
Activity Propagation in Systems of Linear Inequalities and Its

Relation to Block-Coordinate Descent in Linear Programs

Tomáš Dlask∗, Tomáš Werner

Machine Learning Group, Department of Cybernetics, Faculty of Electrical Engineering,
Czech Technical University in Prague

dlaskto2@fel.cvut.cz, werner@fel.cvut.cz

Abstract

We study a constraint propagation algorithm to detect infeasibility of a system of linear inequalities
over continuous variables, which we call activity propagation. Each iteration of this algorithm chooses
a subset of the inequalities and if it infers that some of them are always active (i.e., always hold
with equality), it turns them into equalities. We show that this algorithm can be described as
chaotic iterations and its fixed points can be characterized by a local consistency, in a similar way to
traditional local consistency methods in CSP such as arc consistency. Via complementary slackness,
activity propagation can be employed to iteratively improve a dual-feasible solution of large-scale
linear programs in a primal-dual loop – a special case of this method is the Virtual Arc Consistency
algorithm by Cooper et al. As our second contribution, we show that this method has the same set
of fixed points as block-coordinate descent (BCD) applied to the dual linear program. While BCD
is popular in large-scale optimization, its fixed points need not be global optima even for convex
problems and a succinct characterization of convex problems optimally solvable by BCD remains
elusive. Our result may open the way for such a characterization since it allows us to characterize
BCD fixed points in terms of local consistencies.

Keywords: Block-Coordinate Descent, Constraint Propagation, Primal-Dual Method, Linear Programming,

Virtual Arc Consistency

1 Introduction

Solving large-scale convex optimization problems (such as linear programming relaxations of large com-
binatorial problems encountered in artificial intelligence, computer vision or machine learning) can be
challenging and one often has to resort to approximate methods. One such popular method is block-
coordinate descent (BCD), which in every iteration optimizes the problem over a subset (block) of vari-
ables, keeping the remaining variables constant. If each block contains only a single variable, we speak
about coordinate descent. Unfortunately, BCD fixed points can be arbitrarily far from global optima even
for convex problems. The class of convex optimization problems for which BCD is known to converge to
global optima is currently quite narrow, revolving around unconstrained minimization of convex functions
whose non-differentiable part is separable [41].

For general (non-differentiable and/or constrained) convex problems, the set of block-optimal solutions
in a BCD iteration can contain more than one element. It has been recently argued [48, 47] that in that
case, one should choose an optimal solution from the relative interior of this set. BCD updates satisfying
this relative-interior rule are not worse than any other rule to choose block-optimal solutions. Of course,
this rule does not guarantee convergence to global optima.

BCD methods known as convex message passing are state of the art for approximately solving the
dual linear programming (LP) relaxation of the MAP inference problem in graphical models [43, 26, 36]
in computer vision and machine learning, which is equivalent to the weighted (or valued) CSP [42].
Examples are max-sum diffusion [29, 44], TRW-S [27], MPLP [20], or MPLP++ [40]. These methods
comply to the relative-interior rule (or at least have the same fixed points as BCD with this rule) [47]
and their fixed points are characterized by local consistencies – precisely, arc consistency of the active
tuples (i.e., the tuples for which the corresponding inequalities in the dual LP relaxation are active [45]).

∗Corresponding author.

1

The version of record of this article is published in Constraints and is available online at
https://doi.org/10.1007/s10601-023-09349-0.

https://doi.org/10.1007/s10601-023-09349-0

Another approach to tackle the dual LP relaxation of weighted CSP is the Virtual Arc Consistency
(VAC) algorithm [9] and the similar Augmenting DAG algorithm [28, 44]. Though these are not BCD
methods, their fixed points are also characterized by arc consistency of active tuples. We showed in [15]
that this approach is related to the primal-dual method [34, Section 5] in linear programming and gen-
eralized it to any linear program by replacing the arc-consistency algorithm with general constraint
propagation in a system of linear inequalities (assuming that an initial feasible solution is provided).

It has been observed [13] that when BCD with the relative-interior rule is applied to the dual LP
relaxation of SAT, it corresponds precisely to unit propagation. Moreover, there exists a connection
between a form of the dominating unit-clause rule and BCD with the relative-interior rule applied to the
dual LP relaxation of weighted Max-SAT [13].

