
Bounding Linear Programs by Constraint

Propagation: Application to Max-SAT⋆
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Abstract. The Virtual Arc Consistency (VAC) algorithm by Cooper et
al. is a soft local consistency technique that computes, in linear space,
a bound on the basic LP relaxation of the Weighted CSP (WCSP). We
generalize this technique by replacing arc consistency with a (problem-
dependent) constraint propagation in a system of linear inequalities over
the reals. When propagation detects infeasibility, the infeasibility certifi-
cate (a solution to the alternative system in Farkas’ lemma) provides a
dual improving direction. We illustrate this approach on the LP relax-
ation of Weighted Max-SAT. We show in experiments that the obtained
bounds are often not far from global LP optima and we prove that they
are exact for known tractable subclasses of Weighted Max-SAT.
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1 Introduction

Although the linear programming (LP) problem is solvable in polynomial time,
solving very large sparse linear programs can be challenging in practice. Such
linear programs occur in many areas, a prominent example being the computa-
tion of bounds in branch-and-bound search by LP relaxation. To solve such LPs,
the classical simplex and interior point methods may not always be suitable, if
only for their worst-case space complexity which is super-linear in the number
of non-zeros of the problem matrix1. First-order methods such as subgradient,
smoothing or augmented Lagrangian methods have linear space complexity but
tend to be slow (see experimental comparison [8] of methods for large-scale
WCSP) and need a long time to re-converge when warm-started after a small
change of the problem. This is a motivation to search for problem-specific (pos-
sibly approximate) solvers that would be more efficient than classical methods.

One such approach is known as the primal-dual method2 [17], which is effi-
cient for LP formulations of some tractable combinatorial optimization problems.

⋆ This work has been supported by the Czech Science Foundation (grant 19-09967S),
the OP VVV project CZ.02.1.01/0.0/0.0/16 019/0000765, and the Grant Agency of
the Czech Technical University in Prague (grant SGS19/170/OHK3/3T/13).

1 To the best of our knowledge, not much is known about worst-case complexity of
solving sparse linear programs [18].

2 As remarked in [17], this name is a misnomer as it is in fact a purely dual method.



2 T. Dlask and T. Werner

Given a feasible dual solution, we consider the restricted problem, which mini-
mizes infeasibility of the complementary slackness conditions. Optimal solutions
of the dual restricted problem turn out to be dual-improving directions. The re-
stricted problem is a linear program simpler than the original one, thus often
amenable to combinatorial algorithms. Many classical algorithms for, e.g., flow
and assignment problems can be seen as examples of the primal-dual method.

A similar idea has been employed in the VAC algorithm [3] (and the closely
related Augmenting DAG algorithm [12, 25]), which computes an upper-bound
on the basic LP relaxation of the WCSP [20, 25, 23, 19]. Strictly speaking, this is
not a primal-dual method since the restricted problem is the LP relaxation of a
CSP, which is a feasibility rather than optimization problem. Another difference
is that the restricted problem is solved only approximately by arc consistency
(AC), which not always detects infeasibility. Consequently, the method only
obtains an upper bound on the LP relaxation of WCSP.

We propose a generalization of this technique. To detect infeasibility of the
restricted problem, we propose to use a suitable (problem dependent) form of
constraint propagation in a system of linear inequalities . If infeasibility is de-
tected, a certificate of infeasibility (a solution to the alternative system in Farkas’
lemma) is constructed, which provides a dual-improving direction. Since prop-
agation may not always detect infeasibility, the approach yields only an upper
bound on the global optimum of the LP. Note, while constraint propagation in
CSP with infinite domains is well-known [2], the novelty of our approach is in
using infeasibility certificates to iteratively improve the dual solution.

To illustrate the approach on a problem different than WCSP, we chose the
LP relaxation of the Weighted Max-SAT problem [22]. We experimentally show
that the obtained bounds are often not far from global LP optima and we prove
that they are exact for known tractable subclasses of the Weighted Max-SAT.

2 Linear Optimization by Constraint Propagation

2.1 Constraint Propagation for Linear Inequalities

In the CSP, we are given a set of relations (constraints) φ1, . . . , φm ⊆ Dn and seek
to find x = (x1, . . . , xn) ∈ φ1 ∩ · · · ∩ φm or prove that no such solution exists. A
heuristic that can help achieve this is constraint propagation, where we iteratively
generate new constraints that are implied by (i.e., inferred from) the constraint
set and add them to the constraint set. By this, we make explicit some knowledge
about the solution set, which before was only implicit in the constraints. As
exhaustive enumeration of all implied constraints is usually impossible, only a
small predefined set of simple inference (or propagation) rules is used. Since we
are not doing complete inference, the procedure is refutation-incomplete: it need
not infer a contradiction even if the CSP is infeasible.

Deciding feasibility, finding a solution and, more generally, deciding if the
constraints imply a given relation, is usually intractable. The situation is much
simpler if D = R (the reals) and φi’s are linear inequalities. We write a linear
inequality φi as a

T
i x ≤ bi and the system φ1, . . . , φm as Ax ≤ b where x ∈ R

n,
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Fig. 1: Propagation in a simple system of linear inequalities. The inequalities are
indexed by 1–10. Inequalities 1–5 are initial, inequalities 6–10 are inferred. Edge
weights indicate the coefficients of non-negative combinations.

