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Abstract. Block-coordinate descent (BCD) is a popular method in large-
scale optimization. Unfortunately, its fixed points are not global optima
even for convex problems. A succinct characterization of convex problems
optimally solvable by BCD is unknown. Focusing on linear programs,
we show that BCD fixed points are identical to fixed points of another
method, which uses constraint propagation to detect infeasibility of a
system of linear inequalities in a primal-dual loop (a special case of this
method is the Virtual Arc Consistency algorithm by Cooper et al.). This
implies that BCD fixed points are global optima iff a certain propagation
rule decides feasibility of a certain class of systems of linear inequalities.
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1 Introduction

Block-coordinate descent (BCD) is a popular method in large-scale optimization
which in every iteration optimizes the problem over a subset (block) of variables,
keeping the remaining variables constant. Unfortunately, BCD fixed points can
be arbitrarily far from global optima even for convex problems. The class of
convex optimization problems for which BCD provably converges to global op-
tima is currently quite narrow, revolving around unconstrained minimization of
convex function whose non-differentiable part is separable [16].

For general (non-differentiable and/or constrained) convex problems, the set
of block-optimizers in a BCD iteration can contain more than one element. It has
been recently argued [22, 21] that in that case, one should choose an optimizer
from the relative interior of this set. BCD updates satisfying this relative interior
rule are not worse than any other rule to choose block-wise minimizers. Of course,
this rule does not guarantee convergence to global optima.

BCD methods known as convex message passing are state-of-the art for ap-
proximately solving the dual linear programming (LP) relaxation of the MAP
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inference problem in graphical models [18, 8, 15] in computer vision and machine
learning, which is equivalent to the Weighted (or Valued) CSP [17]. Examples
are max-sum diffusion [11, 19], TRW-S [9] or MPLP [7]. These methods comply
to the relative interior rule [21] (except for MPLP) and their fixed points are
characterized by local consistencies (equivalent to arc consistency) of the active
tuples.

Another approach to tackle the dual LP relaxation of Weighted CSP is the
Virtual Arc Consistency (VAC) algorithm [2] and the similar Augmenting DAG
algorithm [10, 19]. Though these are not BCD, their fixed points are also charac-
terized by arc consistency of the active tuples. In [5] we show that this approach
is related to the primal-dual method [14, §5] in linear programming and pro-
pose its generalization to any1 linear program by replacing the arc-consistency
algorithm with general constraint propagation in a system of linear inequalities.

It has been observed [4] that when BCD with the relative interior rule is ap-
plied to the dual LP relaxation of SAT, it corresponds to unit propagation. More-
over, there also exists a connection between a form of the dominating unit-clause
rule and BCD with the relative interior rule applied to the dual LP relaxation
of Weighted Max-SAT [4].

The above results suggest there is a close relation between BCD applied to
a linear program and constraint propagation in a system of linear inequalities
(and possibly equalities). In this paper we describe this relation precisely. While
constraint propagation in a linear inequality system can be done in many ways,
we consider the particular propagation rule that infers from a subset of inequal-
ities that some of them are active (i.e., hold with equalities). For this rule, we
show that the primal-dual approach [5] and BCD with the relative interior rule
have the same fixed points. Thus, the question if a given linear program is ex-
actly solvable by BCD can be translated to the question if feasibility of a certain
system of linear inequalities is decidable by this propagation rule.

To fix notation, we consider the primal-dual pair of linear programs (LPs)

max cTx min bT y (1a)

Ax = b y ∈ R
m (1b)

x ≥ 0 AT y ≥ c (1c)

where A ∈ R
m×n, b ∈ R

m, c ∈ R
n are constants and x ∈ R

n, y ∈ R
m are vari-

ables. We denote by xi the i-th component of vector x (similarly for y, b, c), by
Aj (resp. Ai) the j-th row (resp. i-th column) of A, where i ∈ [n] = {1, . . . , n}
and j ∈ [m] = {1, . . . ,m}. We assume both linear programs are feasible and
bounded. We assume a feasible dual solution y is given, so that bT y is an upper
bound on the joint optimal value of the pair. The goal is to improve this fea-
sible dual solution, ideally to make it dual-optimal. We further assume a finite
collection B ⊆ 2[m] of subsets (blocks) of dual variables is given.

1 Under the assumption that an initial dual feasible solution is provided.



Constraint Propagation and Block-Coordinate Descent 3

2 Block-Coordinate Descent with Relative Interior Rule

We start by describing BCD applied to the dual LP (1), taking into account the
result [22, 21]. For convenience, we include the dual constraints into the function
f : Rm → R ∪ {∞} by defining

f(y) =

{

bT y if AT y ≥ c,

∞ otherwise.
(2)

One BCD iteration improves a feasible dual solution y by choosing a block B ∈ B
and optimizing over variables yB = (yi)i∈B , keeping the remaining variables
y−B = (yi)i∈[m]−B constant. That is, it changes yB to satisfy

yB ∈ argmin
y′

B
∈RB

f(y′B, y−B). (3)

