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Abstract. The entries of high-dimensional measurements, such as image or fea-
ture descriptors, are often correlated, which leads to a bias in similarity estima-
tion. To remove the correlation, a linear transformation, called whitening, is com-
monly used. In this work, we analyze robust estimation of the whitening transfor-
mation in the presence of outliers. Inspired by the Iteratively Re-weighted Least
Squares approach, we iterate between centering and applying a transformation
matrix, a process which is shown to converge to a solution that minimizes the
sum of `2 norms. The approach is developed for unsupervised scenarios, but fur-
ther extend to supervised cases. We demonstrate the robustness of our method to
outliers on synthetic 2D data and also show improvements compared to conven-
tional whitening on real data for image retrieval with CNN-based representation.
Finally, our robust estimation is not limited to data whitening, but can be used for
robust patch rectification, e.g. with MSER features.

1 Introduction

In many computer vision tasks, visual elements are represented by vectors in high-
dimensional spaces. This is the case for image retrieval [14, 3], object recognition [17,
23], object detection [9], action recognition [20], semantic segmentation [16] and many
more. Visual entities can be whole images or videos, or regions of images corresponding
to potential object parts. The high-dimensional vectors are used to train a classifier [19]
or to directly perform a similarity search in high-dimensional spaces [14].

Vector representations are often post-processed by mapping to a different represen-
tation space, which can be higher or lower dimensional. Such mappings or embeddings
can be either non-linear [2, 5] or linear [4, 6]. In the non-linear case, methods that di-
rectly evaluate [2] or efficiently approximate [5] non-linear kernels are known to be
perform better. Typical applications range from image classification [5] and retrieval [4]
to semantic segmentation [8]. Examples of the linear kind are used for dimensionality
reduction in which dimensions carrying the most meaningful information are kept. Di-
mensionality reduction with Principal Component Analysis (PCA) is very popular in
numerous tasks [4, 6, 15]. In the same vein as PCA is data whitening, which is the focus
of this work1.

1 The authors were supported by the MSMT LL1303 ERC-CZ grant, Arun Mukundan was sup-
ported by the SGS17/185/OHK3/3T/13 grant
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A whitening transformation is a linear transformation that performs correlation re-
moval or suppression by mapping the data to a different space such that the covariance
matrix of the data in the transformed space is identity. It is commonly learned in an
unsupervised way from a small sample of training vectors. It is shown to be quite effec-
tive in retrieval tasks with global image representations, for example, when an image
is represented by a vector constructed through the aggregation of local descriptors [13]
or by a vector of Convolutional Neural Network (CNN) activations [22, 11]. In par-
ticular, PCA whitening significantly boosts the performance of CNN compact image
vectors, i.e. 256 to 512 dimensions, due to handling of inherent co-occurrence phenom-
ena [4]. Principal components found are ordered by decreasing variance, allowing for
dimensionality reduction at the same time [12]. Dimensionality reduction may also be
performed in a discriminative, supervised fashion. This is the case in the work by Cai
et al. [6], where the covariance matrices are constructed by using information of pairs
of similar and non-similar elements. In this fashion, the injected supervision performs
better separation between matching and non-matching vectors and has better chances to
avoid outliers in the estimation. It has been shown [10] that an unsupervised approach
based on least squares minimization is likely to be affected by outliers: even a single
outlier of high magnitute can significantly deviate the solution.

In this work, we propose an unsupervised way to learn the whitening transforma-
tion such that the estimation is robust to outliers. Inspired by the Iteratively Re-weighted
Least Squares of Aftab and Hartley [1], we employ robust M-estimators. We perform
minimization of robust cost functions such as `1 or Cauchy. Our approach iteratively
alternates between two minimizations, one to perform the centering of the data and one
to perform the whitening. In each step a weighted least squares problem is solved and is
shown to minimize the sum of the `2 norms of the training vectors. We demonstrate the
effectiveness of this approach on synthetic 2D data and on real data of CNN-based rep-
resentation for image search. The method is additionally extended to handle supervised
cases, as in the work of Cai et al. [6], where we show further improvements. Finally,
our methodology is not limited to data whitening. We provide a discussion on applying
it for robust patch rectification of MSER features [18].