A =
[

a1 · · · am
]T

∈ R
m×n and b = (b1, . . . , bm) ∈ R

m. In this case, the above
tasks can be solved by linear programming. In particular, the logic of linear
inequalities over R is described by the affine form of Farkas’ lemma [21, 7]:

Theorem 1. A system Ax ≤ b implies an inequality cTx ≤ d iff some non-
negative combination of the inequalities Ax ≤ b implies cTx ≤ d, i.e., there is
y ≥ 0 such that AT y = c and bT y ≤ d.

In particular (Farkas’ lemma), the system Ax ≤ b is infeasible iff some non-
negative combination of the inequalities equals 0Tx ≤ d where d < 0, i.e., there
is a vector y ≥ 0 such that AT y = 0 and bT y < 0. The vector y can be seen as a
proof (certificate, cause) for the inequality cTx ≤ d resp. infeasibility.

Thus, constraint propagation for linear inequalities works as follows. Using a
fixed set of inference rules (which depends on the problem solved), we generate
new linear inequalities until either no new inequality can be generated or a
contradiction is found. Each time a new inequality is generated, its ‘cause’ vector
is stored, encoding how the inequality was created from the existing inequalities.
When a contradiction is found, a certificate of infeasibility can be computed
by tracking the newly generated inequalities back to the original system and
composing the cause vectors.

2.2 Computing Certificate of Infeasibility

Let us focus on obtaining the certificate of infeasibility. As an example, consider
the system of m = 5 initial inequalities on the left in Figure 1. From inequalities
φ2 and φ3, we infer inequality φ6 = 2φ2+φ3. Next, we gradually infer inequalities
φ7 = φ1 +3φ6, φ8 = φ4+φ6, φ9 = φ6 +φ7, and finally φ10 = φ5+φ7+φ8. Since
φ10 reads 0 ≤ −2, the initial system φ1, . . . , φ5 is infeasible.

The history of propagation is represented by a directed acyclic graph (DAG)
E ⊆ V × V with edge weights α: E → R+, where V is the set of all (initial and
inferred) inequalities and each inferred inequality is given by φi =

∑

j∈Ni
αijφj

where Ni = { j ∈ V | (i, j) ∈ E }. By composing the inferences, each inequality
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φi can be expressed in terms of the initial inequalities as φi =
∑m

j=1 y
i
jφj , where

we call yi = (yi1, . . . , y
i
m) ∈ R

m the cause vector of φi. For i ≤ m, we have yi = ei

where ei is the ith standard-basis vector of Rm. For i > m, we have

yi =
∑

j∈Ni:Nj=∅

αije
j +

∑

j∈Ni:Nj 6=∅

αijy
j . (1)

In the example, V = {1, . . . , 10}, y6 = 2e2 + e3 = (0, 2, 1, 0, 0), y7 = e1 + 3y6,
y8 = e4+y6, y9 = y6+y7, and y10 = e5+y7+y8 = (1, 8, 4, 1, 1). Since bT y10 = −2
and AT y10 = 0, vector y10 is a certificate of infeasibility by Theorem 1.

As we need the cause vector only for the final (contradictory) inequality (φ10

in the example), storing all cause vectors explicitly in the memory is wasteful. In
addition, some inferred inequalities may not be needed for the proof of infeasibil-
ity (φ9 in the example). We show that any single cause vector can be computed
more efficiently by dynamic programming.

For any initial inequality φi and any derived inequality φk, y
k
i is the sum of

weight-products3 of all directed paths from node k to node i in the DAG. Suppose
we want to compute yk for some single k. We can consider only the subgraph
of the DAG reachable from node k along directed paths. We introduce auxiliary
variables zj , which are to equal the sum of weight-products of all directed paths
from node k to node j. Initially, we set yk = 0, zk = 1, and zj = 0 for all j 6= k.
Then we process the nodes i of the subgraph in a topological order as follows:
if Ni = ∅ then set yki := zi, otherwise update zj := zj + αijzi for all j ∈ Ni.
Eventually, we have yki = zi for all i = 1, . . . ,m. The time and space complexity
of this algorithm is linear in the size of the graph.

2.3 Application to Linear Programming

Now we show how constraint propagation can be used to possibly improve a
feasible dual solution of a linear program. Consider a pair of mutually dual
linear programs (the primal on the left, the dual on the right)

cTx → max bT y → min (2a)

Ax ≤ b y ≥ 0 (2b)

x ≶ 0 AT y = c (2c)

where4 x ≶ 0 denotes that the components of x can have arbitrary signs (as
in [17]). By the complementary slackness theorem, a primal feasible solution x
and a dual feasible solution y are simultaneously optimal iff for every i we have
aTi x = bi or yi = 0 (or both). Denoting by I = { i | yi = 0 } the set of dual
constraints (2b) active at y, this condition can be written as the left-hand system

3 The weight-product of a path is the product of all edge weights along the path.
4 A, b in (2) denote different matrices than A, b in the previous sections.
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of the pair

bT ȳ < 0 (3a)

aTi x ≤ bi ȳi ≥ 0 ∀i ∈ I (3b)

aTi x = bi ȳi ≶ 0 ∀i /∈ I (3c)

x ≶ 0 AT ȳ = 0. (3d)

On the right of (3), we wrote the Farkas alternative system to these conditions5.
Thus, a point y feasible for the dual in (2) is optimal iff the left-hand system in (3)
is feasible, which holds iff the right-hand system in (3) is infeasible. Moreover, any
solution ȳ to the right-hand system is an improving direction for the dual in (2),
i.e., there is ǫ > 0 such that bT (y + ǫȳ) < bT y, y + ǫȳ ≥ 0 and AT (y + ǫȳ) = c.