The set argminy′

B
∈RB f(y′B, y−B) ⊆ R

B of block-wise minimizers is a non-empty
convex polyhedron. If this polyhedron contains more than one point, we need
to choose a single element from this polyhedron. To satisfy the relative interior
rule, the update must be modified to

yB ∈ ri argmin
y′

B
∈RB

f(y′B, y−B) (4)

where riX denotes the relative interior of a convex set X [12, §2.1]. The following
are the main results of [22, 21]:

Definition 1. A point y feasible to the dual in (1) is

– a local minimum (LM) of f w.r.t. B if (3) holds for all B ∈ B,
– an interior local minimum (ILM) of f w.r.t. B if (4) holds for all B ∈ B,
– a pre-interior local minimum (pre-ILM) of f w.r.t. B if there is an ILM y′

such that y is in a face of the polyhedron { y | AT y ≥ c } containing y′ in its
relative interior.

Theorem 1. Let (Bi)
∞
i=1 be a sequence of blocks Bi ∈ B that contains each

element of B an infinite number of times. Let (yi)∞i=1 be a sequence produced by
the BCD method, where the blocks are visited in the order given by (Bi)

∞
i=1.

A. If (yi)∞i=1 satisfies (4) and y1 is an ILM, then yi is an ILM for all i.
B. If (yi)∞i=1 satisfies (4) and y1 is a pre-ILM, then yi is an ILM for some i.
C. If (yi)∞i=1 satisfies (3) and y1 is a pre-ILM, then bT yi = bTy1 for all i.
D. If (yi)∞i=1 satisfies (4) and y1 is not a pre-ILM, then bT yi < bT y1 for some i.

Thus, when we are at a pre-ILM, the objective cannot be improved by any
further BCD iterations. When we are not at a pre-ILM, BCD with the relative
interior rule inevitably improves the objective in a finite number of iterations.
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3 Primal-Dual Approach

Let us now focus on the second of the two approaches we consider in this paper.
By the complementary slackness theorem [14, 13], a primal feasible solution x

and a dual feasible solution y to (1) are optimal if and only if xi(A
T
i y−c) = 0 for

all i ∈ [n]. In addition, x∗ is in the relative interior of the primal optimizers and
y∗ is in the relative interior of the dual optimizers if and only if they satisfy strict
complementary slackness condition [23] (x∗

i = 0) ⊕ (AT
i y

∗ = c) for all i ∈ [n]
where ⊕ denotes exclusive disjunction. If both primal and dual are feasible and
bounded, there always exist such x∗, y∗ [12, Theorem 2.1.3].

The iteration of the primal-dual approach proceeds as follows. Denoting

K(y) = {i ∈ [n] | AT
i y = ci}, (5)

the index set of dual constraints active at y, the complementary slackness con-
dition reads

Ax = b (6a)

xi ≥ 0 ∀i ∈ K(y) (6b)

xi = 0 ∀i ∈ [n]−K(y) (6c)

Thus, y is dual-optimal for (1) if and only if system (6) is feasible. By Farkas’
lemma [13, §6] (or by LP duality), (6) is infeasible if and only if the system

bT ȳ < 0 (7a)

AT
i ȳ ≥ 0 ∀i ∈ K(y) (7b)

is feasible. In that case, any solution ȳ to (7) is an improving direction for the
dual (1) from point y, i.e., there is ǫ > 0 such that bT (y + ǫȳ) < bT y and
AT (y + ǫȳ) ≥ c. Updating y ← y + ǫȳ yields a better dual feasible solution.

The described approach is similar to the well-known primal-dual method
[14, §5], where complementary slackness (6) is not required strictly but only its
violation is minimized. The motivation for the method is that problem (6) may
be easier to solve than (1), possibly by combinatorial algorithms [14, §6].

3.1 Constraint Propagation

Deciding feasibility of a system of linear inequalities (such as (6)) can be too
costly for large instances. Therefore, we proposed in [5, §2] to do it by constraint
propagation: using a small fixed set of inference (or propagation) rules, we itera-
tively infer new linear inequalities from the system and add them to the system.
If a contradictory inequality is inferred, the initial system was infeasible; then an
infeasibility certificate (such as ȳ in (7)) is constructed from the propagation his-
tory. The drawback of this method is that it is in general refutation-incomplete:
it may not infer a contradiction even if the system is infeasible.

While in [5, §2] we did not restrict the form of the used inference rules, here
we consider one particular form: choose a subset of the inequalities and infer
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which of them are active (i.e., hold with equality). For the particular case of
system (6), this means we choose a subset B ∈ B of equalities (6a) and decide
if they, together with (6b) and (6c), imply that some of the inequalities (6b) is
active, i.e., xi = 0. Indeed, this can be seen as inferring the inequality xi ≤ 0 from
the system. It is our key observation in this paper that with this propagation
rule the primal-dual approach has the same fixed points as BCD (see §4).

Precisely, the algorithm first initializes K = K(y) and then repeats the fol-
lowing iteration: choose B ∈ B, find all indices i ∈ K for which the system

Ajx = bj ∀j ∈ B (8a)

xi ≥ 0 ∀i ∈ K (8b)

xi = 0 ∀i ∈ [n]−K (8c)

implies2 xi = 0, and remove these indices from K. If the set K shrinks so
much that system (8) becomes infeasible for some B ∈ B, then clearly the
original system (6) is infeasible. Next, we analyze this algorithm, showing that
its properties are analogous to the well-known arc-consistency algorithm.