The rest of the paper is organized as follows: In Section 2 we briefly review con-
ventional data whitening and give our motivation, while in Section 3 we describe the
proposed iterative whitening approach. Finally, in Sections 4 and 5 we compare our
method to the conventional approach on synthetic and real data, respectively.

2 Data whitening

In this section, we first briefly review the background of data whitening and then give a
geometric interpretation, which forms our motivation for the proposed approach.

2.1 Background on whitening

A whitening transformation is a linear transformation that transforms a vector of ran-
dom variables with a known covariance matrix into a set of new variables whose covari-
ance is the identity matrix. The transformation is called “whitening” because it changes
the input vector into a white noise vector.
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Original data points Whitened data points

Fig. 1. Left: Points in 2D and their covariance shown with an ellipse. Right: The corresponding
whitened 2D point set.

We consider the case where this transformation is applied on a set of zero centered
vectors X = {x1, . . . ,xi, . . . ,xN}, with xi ∈ Rd, where Σ =

∑
i xix

>
i . The whiten-

ing transformation P is given by

P>P = Σ−1. (1)

In Figure 1 we show a toy example of 2D points and their whitened counterpart.

Assumption. In the following text, we assume that the points of X do not lie in a linear
subspace of dimensionality d′ < d. If this is the case, a solution is to first identify the
d′-dimensional subspace and perform the proposed algorithms on this subspace. The
direct consequence of the assumption is that the sample covariance matrix Σ is full
rank, in particular det (Σ) > 0.

It is clear from (1) that the whitening transformation is given up to an arbitrary
rotation R ∈ Rd×d, with R>R = I . The transformation matrix P of the whitening is
thus given by P = RΣ−

1/2. (2)

2.2 Geometric interpretation

We provide a geometric interpretation of data whitening, which also serves as our mo-
tivation for the proposed method in this work.
Observation. Assuming zero-mean points, the whitening transform P in (2) minimizes
the sum of squared `2 norms among all linear transforms T with det(T ) = det(Σ)−1/2.

Proof. C`2(P ) =
∑
i

||Pxi||2

=
∑
i

tr
(
x>i P

>Pxi
)

=
∑
i

tr
((
xix
>
i

)
P>P

)
= tr

((∑
i

xix
>
i

)
P>P

)
= tr

(
ΣP>P

)
=

d∑
j=1

λj ,

(3)
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where λi are the eigenvalues of ΣP>P and || · || is denoting `2 norm. Upon imposing
the condition det(T ) = det(Σ)−1/2, we get that det(ΣP>P ) =

∏d
j=1 λj is constant

with respect to P . It follows from the arithmetic and geometric mean inequality, that
the sum in (3) is minimized when λi = λj ,∀i = j. Equality of all eigenvalues allows
us to show that

ΣP>P = I

P>P = Σ−1

P = RΣ−
1/2

(4)

which is exactly the solution in (2) that also minimizes (3). The need for the existence
of Σ−1 justifies the stated full rank assumption.

We have just shown that learning a whitening transformation reduces to a least
squares problem.

3 Robust whitening

In this section we initially review the necessary background on the the iteratively re-
weighted least squares (IRLS) method recently proposed by Aftab and Hartley [1],
which is the starting point for our method. Then, we present the robust whitening and
centering procedures, which are posed as weighted least squares problems and per-
formed iteratively. Finally, the extension to the supervised case is described.

3.1 Background on IRLS

In the context of distance minimization the IRLS method minimizes the cost function

Ch(θ) =

N∑
i=1

h ◦ f(θ,xi), (5)

where f is a distance function that is defined on some domain, h is a function that makes
the cost less sensitive to outliers, and xi ∈ X . Some examples of robust h functions are
`1, Huber, pseudo-Huber, etc. as described in [1]. For instance, assume the case of the
geometric median of the points in X . Setting f(µ,xi) = ||µ − xi|| and h(z) = z, we
get the cost (5) as the sum of `2 norms. The minimum of this cost is attained when µ is
equal to the geometric median.