The above results suggest there is a close relation between BCD applied to a linear program and
constraint propagation in a system of linear inequalities. In this paper, we describe this relation precisely.
While constraint propagation in a linear inequality system can be done in various ways, we study a
particular propagation algorithm which we call activity propagation. In every iteration, this algorithm
infers from a subset of inequalities that some of them are always active (i.e., always hold with equalities)
and turns these inequalities into equalities. When an infeasible system is produced in this way, clearly
the initial system was also infeasible. We show that activity propagation can be explained using the
framework of chaotic iterations and closure operators, in a similar way to many of the popular constraint
propagation methods for CSPs [2, 3]. Moreover, we show that the primal-dual approach [15] with activity
propagation and BCD with1 the relative-interior rule have the same fixed points. Thus, the question of
whether a given linear program is exactly solvable by BCD can be translated to the question of whether
feasibility of a certain class of linear inequality systems is decidable by activity propagation.

The structure of this paper is as follows. In Section 2, we overview the background on order theory
and linear programming that we will need throughout the paper. In Section 3, we formally define both
compared methods, BCD and the primal-dual approach. For the constraint-propagation-based primal-
dual approach, we also define and analyze the precise form of constraint propagation that we propose.
In Section 4, we show the connection between the aforementioned methods, characterize different types
of fixed points of BCD by local consistency conditions, and provide a characterization of linear programs
optimally solvable by BCD in terms of refutation-completeness of the associated propagator. We discuss
in Section 5 how our results generalize to linear programs in any form and also explain why adding
redundant constraints to a linear program may improve solvability of its dual by BCD. Appendix A shows
how to compute an improving direction whenever activity propagation detects that a current solution
is not optimal, which is important for a practical implementation of the primal-dual approach. Finally,
Appendix B presents a connection between sets satisfying the previously mentioned local consistency
condition and faces of the underlying polyhedron.

The current paper extends its earlier conference version [17] by relating our results to known facts
from order theory and linear programming, which improves readability and draws a clear analogy between
the proposed propagation rule and classical propagators considered in CSPs. Furthermore, we refine our
results so that additional connections emerge, such as the connection between individual BCD updates
and actions of a propagator, and improve the overall structure of our proofs. Finally, we provide a link
between sets satisfying an associated local consistency condition and faces of the underlying polyhedron.
Some parts of this paper appear in the first author’s dissertation [14].

2 Preliminaries

In this section, we provide the necessary background on order theory, chaotic iterations, linear program-
ming, and systems of linear inequalities.

2.1 Lattices, Closure Operators, and Chaotic Iterations

Let us begin by reviewing the basic concepts of order theory. We start by recalling the notions of lattice,
semilattice, and complete lattice. Next, we focus on the connection between complete lattices and closure
operators. We conclude by analyzing iterative applications of isotone and intensive mappings. This part
is based mainly on the books [6, 11]. Its purpose is to provide background for constraint propagation since

1Our results also apply to general BCD methods (possibly not adhering to the relative-interior rule) if their stopping
points are ‘best possible’ in the sense that no sequence of arbitrary BCD updates does not improve them – this will be
made more precise later (Definition 4). However, such stopping points coincide with those that are attained by BCD with
relative-interior rule.

2

locally consistent problems can be defined as common fixed points of propagators on partially ordered
sets [3].

Let S be a set and ⪯ be a partial order on S, i.e., ⪯ is a binary relation on S that is reflexive, anti-
symmetric, and transitive. Let us first recall the duality principle in partially ordered sets [6, Section 1][11,
Section 1.20]: for any true statement about a partially ordered set (S,⪯), there is a corresponding
true statement about its dual ordered set (S,⪰) where ⪰ is the inverse order (a.k.a. dual order), i.e.,
s1 ⪰ s2 ⇐⇒ s2 ⪯ s1 for all s1, s2 ∈ S. The corresponding dual statement is obtained by replacing all
(both explicit and implicit) occurrences of ⪯ in the statement by ⪰.