The method thus proceeds as follows. Having a feasible solution y for the
dual in (2), try to prove infeasibility of the left-hand system in (3) by constraint
propagation and find a certificate of infeasibility ȳ, i.e., a solution to the right-
hand system in (3). Then choose (by exact or approximate line search) a step
size ǫ and update y := y + ǫȳ. By repeating this iteration, a better and better
upper bound on linear program (2) is obtained. Terminate when the propagation
fails to detect infeasibility of the left-hand system in (3).

In the rest of the paper, we apply this approach to LP relaxations of WCSP
and Max-SAT. These LPs will involve equality constraints and non-negative
variables. Though they could be transformed to the general form (2) by well-
known tricks (such as replacing an equality with two inequalities or adding slack
variables), it will be more convenient to adapt the basic approach described in §2
to these cases, resulting in somewhat different and more complex algorithms.

3 LP Relaxation of Weighted CSP

In the (binary) WCSP, we are given a graph E ⊆
(

V
2

)

, a finite domain D, and
weights c∅ ∈ R, cuk ≤ 0 (u ∈ V , k ∈ D) and cuk,vl ≤ 0 (uv ∈ E, k, l ∈ D). We
maximize

fc(λ) = c∅ +
∑

u∈V

cuλ(u) +
∑

uv∈E

cuλ(u),vλ(v) (4)

over all assignments λ: V → D. We abbreviated {u, v} by uv and adopted that
cuk,vl = cvl,uk. The basic LP relaxation of WCSP can be written as6

cTx → max h → min (5a)

Ax = 0 y ≶ 0 (5b)

x∅ = 1 h ≶ 0 (5c)

x ≥ 0 AT y + e∅h ≥ c (5d)

5 The two systems (3) correspond to a more general form of Farkas’ lemma than
Theorem 1, allowing for equality constraints and non-negative variables [14, §6.4].

6 The basic LP relaxation of WCSP can be written in several different ways, see e.g.
[25, 23, 19]). We chose the one that is closest to the VAC paper [3].
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where the system Ax = 0 reads

∑

l∈D xuk,vl − xuk = 0 ∀u ∈ V, v ∈ Nu, k ∈ D (6a)
∑

k∈D xuk − x∅ = 0 ∀u ∈ V. (6b)

The system AT y + e∅h ≥ c reads

yu −
∑

v∈Nu
yuk,v ≥ cuk ∀u ∈ V, k ∈ D (7a)

yuk,v + yvj,u ≥ cuk,vl ∀uv ∈ E, k, l ∈ D (7b)
∑

u∈V yu + h ≥ c∅ (7c)

where e∅ is the standard-basis vector such that xT e∅ = x∅.
For any y, replacing the weight vector c with the vector c′ = c − AT y is an

equivalent transformation [3] (a.k.a. a reparameterization [24, 19]) of the WCSP
objective7. Indeed, c′Tx = (cT − yTA)x = cTx for all feasible x, hence also
fc′(λ) = fc(λ) for all assignments λ. A reparameterization is feasible (satisfying
(7a) and (7b)) if c′uk ≤ 0 and c′uk,vl ≤ 0. After eliminating variable h, the
dual thus minimizes c′∅ over feasible reparameterizations. Note that for feasible
reparameterizations, c′∅ is an upper bound on the WCSP optimal value.

Given a feasible dual solution (y, h), let J denote the set of indices of dual
inequalities (5d) that are active at (y, h). Then, the complementary slackness
conditions read as the left-hand system of

h̄ < 0 (8a)

Ax = 0 ȳ ≶ 0 (8b)

x∅ = 1 h̄ ≶ 0 (8c)

xj ≥ 0 AT
j ȳ + h̄e∅j ≥ 0 ∀j ∈ J (8d)

xj = 0 ∀j /∈ J (8e)

where Aj denotes the jth column of A and e∅j = Jj = ∅K is8 the jth component

of e∅. On the right, we wrote the Farkas alternative system.
The left-hand system in (8) is the LP relaxation of the CSP instance formed

by the active tuples of the reparameterized WCSP instance. The WCSP is vir-
tually arc-consistent (VAC) if this CSP has a non-empty AC closure [3]. Indeed,
propagating zero values of the primal variables xj in (8) using the marginaliza-
tion constraint (6a) is equivalent to the AC algorithm in this CSP.

When propagation detects a contradiction, we construct a certificate (ȳ, h̄)
satisfying the right-hand system of (8). If a variable xj is inferred to be zero, we
store a cause vector yj of the coefficients of linear combination xj + tj = 0 of
the primal constraints (6), where tj is a non-negative combination of xi, i ∈ J ,
and may contain xi, i /∈ J , with arbitrary sign. Under constraints (8e)+(8d),
tj is non-negative, therefore xj + tj = 0 implies xj = 0. For j /∈ J , we initialize

7 Note, c′ is ‘almost’ (up to variable h) the reduced cost vector of the primal of (5).
8 The symbol J·K denotes the Iverson bracket.
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yj = 0. All vectors yj have the same dimension, equal to the number of primal
constraints (6). We denote the standard-basis vector of this space corresponding
to (6a) (resp. (6b)) by euk,v (resp. eu).