Definition 2. For B ⊆ [m], a set K ⊆ [n] is B-consistent if for every i ∈ K
system (8) does not imply xi = 0, i.e., if the system

Ajx = bj ∀j ∈ B (9a)

xi > 0 ∀i ∈ K (9b)

xi = 0 ∀i ∈ [n]−K (9c)

is feasible. For B ⊆ 2[m], K is B-consistent if it is B-consistent for all B ∈ B.

Proposition 1. If K and K ′ are B-consistent, then K ∪K ′ is B-consistent.

Proof. If (9) for some B ∈ B is satisfied by x (resp. x′) for K (resp. K ′), then it
is satisfied by (x+ x′)/2 for K ∪K ′. ⊓⊔

By Proposition 1, the B-consistent sets form a join-semilattice w.r.t. the
inclusion. Therefore, for any K ⊆ [n], either there is no B-consistent subset of K
or there exists the unique maximal B-consistent subset of K.

Definition 3. The propagator over block B ⊆ [m] is the map PB: 2
[n] ∪{⊥} →

2[n] ∪ {⊥} defined by3:

2 By saying that (8) implies xi = 0 we mean that xi = 0 holds for all x satisfying (8).
This can be decided by, e.g., projecting polyhedron (8) onto the i-th coordinate. The
projection is a singleton set {0} if and only if (8) implies xi = 0. The projection can
be computed by the Fourier-Motzkin elimination or by maximizing xi subject to (8)
(which equals 0 if and only if (8) implies xi = 0).

3 Note that PB(K) = ⊥ is different from PB(K) = ∅, since system (8) can be feasible
even for K = ∅ (if b = 0).



6 T. Dlask and T. Werner

– If K = ⊥, then PB(K) = ⊥.
– If K ⊆ [n] and (8) is infeasible, then PB(K) = ⊥.
– If K ⊆ [n] and (8) is feasible, then PB(K) ⊆ [n] and i ∈ PB(K) if and only

if (8) does not imply xi = 0.

Clearly, a set K ⊆ [n] is B-consistent if and only if PB(K) = K, and K is
B-consistent if and only if PB(K) = K for all B ∈ B.

Proposition 2. Map PB(·) satisfies the axioms of a closure operator unless4

PB(·) = ⊥, i.e., for all K,K ′ ⊆ [n] such that PB(K), PB(K
′) 6= ⊥ we have

– PB(PB(K)) = PB(K) (idempotence)
– PB(K) ⊆ K (intensivity)
– K ′ ⊆ K =⇒ PB(K

′) ⊆ PB(K) (monotonicity).

Proof. Idempotence and intensivity are straightforward. To prove monotonicity,
let K ′ ⊆ K and let H ′ (resp. H) be the polyhedron defined by (8) for K ′ (resp.
K). Clearly, ∅ 6= H ′ ⊆ H . If i ∈ [n] − PB(K), the projection of H onto xi

contains only 0. Therefore, the projection of H ′ onto xi also contains only 0, i.e.,
(8) for K ′ implies xi = 0, hence i ∈ [n]− PB(K

′). Thus PB(K
′) ⊆ PB(K). ⊓⊔

Definition 4. Given K ∈ 2[n] ∪ {⊥}, the propagation algorithm repeats the
following iteration: find B ∈ B such that PB(K) 6= K and set K ← PB(K). If
no such B ∈ B exists, return the final K.

The propagation algorithm terminates in a finite number of steps. If at any
iteration we get K = ⊥, the algorithm terminates due to PB(⊥) = ⊥ for all
B ∈ B. Otherwise, by intensivity of PB(·), K can decrease only a finite number
of times.

Proposition 3. If K ∈ [n] has a B-consistent subset, the propagation algorithm
returns the maximal B-consistent subset of K.

Proof. The propagation algorithm creates a finite decreasing chain K1 ⊃ K2 ⊃
K3 ⊃ · · · where K1 = K and Kl+1 = PBl

(Kl) where Bl ∈ B is the block chosen
in the l-th step. Let L be arbitrary B-consistent subset of K. We will prove by
induction that L ⊆ Kl for all l. Clearly, L ⊆ K = K1. If L ⊆ Kl, then

L = PBl
(L) ⊆ PBl

(Kl) = Kl+1 (10)

where the first equality follows from B-consistency of L and the inclusion follows
from monotonicity of PBl

(·) by Proposition 2. See that it cannot happen that
PBl

(Kl) = ⊥ for any l because (8) is feasible for all B ∈ B for L and L ⊆ Kl. ⊓⊔

By Proposition 3, the result of the propagation algorithm does not depend
on the order in which the elements of B are visited. Thus, we can introduce the
operator PB: 2

[n] ∪ {⊥} → 2[n] ∪ {⊥} where PB(K) is the unique result of the
algorithm with input K.

