the feature corresponding to a textual visual word. Mean-
Shift is used for clustering the features as it gives the locations
of the maxima of the feature density. The centroid of the largest
feature cluster is used for estimating the values of the scale and
position for the visual word. Given the lt and lb values, finding
the characteristic scale and position is trivial. Three clustering
scenarios CM , CT , CB represent the characteristic scale and
position estimated under different consistency definition. The
large cluster reflects better consistency of the features and is
considered for classification. The visual word is classified as
top, bottom or middle based on the position r estimated from
cluster consistent with both lines. It is categorized as bottom if
r < 0.1 and CB > 2 ·CM , as top if r > 0.9 and CB > 2 ·CM ,
and middle otherwise.

B. Generating training data:

Training data play a crucial role in the performance of
the text detector as we do not assume any specific property
of the text. The training data must be large to capture the
real world variations in text. Currently available text training
datasets (ICDAR, SWT, etc) do not fulfill these requirements,
as these are too small (of the order of few hundreds) and do
not capture the real world variations of the text. In order to
overcome these limitation we generate the training data using

real world images. We use the Oxford 100k image data [14]
and find the text bounding boxes using the TextSpotter text
localization system [15]. The Oxford 100K dataset consists
of images collected from Flicker in uncontrolled environment,
thus, it contain the challenging text examples. TextSpotter is
a publicly available text detection system which has achieved
state-of-the-art on real world images.

C. Testing Stage

1) Textual Regions Detection: A test image is described by
the BoW. The regions which correspond to the textual visual
words are identified as textual regions. The scale for the textual
regions is computed. This can be interpreted as a filtering step
where the candidate text regions are identified and retained
and the background is discarded.

2) Computation of Textline Point Estimates (TPE): The
textual regions are transformed into the Textlines Points Es-
timates. Given a textual feature in the test image at location
(x, y), TPE estimates the points (x, yt) and (x, yb) which are
likely to pass through the top and the bottom line respectively.
If the textual region correspond to the textual visual word
vi ∈ T with characteristic scale si and position ri, then the
TPE Y-coordinates are given as,

yt = y +
ri × S
si

, yb = y +
(ri − 1)× S

si
(1)

where S is the scale of the feature in the text image.

In the proposed TPE formulation we use the top and bottom
line coordinates for each feature because these parameters
maintain consistency in training images (as observed by the
large cluster size in training stage).

3) Textline estimation using Voting: A voting algorithm is
used for estimation of the text line from the TPEs. It is based
on NAPSAC [16] and LO-RANSAC [13] with iterative re-
sampling and some modification for our specific application.
The detailed algorithm is presented in Algo. 1. As in RANSAC
we start by selecting a minimum number of samples for
generating the model. The first sample is randomly drawn and
the second is chosen from a rectangular region center around
the first one. The model of top and bottom line is generated
from these samples. For local optimization of the model we
use the following function:

LO Joint(I): Iterative re-sampling is performed by se-
lecting the samples from inliers set I and the following cost
function is maximized

fjoint = k · (nT + nB) + nM , (2)

where nT , nB and nM are number of inliers which belong to
the Top, Bottom and Middle textual visual words. The inliers
are the samples which are consistent with both the lines. The
joint optimization enforces the line to be close to parallel
and provides robustness to the model as all the samples are
considered in the cost function.

Finally the model is selected if its overlap with selected
models is less than a threshold or the joint cost function (Eq
2) is more than those.



Algorithm 1 Textline estimation.

1: for j = 1 to J do
2: Randomly draw two TPE
3: [L]← Estimate line pair joining the TPE
4: I1 ← find inliers(L, θ)
5: [LLSq]← Least square line estimate using I1
6: I2 ← find inliers(LLSq, 0.5 · θ)
7: Lj = LO Joint(I2)
8: Check overlap and cost function.
9: end for

TABLE I: Performance comparison on the MS dataset.

Method Precision Recall f −measure

SWT 42 54 47
TextSpotter 50 21 30
Phan et. al. method [17] 51 50 51
Yin et. al. method [8] 41 66 51
Proposed 46 60 52

4) Determining the Bounding Box Width: The text is as-
sumed to be aligned in a near horizontal direction. The width
of the text box is determined by grouping the TPEs consistent
with the selected model. First, we find the connected group of
the TPEs along the X direction. A connected group is a cluster
in which the distance between each TPE and its neighbor is
always less than a threshold φ = w1 + w2 · h, where h is
the average height of the randomly drawn TPE. It gives a
higher threshold to the large TPE because for larger fonts it is
more difficult to have robust estimates of both the lines. The
constant term for the threshold is fixed relative to the image
height w1 = ImageHeight/30 and the TPE dependent term
w2 is set to 0.3. To deal with the occlusion and word gaps in
text line, we join the adjacent connected groups if they have
similar density and a minimum number of TPE in it.