We now describe the propagation rules in detail, including the cause vec-
tors yj . If j ∈ J , each yj will represent an equality xj + tj = 0. If j /∈ J , yj

is initialized to zero and thus represent equality 0 = 0; in this case the excess
variable −xj on the left-hand side will be included into ti on the right-hand side,
which is allowed by the definition of ti. The propagation rules are as follows:

– If xuk = 0 for some u ∈ V and k ∈ D, constraints (6a) imply xuk,vl = 0 for
all v ∈ Nu and l ∈ D. Inference in terms of equalities:

(

xuk + tuk = 0
)

+
(
∑

l∈D

xuk,vl − xuk = 0
)

=
(
∑

l∈D

xuk,vl + tuk = 0
)

The cause vectors are given by yuk,vl = yuk + euk,v, for v ∈ Nu and l ∈ D.
– If for some uv ∈ E and k ∈ D we have xuk,vl = 0 for all l ∈ D, constraint (6a)

implies xuk = 0. Inference in terms of equalities:

∑

l∈D

(

xuk,vl + tuk,vl = 0
)

−
(
∑

l∈D

xuk,vl − xuk = 0
)

=
(

xuk +
∑

l∈D

tuk,vl = 0
)

The cause vector is given by yuk =
∑

l∈D yuk,vl − euk,v.
– If for some u ∈ V we have xuk = 0 for all k ∈ D, constraint (6b) implies a

contradiction (domain wipe-out). Inference in terms of equalities:

∑

k∈D

(

xuk + tuk = 0
)

−
(
∑

l∈D

xul − x∅ = 0)−
(

x∅ = 1
)

=
(
∑

k∈D

tuk = −1
)

The certificate of infeasibility is given by ȳ =
∑

k∈D yuk − eu, h̄ = −1.

By properties of tj and the fact that coefficients (ȳ, h̄) encode an equality
in the form

∑

j tj = −1, it is not hard to show that (ȳ, h̄) are feasible for the
right-hand side (8) and therefore constitute an improving direction for the dual
in (5) from the current point (y, h).

The described algorithm is ‘almost’ equivalent to the VAC / Augmenting
DAG algorithm [3, 12, 25]. The fixed points of both algorithms are characterized
by the same property, namely VAC. However, our improving directions ȳ are in
general different from the ones in [3, 12, 25], sometimes having larger absolute
values of their components (and thus allowing smaller step size ǫ). It is subject
to further research to clarify the relation between them.

4 LP Relaxation of Weighted Max-SAT

In the Weighted Max-SAT problem, we are given a set V of variables and a
set C of clauses with positive weights w: C → R++ and we seek to max-
imize the weighted sum of satisfied clauses. Let V +

c (resp. V −
c ) denote the

set of variables that occur in clause c ∈ C non-negated (resp. negated). Let
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C±
i = { c ∈ C | i ∈ V ±

i } denote the set of clauses where variable i ∈ V occurs
non-negated/negated. We denote nc = |V −

c |. For any S ⊆ V , we will use the
shortcut x(S) =

∑

i∈S xi, similarly for y. The classical LP relaxation of Weighted
Max-SAT [22] reads

wT z → max nT y + q(C) + p(V ) → min (9a)

zc ≤ x(V +
c ) + nc − x(V −

c ) yc ≥ 0 ∀c ∈ C (9b)

xi ≥ 0 pi − y(C+
i ) + y(C−

i ) ≥ 0 ∀i ∈ V (9c)

xi ≤ 1 pi ≥ 0 ∀i ∈ V (9d)

zc ≥ 0 qc + yc ≥ wc ∀c ∈ C (9e)

zc ≤ 1 qc ≥ 0 ∀c ∈ C (9f)

where we wrote also the dual LP on the right. The primal variables xi represent
the (relaxed) original Boolean variables. Clearly, at dual optimum we have

pi = max{y(C+
i )− y(C−

i ), 0} ∀i ∈ V (10a)

qc = max{wc − yc, 0} ∀c ∈ C. (10b)

Substituting (10) into the dual objective together with nT y =
∑

i∈V y(C−
i )

results in a simpler form of the dual,

min
y≥0

∑

c∈C

max{wc − yc, 0}+
∑

i∈V

max{y(C+
i ), y(C−

i )} (11)

which minimizes a convex piecewise-affine function of non-negative variables.

Theorem 2. Point y ∈ R
C
+ is optimal for (11) iff there exists x ∈ R

V satisfying
the left-hand system of

x(V +
c ) + nc − x(V −

c ) ≥ 1 ȳc ≥ 0 ∀c ∈ C≥1 (12a)

x(V +
c ) + nc − x(V −

c ) = 1 ȳc ≶ 0 ∀c ∈ C=1 (12b)

x(V +
c ) + nc − x(V −

c ) ≤ 1 ȳc ≤ 0 ∀c ∈ C≤1 (12c)

x(V +
c ) + nc − x(V −

c ) = 0 ȳc ≶ 0 ∀c ∈ C=0 (12d)

xi = 1 p̄i ≶ 0 ∀i ∈ X1 (12e)

xi = 0 p̄i ≶ 0 ∀i ∈ X0 (12f)

xi ≶ 0 p̄i + ȳ(C+
i )− ȳ(C−

i ) = 0 ∀i ∈ X0 ∪X1 (12g)

xi ≥ 0 p̄i + ȳ(C+
i )− ȳ(C−

i ) ≤ 0 ∀i ∈ XU (12h)

xi ≤ 1 p̄i ≤ 0 ∀i ∈ XU (12i)

where

X0 = { i ∈ V | y(C+
i ) < y(C−

i ) } C≥1 = { c ∈ C | yc = 0 } (13a)