4 The exception of ⊥ could be removed by augmenting the set 2[n], partially ordered
by set inclusion, with ⊥ as its least element.
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Proposition 4. The operator PB(·) satisfies the axioms of a closure operator
unless PB(·) = ⊥.

Proof. Idempotence and intensivity follow directly from the proof of Proposi-
tion 3. We will prove monotonicity by contradiction: let K ′ ⊆ K and PB(K) ⊂
PB(K

′). By intensivity, we obtain PB(K
′) ⊆ K ′ ⊆ K. However, PB(K) is

B-consistent and PB(K
′) ⊆ K. Since PB(K) ⊂ PB(K

′), PB(K) is not the maxi-
mal B-consistent subset of K, which is contradictory with Proposition 3. ⊓⊔

Due to Proposition 4, PB(K) can be called the B-consistency closure of K.
Observe that the properties of PB(·) and PB(·) are analogous to the properties of
the arc-consistency propagator and arc-consistency closure, respectively. In more
general view, the propagator resembles domain-based constraint propagation [1],
where stability under union corresponds to the property given by Proposition 1
and Φ-closure corresponds to B-consistent closure.

If PB(K(y)) = ⊥, then system (6) is infeasible. Then there exists an improv-
ing direction ȳ satisfying (7). Such an improving direction can be constructed
from the history of the propagation, as we describe in Appendix B. But note
that improving directions are not necessary for our analysis in this paper as we
only consider the fixed points of the primal-dual approach.

As propagation is not refutation-complete, PB(K(y)) 6= ⊥ does not in general
imply that (6) is feasible. Consequently, bT y is not the optimal value of the
pair (1) but only its upper bound.

The primal-dual approach with the described propagation is used, under
various names, in several existing methods. One example is the VAC algorithm [2]
and the Augmenting DAG algorithm [10, 19], where the primal problem (1) is the
basic LP relaxation of the Weighted CSP and our propagation is equivalent to
the arc-consistency algorithm [5]. An approach proposed in [5] to upper-bound
the LP relaxation of Weighted Max-SAT is (up to technical details) another
example. If the minimization of a convex piecewise-affine function is expressed
as an LP, then our method subsumes the sign relaxation technique introduced
in [20] and further developed in [3].

4 Relation Between the Approaches

We now state the relation between BCD with the relative interior rule (§2) and
the primal-dual approach in which system (6) is solved by constraint propagation
as described in §3.1. The proof of the theorem is in Appendix A.

Theorem 2. Let y be a feasible point for dual (1). Then:

– y is an LM of dual (1) w.r.t. B if and only if PB(K(y)) 6= ⊥ for all B ∈ B,
– y is an ILM of dual (1) w.r.t. B if and only if PB(K(y)) = K(y),
– y is a pre-ILM of dual (1) w.r.t. B if and only if PB(K(y)) 6= ⊥.

Theorem 2 characterizes the previously introduced types of local minima
in BCD by local consistency conditions. It also shows that BCD with relative
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interior rule cannot improve the fixed points of the primal-dual approach based
on propagation and vice versa. This yields the following corollary.

Corollary 1. The following statements are equivalent:

– For all feasible y for the dual (1), if (6) is infeasible then PB(K(y)) = ⊥
(i.e., propagation is refutation-complete).

– Any ILM y of the dual (1) w.r.t. B is a global optimum.

This result shows that the question whether BCD fixed points are global
minima for a given class of LPs can be reformulated as the question whether
constraint propagation decides feasibility of a certain class of linear inequalities.

5 Other Forms of Linear Programs

It is well-known that linear programs come in different forms [14, §2.1] which
can be easily transformed to each other, preserving global optima. One can ask
if the propagation algorithm can be formulated and the equivalence with BCD
holds also for different forms than (1). This question is non-trivial because trans-
formations that preserve global optima do not necessarily preserve (pre-)interior
local optima [6]. We show that independently of the formulation, if we use the
propagation rule that infers activity of inequality constraints (as we mentioned
in the beginning of §3.1), the two approaches remain equivalent.

5.1 Primal LP with Inequalities and Non-Negative Variables

Consider for example the primal-dual pair

max cTx min bT y (11a)

Ax ≤ b y ≥ 0 (11b)

x ≥ 0 AT y ≥ c (11c)

that can be equivalently reformulated [13] by introducing slack variables sj ≥ 0,
j ∈ [m] as

max cTx min bT y (12a)

Ax+ s = b y ∈ R
m (12b)

x ≥ 0 AT y ≥ c (12c)

s ≥ 0 y ≥ 0 (12d)

which is in the form (1). See that BCD in the duals (11) and (12) is identical.
The propagation rules presented previously in §3.1 for the LP (12) corre-

spond to deciding which sj and xi are forced to be zero. Clearly, setting sj = 0
corresponds to setting Ajx = bj and enforcing sj > 0 implies Ajx < bj. Thus,
instead of rewriting (11) into (12), we can apply propagation directly on the
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primal (11) except that when considering the system (9) for some B ∈ B, we
will instead of a single set K use two sets KX ⊆ [n] and KS ⊆ [m] that indicate
which inequalities need to be satisfied strictly and which with equality, i.e., we
will use

Ajx < bj ∀j ∈ KS ∩B xi > 0 ∀i ∈ KX (13a)

Ajx = bj ∀j ∈ ([m]−KS) ∩B xi = 0 ∀i ∈ [n]−KX (13b)

instead of (9). Clearly, deciding which inequalities among Ax ≤ b in primal (11)
need to be satisfied with strict inequality (resp. with equality) by considering a
set KS ⊆ [m] is in one-to-one correspondence with deciding which slack variables
sj in (12) can be non-zero (resp. are forced to be zero).