5) Discarding the Non-Text Bounding Boxes: To filter out
false components we apply a fairly flexible set of rules on the
models generated by above mentioned algorithm. The textual
regions have high density of textual visual words, therefore for
each text box we compute the ratio of the number of textual
visual words to the total number of textual visual words in it. A
box is discarded if the ratio is less than a particular threshold.
It helps in identifying the false positives in highly textured
regions such as grass, or tree leaves. Repetitive structures such
as windows, bricks, railing result in a number of false bounding
boxes. The regions corresponding to these structure have high
frequency of certain visual words. We find the proportion of
the unique textual visual words for each bounding box and
reject those with low proportion. Each text lines pair should
have a minimum number of inliers to support it, we reject all
the models which have less than 5 TPE consistent with it. The
slope of the top and the bottom lines are also compared and
model is rejected if the difference between the slopes is more
than 45o.

III. EXPERIMENTS

The performance of the algorithm is evaluated on two
different task: (1) Text detection and (2) Text image retrieval.

Fig. 4: Text detection results on several images from MS and
ICDAR dataset.

Detection performance is evaluated on two standard widely-
use public text image datasets: MS and ICDAR 2013. The
MS dataset [5] consists of 307 images taken from Streetview.
It contains a number of repetitive pattern and low contrast
text. The ICDAR 2013 Robust Reading Competition dataset
[18] consists of 235 test images and is most widely used
dataset for evaluation of text detection. The MS dataset is
textline annotated, while the ICDAR dataset is word annotated.
The proposed approach is for textline detection. Nevertheless,
the performance is evaluated on the word annotated ICDAR
since it is most widely used dataset for text detection. For
a fair comparison with earlier work [5], [8], [17] we follow
the 2003 ICDAR protocol [19] for MS dataset and 2013
ICDAR protocol for the ICDAR dataset. Text image retrieval
experiment was performed on a 5 million Flicker images
database.

A. Implementation details

In the training stage, we used the visual vocabulary of
size 106 with the 100K Oxford dataset. The number of textual
visual word was set to 60,000. For the voting algorithm, the
number of iteration J was set to the number of textual visual
words identified in the image. The number of iteration for the
re-sampling step (LO Joint) was set to 5. The threshold value
for inliers is θ = 0.6×h, where h is the height of the randomly
selected TPE. The value of k for the cost function was 2. It
was observed that the performance does not vary for values
up to 5. Finally, the threshold for filtering out the bounding
boxes in the last stage was tuned using the training images of
the datasets.

B. Text Detection

The performance of the method on the MS dataset is
summarized in Table I. The results are compared with the SWT
[5], TextSpotter [7], MSER based method [8], and Boosting
based approach [17] and the proposed method achieves the
highest f-measure. Good results were obtained even in images
are taken in challenging scenarios, such as low contrast, blur,
noise. Examples of the detected text are shown in Fig. 5.

On ICDAR-2013 dataset the performance of the algorithm
is: recall: 58.35, precision: 68.58, f-measure 62.99. The per-
formance of the ICDAR robust reading competition winner
is: 69.28, 88.80, 77.83. There are two main reasons behind
the significant change in the performance of the proposed
method. First, the ICDAR dataset is word annotated, while
the output of the proposed algorithm are the bounding boxes
which correspond to the textline. The second reason is that the
proposed method does not work well when there are less than
two words in a text line or the words are isolated. The voting
algorithm requires a certain number of TPEs aligned in linear



Fig. 5: The algorithm detects text from blurry and low contrast
images. Examples are from the MS dataset.
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Fig. 6: Sample images with ranks retrieved using a query
composed of the top 5000 Textual Visual Words.

manner to generate textlines. Both isolated words and textlines
with less than two words are not rare in the ICDAR dataset.
Example test images from ICDAR and MS datasets are shown
in Fig. 4.

C. Text Retrieval

To test the algorithm for retrieval of images depicting text,
we use a dataset of over 5 million images downloaded from
Flickr. The dataset contain both text and non-text images.
The dataset images are represented by BoW and efficient
query evaluation is implemented through an inverted file. The
retrieval was tested by issuing a query comprising the top 5000
visual words learned to represent text (i.e. with the highest
textual prior pi). The images are ranked using the tf-idf scoring.
A uniformly sampled set from the top 50000 retrieved images
was visually analyzed and it was observed that all the images
contain text. As expected the high ranked images contain large
textual regions, see Fig. 6. The time needed to retrieve 100000
images from the indexed database is less than 1 second.

To analyze the ‘textuality’ of the retrieved image we found
the average number of textlines detected per image. The results
are shown in Fig. 7. The average number of textlines per image
decrease with the rank.

IV. CONCLUSION

A novel approach for text detection and text image retrieval
from natural images has been presented. The key contribution
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Fig. 7: The average number of text lines detected in the
retrieved images as a function of the rank of the image.

is the novel image representation, Textual Visual words, which
are based on the BoW model. We also propose a voting
based algorithm for the textline estimation from the extracted
features. Experiments demonstrate that the proposed approach
can detect text in challenging scenarios and can retrieve highly
textual images from the large images datasets at a very high
speed.
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