It is shown [1] that a solution for argminθ Ch(θ) may be found by solving a se-
quence of weighted least squares problems. Given some initial estimate θ0, the param-
eters θ are iteratively estimated

θt+1 = argmin
θ

N∑
i=1

w(θt,xi)f(θ,xi)
2, (6)

where for brevity w(θt,xi) is denoted wti in the following. Provided h(
√
z) is differ-

entiable at all points and concave, for certain values of wti and conditions on f this
solution minimizes Ch(θ). In some cases, it may even be possible to find a simple and
anlytic solution.
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Given that the iterative procedure indeed converges to a minimum cost of (5), we
get the following condition on the weights:

∇θ(h ◦ f(θ,xi)) = 0,

∇θ(wtif(θ,xi)2) = 0.
(7)

This results in the following weights

wti =
h′(f(θt,xi))

2f(θt,xi)
. (8)

Geometric median. The geometric median µ of a set of points {xi} is the point
that minimizes the sum of `2 distances to the points. As shown in one of the cases in
the work by Aftab and Hartley [1], the problem of finding the geometric median can be
cast in an IRLS setting for certain value of weights. Setting f(µ,xi) = ||µ − xi|| and
h(z) = z, the IRLS algorithm minimizes the sum of distances at each iteration, thus
converging to the geometric median.

3.2 Method
From the observation in section 2.2, we know that there is a closed-form solution to the
problem of finding a linear transformation P so that

∑
i ||Pxi||2 is minimized subject

to a fixed determinant det(P ). The idea of the robust whitening is to use this least
squares minimizer in a framework similar to the iterative re-weighted least squares to
minimize a robust cost.

Robust transformation estimation. In contrast to the conventional whitening and
the minimization of (3), we now propose the estimation of a whitening transform (trans-
formation matrix P ) in a way that is robust to outliers. We assume zero mean points and
seek the whitening transformation that minimizes the robust cost function of (5). We set
f(P,xi) = ||Pxi|| and use the `1 cost function h(z) = z. Other robust cost functions
can be used, too2.

We seek to minimize the sum of `2 norms in the whitened space

C`1(P ) =

N∑
i=1

f(P,xi) =

N∑
i=1

||Pxi||. (9)

The corresponding iteratively re-weighted least squares solution is given by

P t+1 = argmin
P

N∑
i=1

wti ||Pyti ||2, (10)

where yti = P tyt−1i and y0
i = xi. This means that each time transformation P t is

estimated and applied to whiten the data points. In the following iteration, the estima-
tion is performed on data points in the whitened space. The effective transformation at
iteration t with respect to the initial points xi is given by

P̂ t =

t∏
i=1

P i. (11)

2 We also use Cauchy cost in our experiments. It is defined as h(z) = b2log(1 + z2/b2).
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Along the lines of proof (3) we find a closed form solution that minimizes (9) as∑
i

wti ||Pyti ||2

= tr

((∑
i

wtiy
t
iy
t
i
>
)
P>P

)
= tr

(
Σ̃P>P

)
(12)

where Σ̃ =
∑
i w

t
iy
t
iy
t
i
> is a weighted covariance. Therefore, P is given, up to a

rotation, as
P = RΣ̃−

1/2. (13)

Joint centering and transformation matrix estimation. In this section we de-
scribe the proposed approach for data whitening. We propose to jointly estimate a robust
mean µ and a robust transformation matrix P by alternating between the two previously
described procedures: estimating the geometric median and estimating the robust trans-
formation. In other words, in each iteration, we first find µ keeping P fixed and then
find P keeping µ fixed. In this way the assumption for centered points when finding P
is satisfied. Given that each iteration of the method outlined above reduces the cost, and
that the cost must be non-negative, we are assured convergence to a local minimum.