5.2 Primal LP with Inequalities and Unconstrained Variables

Another general primal-dual pair that we are going to consider is

max cTx min bT y (14a)

Ax ≤ b y ≥ 0 (14b)

x ∈ R
n AT y = c (14c)

where y is optimal for the dual if and only if there exists x ∈ R
n such that

Ajx ≤ bj ∀j ∈ K ′(y) (15a)

Ajx = bj ∀j ∈ [m]−K ′(y) (15b)

where K ′(y) = {j ∈ [m] | yj = 0} and (15) again follows from complementary
slackness. From this point, we could completely repeat the reasoning in §3.1 and
prove the same theorem as in §4 except that we would replace K(y) by K ′(y),
replace condition AT

i y > c (resp. AT
i y = c) by yj > 0 (resp. yj = 0) and infer

whether the inequality Ajx ≤ bj should hold strictly or with equality instead of
inferring it for xi ≥ 0. This is based on similarity between (15) and (6).

5.3 Redundant Constraints

It was observed in [6] that adding redundant constraints into an LP has signifi-
cant influence on its solvability by (block-)coordinate descent. Using our results
from this paper, we are able to explain this quite naturally.

As an example, consider the following LP relaxation of weighted vertex cover
on a graph (V,E) with vertex weights w : V → R

+ together with its dual

min wTx max
∑

{i,j}∈Eyij (16a)

xi + xj ≥ 1 yij ≥ 0 ∀{i, j} ∈ E (16b)

xi ≥ 0
∑

j∈Ni
yij ≤ wi ∀i ∈ V (16c)
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where Ni is the set of neighbors of vertex i in the graph. If we optimized the
primal or the dual (16) by coordinate descent along individual variables (i.e.,
blocks of size 1), there are interior local optima5 that are not global optima [6].
However, if we add redundant constraints x ≤ 1 to the primal, we obtain

min wTx max
∑

{i,j}∈Eyij +
∑

i∈V zi (17a)

xi + xj ≥ 1 yij ≥ 0 ∀{i, j} ∈ E (17b)

xi ≥ 0 zi +
∑

j∈Ni
yij ≤ wi ∀i ∈ V (17c)

xi ≤ 1 zi ≤ 0 ∀i ∈ V. (17d)

By the result in [6], any interior local optimum of dual (17) w.r.t. blocks6 con-
sisting of variables yij , zi, and zj for each {i, j} ∈ E is a global optimum.

The explanation for the difference between (non-)optimality for the different
formulations lies in the fact that in case of (16), we can only propagate equality
in constraints (16b) and xi = 0. However, in (17), we are also able to propagate
xi = 1 due to the added constraint xi ≤ 1. This results in a stronger propagation
algorithm which is even refutation-complete for this case.

This also holds for the LP formulation of min-st-cut and its dual, maximum
flow, which was also considered in [6, §4.3]. Adding redundant bounds 0 ≤ xi ≤ 1
for variables in min-st-cut results in optimality of BCD on its dual. However, the
dual of the usual formulation of min-st-cut (i.e., without these bounds) is not
amenable to BCD [6, §4.3]. This difference is now explained by the possibility
of the underlying propagation algorithm to set these variables to their bounds,
i.e., set xi = 0 or xi = 1 which is not possible if variables x are unbounded.

The result in this paper therefore also sheds light on which constraints are
useful in terms of propagation or BCD even though they are redundant from the
point of global optimality of the original linear program.

6 Conclusion

Even though propagation in a system of linear inequalities can be performed
in many ways, we have defined a propagation algorithm which not only has
natural and useful properties, but it also allows full characterization of types
of local minima in BCD. Additionally, there is a tight connection between the
fixed points of BCD with relative interior rule and the fixed points of primal-
dual approach based on this propagation algorithm. Despite the fact that both

5 In case of the dual, we maximize, so we should talk about interior local maxima, but
this relation is straightforward by inverting the sign in the criterion and changing
maximization to minimization.

6 In analogy with [6, §3 equation (7)], zi = min{wi −
∑

j∈Ni
yij , 0} ∀i ∈ V holds in

any optimal solution of dual (17) and so the dual can be equivalently reformulated
as maximization of a concave piecewise-affine function with non-negative variables,
which makes optimization along these blocks simpler. In detail, variables z were
eliminated and thus we update only each yij separately.
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algorithms may not reach a global optimum, none of the algorithms can improve
the fixed points of the other.

We argued that the propagation algorithm can be generalized to linear pro-
grams in any form. In detail, BCD in the dual for a given set of blocks B corre-
sponds to propagating which primal constraints given by complementary slack-
ness should be active and which inactive while inferring only from subsets of the
constraints given by sets in B.