X1 = { i ∈ V | y(C+
i ) > y(C−

i ) } C=1 = { c ∈ C | 0 < yc < wc } (13b)

XU = { i ∈ V | y(C+
i ) = y(C−

i ) } C≤1 = { c ∈ C | yc = wc } (13c)

C=0 = { c ∈ C | yc > wc } (13d)
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are partitions of V and C. If the left-hand system is infeasible, then there exist
values (p̄, ȳ) for the right-hand system9 (12) such that

∑

c∈C

(Jc /∈ C=0K − nc)ȳc + p̄(X1 ∪XU ) > 0, (14)

where ȳ is an improving direction for (11) from y.

Proof. The left-hand system in (12) is the complementary slackness condition
for the primal-dual pair (9), where we used (10) and eliminated variables zc.

The right-hand system of (12) and (14) form the alternative system to the
left-hand system of (12) in Farkas’ lemma. To show that ȳ is improving for (11),
realize that p̄ can w.l.o.g. satisfy p̄i = ȳ(C−

i ) − ȳ(C+
i ) for all i ∈ X0 ∪ X1 and

p̄i = min{ȳ(C−
i ) − ȳ(C+

i ), 0} for all i ∈ XU . Then, (14) can be reformulated
(after multiplying by −1 and substituting −p̄i terms) as

−ȳ(C − C=0) +
∑

i∈XU

max{ȳ(C+
i ), ȳ(C−

i )}+
∑

i∈X1

ȳ(C+
i ) +

∑

i∈X0

ȳ(C−
i ) < 0,

which states that (11) decreases in terms of the affine functions that are active10

in the current point y, as defined by the sets (13). ⊓⊔

We now define propagation rules for the left-hand system (12). These rules
set the values of some of the undecided variables xi, i ∈ XU , to 0 or 1. Pre-
cisely, we iteratively visit each constraint (12a)-(12d) and look whether with the
already decided variables it permits only a single value of some so-far undecided
variable. If so, we fix the value of this variable (i.e., make it decided). If some con-
straint (12a)-(12d) cannot be satisfied by any assignment subject to the already
decided variables, the left-hand system in (12) is infeasible. During propagation,
we update the dual variables of (12), so that if infeasibility is detected, we are
able to construct an improving direction ȳ for (11).

We now need a technical definition. For j ∈ V , we call a cause vector (pj , yj)

– 1-j-defining if it satisfies the right-hand system in (12), except for i = j when
it satisfies pjj + yj(C+

j ) − yj(C−
j ) = 1 and left-hand side of (14) equals 1.

This cause vector defines an inequality xj + tj ≥ 1 derived from the left-
hand system in (12), where tj is a non-positive weighted sum of xi, i ∈ XU .
Clearly, this inequality implies xj = 1.

– 0-j-defining if it satisfies the right-hand system in (12) and pjj + yj(C+
j ) −

yj(C−
j ) = −1, and the left-hand side of (14) equals 0. This cause vector

defines an inequality −xj + tj ≥ 0, which implies xj = 0.

Note that the sign constraints on the right-hand side (12) ensure that the in-
equalities on left-hand side (12) are combined in correct directions.

9 Note, the right-hand system (12) has opposite direction of inequalities. This is due
to writing left-hand inequalities (12a)-(12d) with opposite directions than in (9b).

10 For f(x) = max{aTx, bTx} and a fixed x, we say that the function aTx is active and
bTx is inactive at x if aTx > bTx. If aTx = bTx, both functions are active at x.
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Constraint Rule

C≥1 ∪ C=1 A1 If there is only one undecided variable xk, k ∈ Vc, and xc
i = 0 for all

other i ∈ Vc −{k}, we set xk = Jk ∈ V +
c K and yk = ec +

∑
i∈Vc−{k} y

i.

A2 If all the variables xi for i ∈ Vc are decided and satisfy xc
i = 0, then

we obtain a contradiction and set ȳ = ec +
∑

i∈Vc
yi.

C=1 ∪ C≤1 B1 If there is exactly one decided variable xi, i ∈ Vc, with xc
i = 1, then we

set xk = Jk ∈ V −
c K and yk = −ec + yi for each undecided xk, k ∈ Vc.

B2 If there are two (or more) decided variables xi, xj for i, j ∈ Vc with
xc
i = xc

j = 1, then we obtain a contradiction and set ȳ = −ec+yi+yj .

C=0 C1 If there is no decided variable xi, i ∈ Vc, with xc
i = 1, then set all

undecided variables xk, k ∈ Vc, as xk = Jk ∈ V −
c K and yk = −ec.

C2 If there is a decided variable xi, i ∈ Vc, with xc
i = 1, then we obtain a

contradiction and set ȳ = −ec + yi.

Table 1: Propagation rules for system (12). The first column determines the type
of constraints to which the rule applies.