We propose to minimize cost

C`1(P,µ) =

N∑
i=1

||P (xi − µ)||. (14)

In order to reformulate this as an IRLS problem, we use h(z) = z, and f(P,µ,xi) =
||P (xi−µ)||. Now, at iteration t the minimization is performed on points yti = P̂ t(xi−
µ̂t) and the conditions for convergence with respect to µ (skipping t and notation for
effective parameters for brevity) are

∇µ(h ◦ f) = ∇µ||P (xi − µ)||

= ∇µ

√
(yi − µ)>P>P (yi − µ)

=
1

2||P (yi − µ)||
· ∇µM

∇µ(wi · f2) = wi · ∇µM

(15)

where we have M = (yi−µ)>P>P (yi−µ). This gives the expression for the weight

wti =
1

2||P̂ t(xi − µ̂t)||
. (16)
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Algorithm 1 Robust Whitening
1: procedure ROBUST WHITENING(X )

2: z0 ← X
3: µ0 ← Initialize centre to mean of z0
4: P0 ← Initialize transform to identity matrix

5: for t≤niter do
6: µt ← 1

N

∑N
i=1 wi(P

t−1,µt−1)zt−1
i

7: Σ̃t ←
N∑
i=1

wi(P
t−1,µt)(zt−1

i − µt)(zt−1
i − µt)>

8: P t ← chol(Σ̃t)

det(chol(Σ̃t))
1/d

9: zt ← P t
(
zt−1 − µt

)
10: µ̂t ←

∑t
i=1

(∏i−1
j=1 P

j−1
)
µi

11: P̂ t ←
∏t
i=0 P

i

12: end for
13: return µ̂t, P̂ t

14: end procedure

A similar derivation gives us the weights for the iteration step of P . Therefore in each
iteration, we find the solutions to the following weighted least squares problems,

µt+1 = argmin
µ

N∑
i=1

wi(P
t,µt)||P t(yi − µ)||2, (17)

P t+1 = argmin
P

N∑
i=1

wi(P
t,µt+1)||P (yti − µt+1)||2. (18)

The effective centering and transformation matrix at iteration t are given by

µ̂t =

t∑
i=1

i−1∏
j=1

P−1j

µi , P̂ t =

t∏
i=1

P i. (19)

The whole procedure is summarized in Algorithm 1, where chol is used to denote the
Cholesky decomposition.

3.3 Extension with supervision

We firstly review the work of Cai et al. [6] who perform supervised descriptor whiten-
ing and then present our extension for robust supervised whitening.

Background on linear discriminant projections [6]. The linear discriminant pro-
jections (LDP) are learned via supervision of pairs of similar and dissimilar descriptors.
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Algorithm 2 Supervised Robust Whitening
1: procedure SUPERVISED ROBUST WHITENING(X ,S)

2: XS = {d : d = xi − xj , xi ∈ X , xj ∈ X , (i, j) ∈ S}
3: XS = {XS ∪ −XS}
4: µ1, P1 ← Robust Whitening(XS)

5: µ← Geometric Median(X )

6: X̄ ← X − µ

7: µ2, P2 ← Robust Whitening(P1X̄ )

8: R2 ← eig((P>2 P2)−1)

9: µ̂← µ + µ2

10: P̂ ← P1R2

11: return P̂ , µ̂
12: end procedure

A pair (i, j) is similar if (i, j) ∈ S while dissimilar if (i, j) ∈ D. The projections are
learned in two parts. Firstly, the whitening part is obtained as the square-root of the
intra-class covariance matrix C

−1/2
S , where

CS =
∑

(i,j∈S)

(xi − xj)(xi − xj)>. (20)

Then, the rotation part is given by the PCA of the inter-class covariance matrix which is
computed in the space of the whitened descriptors. It is computed as eig

(
C

−1/2
S CDC

−1/2
S

)
,

where

CD =
∑

(i,j∈D)

(xi − xj)(xi − xj)>. (21)

The final whitening is performed by P>SD(x−m), where m is the mean descriptor and

PSD = C
−1/2
S · eig

(
C

−1/2
S CDC

−1/2
S

)
. It is noted [6] that, if the number of descriptors

is large compared to the number of classes (two in this case), then CD ≈ CS∪D since
|S| � |D|. This is the approach we follow.