We believe that our findings are interesting for the theory of BCD as they ex-
plain what kind of local consistency is reached by any BCD algorithm (both with
or without relative interior rule) on any LP. E.g., As shown in [21], since both
TRW-S [9] and max-sum diffusion [11, 19] satisfy the relative interior rule, their
fixed point conditions are equivalent to the proposed local consistency condition
if applied to the specific LP formulations which these algorithms optimize.

This tight connection between the decidability of feasibility of a system of
linear inequalities by refutation-incomplete propagation and BCD may provide
theoretical ground for analysis of BCD in terms of constraint propagation. More-
over, it may result in newly discovered classes of problems optimally solvable by
BCD or better design for choices of blocks of variables so that the propagation is
more effective and BCD may reach better local optima. This connection also pre-
cisely explains the differences in applicability of BCD caused by minor changes
in the formulation of the optimized LP, as discussed in §5.3.

The practical impact of these results is mainly focused on approximately
optimizing challenging large-scale LPs which are not solvable by off-the-shelf
LP solvers due to their super-linear space complexity. Propagation algorithms
subsumed (up to technical details) by the proposed one were previously derived
ad-hoc for specific LPs [2, 5, 10, 20, 3] where they provided useful solutions which
were often close to global optima. Presenting all of these algorithms in a single
framework may simplify design of similar algorithms in the future.

A Proofs

Proposition 5. Let y be feasible for the dual (1) and let B ⊆ [m]. Block of
variables yB satisfies (4) if and only if PB(K(y)) = K(y).

Proof. For the ‘only-if’ direction, construct the dual (1) restricted only to the
variables yB as follows:

max kTx min
∑

j∈Bbjyj (18a)

Ajx = bj yj ∈ R ∀j ∈ B (18b)

xi ≥ 0
∑

j∈BAjiyj ≥ ki ∀i ∈ [n] (18c)

where ki = ci −
∑

j∈[m]−B Ajiyj are viewed as constants determined by the
remaining variables that are not in the block and Aji is the entry of matrix A
on j-th row and i-th column. The problem on left is the corresponding primal.
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Since yB is in the relative interior of optimizers of the dual (18) by our
assumption, there must exist a solution x ∈ R

n
+ for the primal (18) such that

strict complementary slackness holds. The condition for this case reads

∑

j∈BAjiyj = ki ⇐⇒ xi > 0 ∀i ∈ [n], (19)

therefore x satisfies xi = 0 ∀i ∈ [n] −K(y) and xi > 0 ∀i ∈ K(y) by definition
of K(y) and ki. By feasibility of x for primal (18), we have that i ∈ PB(K(y))
for all i ∈ K(y). By intensivity of PB(·), we obtain PB(K(y)) = K(y).

For the ‘if’ direction, assume PB(K(y)) = K(y), then there must exist a
solution x ∈ R

n for (9) where K = K(y). This vector x is a feasible solution for
the primal (18). By definition of K(y) in (5) and definition of ki, it follows that
strict complementary slackness (19) is satisfied in (18), therefore both x and yB
lie in the relative interior of optimizers of the primal-dual pair (18). ⊓⊔

Corollary 2. Let y be feasible for dual (1). Then y is an ILM of dual (1)
w.r.t. B if and only if PB(K(y)) = K(y).

Proof. By definition, y is an ILM of dual (1) w.r.t. B if (4) holds ∀B ∈ B.
Applying Proposition 5, this is equivalent to PB(K(y)) = K(y) ∀B ∈ B, i.e.,
PB(K(y)) = K(y). ⊓⊔

Proposition 6. Let y be feasible for the dual (1) and let B ⊆ [m]. Block of
variables yB satisfies (3) if and only if PB(K(y)) 6= ⊥.

Proof. Block yB satisfies (3) if and only if it is optimal for the dual (18), which
happens if and only if there exists x ∈ R

n
+ satisfying complementary slackness.

By definition of K(y), complementary slackness conditions are equivalent to (8)
for K = K(y) which is feasible if and only if PB(K(y)) 6= ⊥. ⊓⊔

Proposition 7. If point x is in the relative interior of optimizers of the pri-
mal (1), then the set {i ∈ [n] | xi = 0} is minimal w.r.t. inclusion among all
optimal solutions and is unique.

Proof. By contradiction: let x (resp. y) be from the relative interior of optimizers
of primal (resp. dual) (1). Let x′ be also optimal for the primal and let {i ∈ [n] |
x′
i = 0} be smaller and/or different. Then, there is k ∈ [n] such that x′

k > 0 and
xk = 0. Since x and y are in the relative interior of optimizers, they satisfy strict
complementary slackness, thus AT

k y > ck. Complementary slackness is satisfied
by all pairs of primal and dual optimal solutions, but x′ and y do not satisfy it
because x′

k > 0 and AT
k y > ck, hence x′ is not optimal. ⊓⊔

Proposition 8. Let y be a feasible point for dual (1) and let B ⊆ [m] so that
PB(K(y)) = K 6= ⊥. Then, there exists a feasible point y′ such that bT y = bT y′

and PB(K(y′)) = K(y′) = K.
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Proof. Consider the primal-dual pair

max 0 min bT ȳ (20a)

Ajx = bj ȳj ∈ R ∀j ∈ B (20b)

xi = 0 − ∀i ∈ [n]−K(y) (20c)

xi ≥ 0 AT
i ȳ ≥ 0 ∀i ∈ K(y) (20d)

− ȳj = 0 ∀j ∈ [m]−B. (20e)

which was simplified in the sense that if some primal (resp. dual) variable equals
zero, then we can omit the corresponding dual (resp. primal) constraint without
changing the problem since the whole column (resp. row) of A can be set to zero.