As mentioned in Theorem 2, it is sufficient to store vectors yj ∈ R
C because

these will be used to construct the improving direction ȳ if a contradiction is
detected. Thus, for each decided variable xj that is set to a value v ∈ {0, 1}, we
can store only the yj component of a v-j-defining vector (pj , yj).

The propagation rules are listed in Table 1, divided into groups according to
which set (13) clause c belongs. For each rule, we also specify how to construct
the cause vector yi for each inferred variable xi. For i ∈ X1 ∪ X0, we define
yi = 0 so that it can be referred to in the equations for creation of other yj or ȳ.
To simplify the explanation of the rules, for any i ∈ V and c ∈ C we denote

xc
i =

{

xi, if i ∈ V +
c ,

1− xi, if i ∈ V −
c .

(15)

We denote ec ∈ R
C to be the standard-basis vector with 1 in the place corre-

sponding to clause c. We also define Vc = V +
c ∪ V −

c .

The derivation of the updates for cause vectors yi is technical and must be
done for each rule separately. The proof relies on the fact that for each initially
decided variable xj , j ∈ X1, (resp. j ∈ X0), we can initialize a 1-j-defining
(resp. 0-j-defining) cause vector (pj , yj) as (ej , 0) (resp. (−ej, 0)) where ej ∈ R

V

is a standard-basis vector. This corresponds to setting yj = 0 for the initially
decided variables. Then it is possible to show how to derive a v-k-defining vector
for a newly decided variable xk from the previous ones. We are going to show
this in detail for rule B1, which we believe is most complicated.

Theorem 3. Let c ∈ C=1 ∪C≤1 such that there is exactly one decided variable
xi, i ∈ Vc, with xc

i = 1 and xk, k ∈ Vc, is an undecided variable. Let xi be decided
to a value v ∈ {0, 1}, and let (pi, yi) be v-i-defining. Then there exists a vector pk

such that (pk,−ec + yi) is Jk ∈ V −
c K-k-defining.
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Proof. First of all, see that x(V +
c ) + nc − x(V −

c ) =
∑

j∈Vc
xc
j by definition (15).

The inequality encoded by the v-i-defining cause vector (pi, yi) can be compactly
rewritten as xc

j+tj ≥ 1 and analogously, each defining equality for j ∈ Vc∩(X0∪

X1) with xc
j = 0 can be expressed as−xc

j = 0, hence xc
j ≥ 0. Then, the derivation

of the defining inequality for undecided variable xk is given as follows:

−
∑

j∈Vc

xc
j ≥ −1 (0,−ec) (16a)

xc
i + ti ≥ 1 (pi, yi) (16b)

xc
j ≥ 0 ∀j ∈ (Vc ∩X0)− {i} (ej , 0) (16c)

xc
j ≥ 0 ∀j ∈ (Vc ∩X1)− {i} (−ej , 0) (16d)

xc
j ≥ 0 ∀j ∈ (V −

c ∩XU )− {i, k} (−ej , 0) (16e)

−xc
k + tk ≥ 0 (pk, yk) (16f)

where
tk = −

∑

j∈(XU∩V
+
c )−{i,k}

xj + ti. (17)

Inequality (16a) is (12b) or (12c) multiplied by −1, (16b), (16c), and (16d) are
inequalities determining the values of already decided variables, and (16e) is
(12i). Inequality (16f) is given as the sum of the inequalities above it. Each row
in (16) is marked on the right by the coefficients (p, y) with which it was derived
from the original system (12). It is easy to check that the sign constraints in the
right-hand system (12) are satisfied for each pair (p, y) in (16).

The coefficients for the last row are determined by summing the above co-
efficients, i.e., yk = −ec + yi (which is the same equation as in Table 1) and
pk = pi+

∑

j∈J′ ej−
∑

j∈J′′ ej where J ′ (resp. J ′′) is set used on line (16c) (resp.

union of the sets on lines (16d) and (16e)). To show that the vector (pk, yk) is
Jk ∈ V −

c K-k-defining, substitute the definition (15) into (16f) and see that tk is
again a non-positive combination of other variables from XU as this held for ti
by the assumption of the theorem. ⊓⊔

Each propagation rule can be formulated in a general form similar to (16)
that defines vectors (yk, pk) as described in Table 1. Using these vectors, a con-
tradiction defined by (p̄, ȳ) encodes an inequality t̄ ≥ 1 where t̄ is a non-positive
sum of xi, i ∈ XU , and it is possible to show that the pair (p̄, ȳ) satisfies condi-
tions of Theorem 2.

Remark 1. One can ask whether it is possible to infer other values of undecided
variables than 0 or 1 (such as 1

2 ). Assuming that inference is done only from
a single constraint from (12a)-(12d), this is impossible because the polyhedron
defined by a single (in)equality from (12a)-(12d) subject to 0 ≤ xi ≤ 1, where
some of the variables may be already set to 0 or 1, has integral vertices.

Remark 2. For general Max-SAT, the propagation rules in Table 1 do not al-
ways prove infeasibility of the left-hand system in (12). However, for Weighted
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Max-2SAT they do: if no more propagation is possible and no contradiction is
detected, setting all undecided variables xi to

1
2 satisfies all constraints of (12).