Robust linear discriminant projections. The proposed method uses the provided
supervision in a robust manner by employing the method introduced in section 3.2. The
whitening is estimated in a robust manner by Algorithm 1 on the intra-class covariance.
In this manner, small weights are assigned to pairs of descriptors that are found to
be outliers. Then, the mean and covariance are estimated in a robust manner in the
whitened space. The whole procedure is summarized in Algorithm 2. Mean µ1 is zero
due to the including the pairs in a symmetric manner.



Robust Data Whitening 9

(a) (b) (c) (d)
Fig. 2. (a) Set of 2D points drawn from a Gaussian distribution with zero mean. (b) Same set as
(a) with an additional point (outlier) placed at a distance equal to 2 times the maximum distance
from the center of the initial set. (c) Visualization of the weights assigned in the set of (b) with
the robust whitening which uses the `1 cost function. Note that the size of the circles is inversely
proportional to the weight. (d) Same as (c), but using the Cauchy cost.

Ground Truth: 165.43
t = 1 : 167.05
t = 2 : 164.53
t = 3 : 164.38
t = 10 : 164.36
Conventional : 164.47

Ground Truth: 267.73
t = 1 : 255.54
t = 2 : 251.81
t = 3 : 251.35
t = 10 : 251.29
Conventional : 359.51

Ground Truth: 32.885
t = 1 : 33.792
t = 2 : 32.898
t = 3 : 32.715
t = 10 : 32.654
Conventional : 44.698

(a) (b) (c)
Fig. 3. Visualization of the covariance (ellipse) and center (cross) of the estimated whitening
transformation at iteration t and the conventional estimate. The example is performed using the
set of 2D points of Figure 2. The ground truth distribution that created the data points is shown
in black. The conventional estimate is shown in cyan. We show the effective estimate of the tth

iteration. The two approaches are compared without an outlier in (a) or with an outlier using `1
in (b) or Cauchy cost function in (c). The outlier is placed at a distance equal to 10 times the
maximum inlier distance. The outlier is not plotted to keep the scale of the figure reasonable. The
`1 (or Cauchy) cost is shown in the legend.

4 Examples on synthetic data

We compare the proposed and the conventional whitening approaches on synthetic 2D
data in order to demonstrate the robustness of our method to outliers. We sample a
set of 2D points from a normal distribution, which is shown in Figure 2 (a) and then
add an outlier and show the result in Figure 2 (b). In the absence of outliers, both
methods provide a similar estimation as shown in Figure 3. It is also shown how the
iterative approach reduces the cost at each iteration. With the presence of an outlier,
the estimation of the conventional approach is largely affected, while the robust method
gives a much better estimation, as shown in Figure 3. Using the Cauchy cost function the
estimated covariance is very close to that of the ground truth. The weights assigned to
each point with the robust approach are visualized in Figure 2 and show how the outlier
is discarded in the final estimation. Finally, in Figure 4, we compare the conventional
way with our approach for outlier of increasing distance.
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Conventional
L1
Cauchy
Ground Truth

Conventional

L1

Cauchy

Ground Truth

Conventional

L1

Cauchy

Ground Truth

(a) (b) (c)
Fig. 4. Visualization of the covariance (ellipse) and center (cross) of the estimated whitening
transformation using the conventional approach and ours. The example is performed using the
set of 2D points of Figure 2. The two approaches are compared for the case of an outlier placed
at distance equal to 3 (a), 5 (b) and 10 (c) times the maximum inlier distance. The outlier is not
shown to keep the resolution high.
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Fig. 5. Retrieval performance comparison using mAP on 3 common benchmarks. Comparison of
the conventional PCA whitening, RPCA whitening and our approach for descriptors of varying
dimensionality. The training set contains a small subset of 512 vectors randomly selected. The
experiment is performed 10 times and mean performance is reported while standard deviation is
shown on the curves. Descriptors extracted using VGG.