Let x (resp. ȳ) be in the relative interior of optimizers for the primal (resp.
dual) (20). By Proposition 7 applied on matrix A with only rows in B and only
columns in K(y), if some xi = 0, then this is the only value xi can take, therefore
i /∈ K because primal (20) is (8) forK(y). If some variable xi can take a non-zero
value in (20), then it is non-zero again by Proposition 7 and i ∈ K.

Since the pair of optimal solutions x, ȳ lies in the relative interior of optimiz-
ers, they satisfy strict complementary slackness in this form:

xi = 0 ∧ AT
i ȳ > 0 ∀i ∈ K(y)−K (21a)

xi > 0 ∧ AT
i ȳ = 0 ∀i ∈ K. (21b)

We will now choose any ǫ such that

0 < ǫ <
ci −AT

i y

AT
i ȳ

∀i ∈ [n]−K(y) such that AT
i ȳ < 0 (22)

where the upper bound is positive because AT
i ȳ < 0 by the condition in the

upper bound and for all i ∈ [n] − K(y), ci − AT
i y < 0 by feasibility of y and

definition of K(y). Therefore, (ci − AT
i y)/(A

T
i ȳ) is positive for all i considered

in (22) and there exists some ǫ satisfying (22). We choose any ǫ satisfying (22)
and claim that y′ = y + ǫȳ satisfies the required conditions.

– If i ∈ K(y)−K, then AT
i ȳ > 0 by (21) and AT

i y = ci by definition of K(y).
Therefore, AT

i y
′ = ci + ǫAT

i ȳ > ci, so i /∈ K(y′), i.e., i ∈ [n]−K(y′).
– If i ∈ K, then AT

i y = ci because i ∈ K = PB(K(y)) ⊆ K(y) and AT
i ȳ = 0

by (21). Therefore, AT
i y

′ = ci + ǫ · 0 = ci and i ∈ K(y′).
– If i ∈ [n] − K(y), then AT

i y > ci by definition of K(y) and AT
i ȳ can have

any sign. We distinguish the following cases:
• If AT

i ȳ ≥ 0, then AT
i y

′ > ci+ǫAT
i ȳ ≥ ci, so i /∈ K(y′), i.e., i ∈ [n]−K(y′).

• If AT
i ȳ < 0, then by definition of ǫ, ǫ < (ci −AT

i y)/(A
T
i ȳ) which implies

AT
i y

′ = AT
i y + ǫAT

i ȳ > ci, hence i /∈ K(y′), i.e., i ∈ [n]−K(y′).

Therefore, [n]−K(y) ⊆ [n]−K(y′) and K(y)−K ⊆ [n]−K(y′), which results
in [n]−K ⊆ [n]−K(y′). This together with K ⊆ K(y′) yields K(y′) = K.

Point y′ is feasible since AT
i y

′ ≥ ci for all i ∈ [n] as just shown above. Because
the optimal value of the primal (20) is 0 and ȳ is an optimal dual solution, it
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follows from strong duality that bT ȳ = 0, therefore bT y′ = bT y+ ǫbT ȳ = bT y. By
idempotency of PB(·), it follows that PB(K) = K, i.e., PB(K(y′)) = K(y′). ⊓⊔

Remark 1. The point y′ constructed in Proposition 8 can in fact be obtained
by updating block yB to satisfy (4). By construction of y′ from y derived in
Proposition 8, yj = y′j ∀j ∈ [m] − B, therefore only the variables in block B
change. Combining Proposition 5 with PB(K(y′)) = K(y′) implies that block
y′B is in the relative interior of optimizers of the dual (1) restricted to this block.

Proposition 9. Let y be a feasible point for dual (1) such that PB(K(y)) 6= ⊥,
then y is a pre-ILM of dual (1) w.r.t. B.

Proof. By the definition of PB(·), there must exist a finite sequence (Bl)
L
l=1 for

Bl ∈ B, l ∈ [L] such that

PBL
(PBL−1

(PBL−2
(· · ·PB2

(PB1
(K(y))) · · · ))) = K (23)

and PB(K) = K. In other words, the sequence corresponds to the order of the
blocks B applied in the propagation algorithm until a fixed point is reached.