Remark 3. The restricted system (12) is the LP relaxation of a CSP with Boolean
variables. The propagation corresponds to enforcing arc consistency of this CSP.
The whole algorithm seeks to find a feasible dual solution of the LP relaxation
of Max-SAT that enforces this CSP to have a non-empty AC closure. Compare
this with the WCSP case, where the restricted system (8) is the LP relaxation
of the CSP formed by the active tuples and the VAC algorithm seeks to find
an equivalent transformation (a linear tranformation of the weight vector that
preserves the objective function) that makes this CSP arc-consistent. Note that,
in contrast to WCSP, there is no obvious analogy of equivalent transformations
for Weighted Max-SAT.

4.1 Finding Step Size by Approximate Line Search

If a contradiction is detected in (12) and improving direction ȳ at the point y is
constructed, we need to find a feasible step size ǫ > 0, as mentioned in §2.3. The
optimal way (exact line search) would be to minimize f(y+ǫȳ) over ǫ > 0 subject
to y + ǫȳ ≥ 0, where f is the objective of (11). Since this is too costly for large
instances, we do only approximate line search: we find the first breakpoint of the
univariate convex piece-wise affine function ǫ 7→ f(y + ǫȳ) , i.e., the smallest ǫ
at which at least one previously inactive affine function becomes active. This
ensures a non-zero improvement of f . Such ǫ is the maximum number satisfying
the following constraints:

– To stay within the feasible set, we need yc + ǫȳ ≥ 0, therefore ǫ ≤ −yc/ȳc
for all c ∈ C − C≥1 with ȳc < 0.

– For terms max{wc − yc, 0}, if wc − yc > 0 (resp. wc − yc < 0) and wc −
yc− ǫȳc decreases (resp. increases), then we need ǫ ≤ (wc− yc)/ȳc where the
bound is the point where the terms equalize. This is for all c ∈ C such that
(wc − yc)ȳc > 0.

– For terms max{y(C+
i ), y(C−

i )}, if y(C+
i ) > y(C−

i ) and ȳ(C+
i ) < ȳ(C−

i ) (resp.
with inverted inequalities), we need ǫ ≤ (y(C+

i )− y(C−
i ))/(ȳ(C−

i )− ȳ(C+
i ))

where the bound is the point where the terms equal. This is for all i ∈ V
with (y(C+

i )− y(C−
i ))(ȳ(C−

i )− ȳ(C+
i )) > 0.

Using the conditions on ȳ determined by Theorem 2, it can be shown that there
always exists ǫ > 0 satisfying these bounds.

4.2 Algorithm Overview

Let us summarize the algorithm. We start with y = 0 (which is dual-feasible) and
repeat the following iteration: From the current y, construct system (12). Apply
rules in Table 1 to fix values of undecided variables. During that, construct the
DAG defining each yi until no rule is applicable or contradiction is detected. If no
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contradiction is detected, stop. If contradiction is detected, compute ȳ from the
DAG, similarly as in §2.2. Calculate step size ǫ as in §4.1 and update y := y+ǫȳ.

To speed up the algorithm and facilitate convergence11, we redefine sets (13)
up to a tollerance δ > 0, by replacing yc > 0 with yc > δ, y(C+

i ) < y(C−
i )

with y(C+
i ) + δ < y(C−

i ), etc. We start with some large value of δ. When the
algorithm achieves a fixed point, we keep the current y and set δ := δ/10. We
continue until δ is not very small (10−6).

All data structures used by the algorithm need space that is linear in the
input size, i.e., in the number

∑

c∈C |Vc| of non-zeros in linear program (9). In
particular, it can be shown that the DAG (used to calculate ȳ) can be conve-
niently stored as a subgraph of the bipartite clause-variable incidence graph.

4.3 Results

We compared the upper bound on the optimal value of (9) obtained by our algo-
rithm with the exact optimal value of (9) obtained by an off-the-shelf LP solver
(we used Gurobi with default parameters) on the Max-SAT Evaluations 2018
benchmark [1]. This benchmark contains 2591 instances of Weighted Max-SAT.
Gurobi was able to optimize (without memory overflow) the smallest 2100 in-
stances, the largest of which had up to 600 thousand clauses, 300 thousand vari-
ables and 1.6 million non-zeros. The largest instances in the benchmark have up
to 27 million clauses, 19 million variables and 77 million non-zeros and was still
manageable by our algorithm.

From the smallest 2100 instances, 154 instances were Max-2SAT and 91 in-
stances did not contain any unit clause. As discussed in Remark 2, the algorithm
attained the exact optimum of the LP on instances of Max-2SAT. Similarly, if
an instance does not contain any unit clause, then setting xi =

1
2 for all i ∈ V

yields an optimal solution of (9) with objective value w(C). The algorithm also
attains optimality on these instances because y = 0 is already optimal for the
dual. These instances are excluded from the evaluation.

Each of the remaining 1855 instances contains a clause of length at least 3
and also contain a unit clause, thus the bound is not guaranteed to be optimal.
We measure the quality of the bound by the criterion R = (U−U∗)/(w(C)−U∗)
where U∗ is the globally optimal value of (9) and U is the upper bound computed
by our algorithm. This criterion is invariant to scaling the weights and shows
how tight the bound is relative to the trivial bound w(C).