5 Experiments

In this section, the robust whitening is applied to real-application data. In particular, we
test on SPOC [4] descriptors, which are CNN-based image descriptors constructed via
sum pooling of network activations in the internal convolutional layers. We evaluate on
3 popular retrieval benchmarks, namely Oxford5k, Paris6k and Holidays (the upright
version), and use around 25k training images to learn the whitening. We use VGG
network [21] to extract the descriptors and, in contrast to the work of Babenko and
Lempitsky [4], we do not `2-normalize the input vectors. The final ranking is obtained
using Euclidean distance between the query and the database vectors. Evaluation is
performed by measuring mean Average Precision (mAP). As in the case of conventional
whitening, the dimension reduction is performed by preserving those dimensions that
have the highest variance. This is done by finding an eigenvalue decomposition of the
estimated covariance and ordering the eigenvectors according to decreasing eigenvalue.

There are many approaches performing robust PCA [7, 24, 25] by assuming that the
data matrix can be decomposed into the sum of a low rank matrix and a sparse matrix
corresponding to the outliers. We employ the robust PCA (RPCA) method by Candès et
al. [7] to perform a comparison. The low rank matrix is recovered and PCA whitening
is learned on this.
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Dataset Oxford5k Paris6k Holidays
Method S 32D 128D 512D 32D 128D 512D 32D 128D 512D
Raw - - 51.4 - - 61.6 - - 78.8
PCA whitening 44.7 56.6 66.7 53.4 67.0 77.1 69.6 78.4 80.6
RPCA whitening 44.0 52.4 55.6 55.9 61.1 65.1 70.5 75.8 77.4
Ours 45.8 58.5 67.7 50.0 68.3 78.4 70.7 78.8 81.8
LDP × 39.4 59.9 68.8 56.1 70.2 76.6 67.5 77.7 80.8
Ours × 49.9 62.3 70.3 57.6 72.0 78.0 69.0 78.6 82.1

Table 1. Retrieval performance comparison using mAP on 3 common benchmarks. Comparison
of retrieval using the initial sum-pooled CNN activations, post-processing using the baselines
and our methods for unsupervised and supervised whitening. Results for descriptors of varying
dimensionality. The full training set is used. Descriptors extracted using VGG. S: indicates the
use of supervision.

We present results in Table 1, where the robust approach offers a consistent im-
provement over the conventional PCA whitening [4]. Especially in the case where the
whitening is learned on few training vectors, the improvement is larger as outliers will
heavily influence the conventional whitening, as shown in Figure 5. Our approach is
also better than RPCA whitening for large dimensionalities. It seems that RPCA under-
estimates the rank of the matrix and does not offer any further improvements for large
dimensions.

6 Discussion

The applicability of the proposed method goes beyond robust whitening. Consider, for
example, the task of affine-invariant descriptors of local features, such as MSERs [18].
A common approach is to transform the detected feature into a canonical frame prior
to computing a robust descriptor based on the gradient map of the normalized patch
(SIFT [17]). To remove the effect of an affine transformation, a centre of gravity and
centered second-order moment (covariance matrix) are used. It can be shown that both
the centre of gravity and the covariance matrix are affine-covariants, i.e. if the input
point set is transformed by an affine transformation A, they transform with the same
transformation A.

The proposed method searches µ and P by minimization over all possible affine
transformations with a fixed determinant. In turn, µ is fully affine covariant and P is
affine covariant up to an unknown scale (and rotation, P>P cancels the rotation). To
the best of our knowledge, this type of robust-to-outliers covariants have not been used.

7 Conclusions

We cast the problem of data whitening as minimization of robust cost functions. In this
fashion we iteratively estimate a whitening transformation that is robust to the presence
of outliers. With the use of synthetic data, we show that our estimation is almost un-
affected even with extreme cases of outliers, while it also offers improvements when
whitening CNN descriptors for image retrieval.
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