We construct a sequence (yl)L+1
l=1 , yl ∈ R

m where y1 = y and yl+1 is con-
structed from yl as in the proof of Proposition 8 for B = Bl. By induction and
properties of the construction, since y1 is feasible, the other points y2, y3, ..., yL+1

are also feasible. Also, bT y1 = bT y2 = ... = bT yL+1 because the construction
preserves objective. Finally, PBl

(K(yl)) = K(yl+1) for all l ∈ [L], therefore
PBL

(K(yL)) = K(yL+1) = K and PB(K) = K, so PB(K(yL+1) = K(yL+1). By
Corollary 2, yL+1 is an ILM w.r.t. B.

By Remark 1, the sequence y1, ..., yL+1 can be obtained by updating the cor-
responding blocks into the relative interior of optimizers. Because the objective
did not improve during these updates and yL+1 is ILM, it follows from Theo-
rem 1 (statements A,C,D) that y is a pre-ILM. ⊓⊔

Proposition 10. If y is a pre-ILM of dual (1) w.r.t. B, then PB(K(y)) 6= ⊥.

Proof. Proof by contradiction. Suppose y is pre-ILM and PB(K(y)) = ⊥, then
there must exist a finite sequence (Bl)

L
l=1 for Bl ∈ B, l ∈ [L] such that

PBL
(PBL−1

(PBL−2
(· · ·PB2

(PB1
(K(y))) · · · ))) = ⊥ (24)

which consists of the used blocks B in the propagation algorithm.
As discussed in Remark 1, we can imitate this propagation by creating a

sequence of dual feasible points y1, y2, · · · , yL where y1 = y and yl+1 is created
from yl by changing block of variables Bl to be in the relative interior of opti-
mizers. This is given by construction in the proof of Proposition 8 and it holds
that PBl

(K(yl)) = K(yl+1) for all l ∈ [L− 1]. Since PBL
(K(yL)) = ⊥, yL is not

a local minimum by Proposition 6. Therefore, updating the block of variables
BL in yL by (4) (or even (3)) to obtain a point yL+1 improves objective.

Thus, we applied BCD with relative interior rule to obtain the sequence
(yl)L+1

l=1 and the objective improved. This is contradictory with Theorem 1 (state-
ment C) which states that block updates that choose any optimizer (even without
relative interior rule) cannot improve the objective from a pre-ILM. ⊓⊔
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Proof (Theorem 2). For the first part, point y is an LM of dual (1) w.r.t. B by
its definition if yB satisfies (3) for all B ∈ B. By Proposition 6, this is equivalent
to PB(K(y)) 6= ⊥ ∀B ∈ B. The second part is given in Corollary 2 and the third
part follows from Proposition 9 and Proposition 10. ⊓⊔

B Constructing an Improving Feasible Direction

As discussed in §3, if (6) is infeasible, there exists an improving feasible direc-
tion (7), we are going to describe how to obtain it based on the propagation
algorithm defined in §3.1. We remark that conditions (7) define a whole convex
cone of improving directions and our algorithm finds one of them based on the
specific implementation of the construction.

Let us have a set of blocks B ⊆ 2[m] and a dual feasible point y such that
PB(K(y)) = ⊥, which implies infeasibility of (6). Consider sequences (Bl)

L
l=1

and (Kl)
L
l=1 where K1 ⊃ K2 ⊃ · · · ⊃ KL, K1 = K(y), Kl+1 = PBl

(Kl) for every
l ∈ [L− 1], and PBL

(KL) = ⊥. To construct ȳ, we use the primal-dual pair

max 0 min bT ȳl (25a)

Ajx = bj ȳlj ∈ R ∀j ∈ Bl (25b)

xi = 0 – ∀i ∈ [n]−Kl (25c)

xi ≥ 0 AT
i ȳ

l ≥ 0 ∀i ∈ Kl (25d)

– ȳlj = 0 ∀j ∈ [m]− Bl. (25e)

and proceed as follows:

1. Initialize ȳ ← ȳL where ȳL is any feasible dual solution of (25) for l = L
with7 bT ȳL < 0.

2. For all l ∈ {L− 1, L− 2, ..., 2, 1} in descending order:
(a) If AT

i ȳ ≥ 0 for all i ∈ Kl −Kl+1, continue with l ← l − 1.
(b) Else, find ȳl from the relative interior of optimizers of dual (25) for

current l, update ȳ ← ȳ + δlȳ
l where δl = max

i∈Kl−Kl+1

AT

i
ȳ<0

−
AT

i
ȳ

AT

i
ȳl
, and set

l ← l − 1.
3. Return ȳ as improving feasible direction satisfying (7).

Due to lack of space, we omit the proof of this procedure. We will only state
that it is based on induction, i.e., after some index l ∈ [L] is processed, it holds
that AT

i ȳ ≥ 0 for all i ∈ Kl and bT ȳ = bT ȳL < 0 is maintained during the whole
algorithm. Thus, eventually AT

i ȳ ≥ 0 holds for all i ∈ K1 = K(y).
After ȳ is calculated, we can find a step size ǫ > 0 and perform update of y

as discussed in §3. Even though this approach may seem complicated, it is easy
to see that in cases when the blocks B are small, the problem (25) is also small
and could even be solvable in closed-form for some special cases.

7 Such ȳL exists because primal (25) is infeasible for l = L due to PBL
(KL) = ⊥ and

the dual (25) is therefore unbounded since the dual always has a feasible solution.
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