The sorted numbers R for the selected 1855 instances are plotted in Figure 2.
For 802 instances the bound was tight (U = U∗). Due to this, the vertical
(logarithmic) axis in the right-hand plot is trimmed, starting from 10−20. The
left-hand plot shows that the obtained upper bound is informative in at least
1000-1100 cases. In fact, R was higher than 0.6 only in 35 instances.

11 Though we do not present any convergence analysis of our method, it is known that
the VAC / Augmenting DAG algorithm with δ = 0 can converge to a point that
does not satisfy virtual arc consistency [12, 26, 3].
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Fig. 2: Sorted values of R with linear (left) and logarithmic (right) scale.

We computed also another criterion Q = (U−U∗)/U∗, which was lower than
10−6 (resp. 10−8) on 1644 (resp. 1308) from the 1855 instances. Overall, Q was
always lower than 0.029.

For 152 out of the 2100 considered instances, the integrality gap of the LP
relaxation is known to be tight. In 133 of them, our algorithm attained this
optimum. Only 2 of these were Max-2SAT and each contained a unit clause, so
optimality was not guaranteed trivially.

An unoptimized implementation of our algorithm was on average 3.3 times
faster than Gurobi. We believe a significant speed-up could be achieved by
warm-starting. The part of the DAG needed to explain the found contradic-
tion (see §2.2) is usually very small. If the DAG is built in every iteration from
scratch, most of it is therefore thrown away. Since the system (12) changes only
slightly between consecutive updates, it makes sense to re-use a part of the DAG
in the next iteration. Such warm-starting was presented for the VAC algorithm
in [16] and for the Augmenting DAG algorithm in [26] with significant speed-ups.

4.4 Tightness of the Bound on Tractable Classes

We show that the constraint propagation in system (12) is refutation-complete
for tractable subclasses of Weighted Max-SAT that either use tractable clause
types (language) or have acyclic structure (clause-variable incidence graph). For
these instances, integrality gap of the LP relaxation (9) is zero and all fixed
points of our algorithm are the optima of the unrelaxed problem.

It was shown in [9, Theorem 1] that a subclass of generalized Max-SAT
(i.e., Max-CSP with Boolean variables) defined by restricting constraint types
(language) is tractable if and only if one of the following holds:

– All constraints are 0-valid (resp. all are 1-valid). In this case, if the constraints
are given as clauses (i.e., we restrict ourselves to the ordinary Weighted Max-
SAT), the optimal value is w(C), which coincides with the optimum of the
LP and our algorithm attains this optimum already at y = 0.

– All constraints are 2-monotone. Again, restricting these constraints to clauses
results in clauses with at most two literals where at most one of them is
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positive (resp. negative). In this case, Max-SAT can be reduced to minimum
st-cut problem [9, Lemma 3] and the optimum of its LP formulation equals
(up to a trivial recalculation) the optimum of the LP relaxation of Max-SAT
which is thus tight. Since this is an instance of Weighted Max-2SAT, by
Remark 2 all fixed points of our algorithm are the optima of the LP.

If we view (12) as the LP relaxation of a CSP with Boolean variables, then
the propagation rules in Table 1 enforce arc consistency of this CSP. If the factor
graph of this CSP is acyclic, arc consistency solves this CSP exactly [5, The-
orem 1]. Hence, if the clause-variable incidence graph is acyclic, our constraint
propagation rules are refutation-complete and the fixed points of our algorithm
are optimal. Additionally, if no contradiction is detected, an integral solution to
the left-hand system (12) can be constructed, so the integrality gap is zero.

5 Conclusion

We have proposed a technique to compute, with small space complexity, bounds
on certain large sparse linear programs with suitable structure. Having a feasible
dual solution, infeasibility of the complementary slackness conditions (a system
of linear inequalities) is detected by constraint propagation and the infeasibility
certificate is recovered, providing a dual improving direction. This technique can
be seen as a generalization of the VAC algorithm [3] for WCSP. We have newly
applied it to the LP relaxation of the Weighted Max-SAT.

The main purpose of soft local consistencies in WCSP, such as FDAC, EDAC,
VAC and OSAC [3], is to bound the optimal value of WCSP during search. Each
local consistency has a different trade-off point between bound tightness and
computational complexity. In this view, our approach can be seen as a soft local
consistency technique for other problems than WCSP. It is open whether the
trade-off point of our method for Max-SAT will allow designing better algorithms
to compute exact or approximate solutions of the unrelaxed Max-SAT problem.

Though in principle our approach can also be applied to other LPs (if an
initial dual-feasible solution is available), the existence of good propagation rules
and the quality of obtained bounds critically depends on the problem structure
in a so-far unknown way. It is yet to be seen if there are other such ‘propagation
friendly’ classes of LPs beyond the LP relaxation of WCSP and Max-SAT.

In comparison with the first-order optimization methods (such as subgradient
methods or ADMM, see [8]), our approach may have the advantage that it
reconverges faster after a small change of the problem instance. Though this
claim would need more experimental support, evidence can be found in [15] for
the VAC algorithm and in [11] for the Augmenting DAG algorithm.

VAC in WCSP is closely related to convergent message-passing methods de-
veloped within computer vision, such as [13, 25, 10, 6]. Their fixed points are also
characterized by a local consistency (usually AC in disguise) and they can be seen
as versions of block-coordinate descent applied to the dual LP relaxation. This
suggests there is a close connection between our approach and block-coordinate
descent methods. We clarify this connection in [4].
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