Inspired by the notation in [6], for Q ⊆ S, we define the set of all upper bounds and lower bounds
on Q in S, respectively, to be

Q↑
S = {s ∈ S | ∀q ∈ Q : q ⪯ s} (1a)

Q↓
S = {s ∈ S | ∀q ∈ Q : s ⪯ q}. (1b)

Furthermore, if q∗ ∈ Q↑
S satisfies q∗ ⪯ q for all q ∈ Q↑

S , then it is called the least upper bound on Q

in S and we denote it by q∗ =
∨

S Q. Analogously, if q∗ ∈ Q↓
S satisfies q∗ ⪰ q for all q ∈ Q↓

S , then it is
called the greatest lower bound on Q in S and is denoted by q∗ =

∧
S Q. The operations

∨
S and

∧
S are

called the join and the meet , respectively. For two-element sets Q = {q1, q2}, we write q1 ∨S q2 instead
of

∨
S {q1, q2} and q1 ∧S q2 instead of

∧
S {q1, q2}. In general, a partially ordered set need not have the

least upper bound or greatest lower bound for each of its subsets.
In particular, S↑

S is either empty or a singleton because if s1, s2 ∈ S↑
S , then s1 ⪯ s2 and s2 ⪯ s1 by

definition (1a), hence s1 = s2 by anti-symmetry. If S↑
S is non-empty, then S↑

S = {⊤} where ⊤ =
∨

S S ∈ S

is the top element of S. By the duality principle, S↓
S is also either empty or a singleton. If S↓

S = {⊥},
then ⊥ =

∧
S S ∈ S is the bottom element of S.2 Again, a partially ordered set need not contain the top

or the bottom element in general.
If the set S w.r.t. which the upper bounds, lower bounds, joins, and meets are taken is clear from

context, then we omit the subscript S for brevity, i.e., we simplify Q↑
S , Q

↓
S ,

∨
S , and

∧
S to Q↑, Q↓,

∨
,

and
∧

.

2.1.1 Lattices

Definition 1. A partially ordered set (S,⪯) is:
• a meet-semilattice if for any s1, s2 ∈ S, s1 ∧ s2 exists in S,

• a join-semilattice if for any s1, s2 ∈ S, s1 ∨ s2 exists in S,

• a lattice if it is a meet-semilattice and a join-semilattice,

• a complete lattice if for any Q ⊆ S, both
∧

Q and
∨

Q exist in S.

It is easily shown by induction [11, Section 2.11] that for a meet-semilattice (S,⪯) and any non-
empty finite Q ⊆ S,

∧
Q exists in S. Consequently, any non-empty finite meet-semilattice (S,⪯) has

a bottom element, namely
∧

S. By the duality principle, for any join-semilattice (S,⪯) and any non-
empty finite Q ⊆ S,

∨
Q exists in S. In particular, any non-empty finite join-semilattice (S,⪯) has a top

element,
∨

S. A complete lattice always has both the top and the bottom element [6, Theorem 2.10].
The following well-known theorem connects these concepts for a finite partially ordered set.

Theorem 1 ([33, 11, 6]). Let (S,⪯) be a non-empty finite partially ordered set. The following are
equivalent:

(a) (S,⪯) is a meet-semilattice with top element ⊤,
(b) (S,⪯) is a join-semilattice with bottom element ⊥,
(c) (S,⪯) is a complete lattice,

(d) (S,⪯) is a lattice.

By Theorem 1, it is possible to augment any finite meet-semilattice by introducing a new artificial top
element to obtain a complete lattice. Dually, one can include a bottom element in a finite join-semilattice
which is known as the lifting operation [11, Section 1.22].

2For the top and the bottom element, we adopt notation from [11, Section 1.21] to avoid using 0 and 1 which we reserve
for their numerical meaning.

3

2.1.2 (Dual) Closure Operators

Let us now discuss the connection between closure operators and complete lattices. In detail, the image of
any closure operator defined on a complete lattice is a complete sublattice of this lattice (see Theorem 4)
and, vice versa, under additional assumptions any complete sublattice of a complete lattice defines a
closure operator (Theorem 3).

First, we recall some properties of mappings on partially ordered sets:

Definition 2 ([6, Section 1.4]). Let (S,⪯) be a partially ordered set. Mapping f : S → S is

• extensive if ∀s ∈ S: s ⪯ f(s),

• intensive if ∀s ∈ S: f(s) ⪯ s,

• idempotent if ∀s ∈ S: f(s) = f(f(s)),

• isotone if ∀s1, s2 ∈ S: s1 ⪯ s2 =⇒ f(s1) ⪯ f(s2),

• a closure operator if it is extensive, idempotent, and isotone,

• a dual closure operator if it is intensive, idempotent, and isotone.

We denote the image of a mapping f : S → S by im f = {f(s) | s ∈ S}.

Proposition 2 (cf. [6, Section 1.4]). Let (S,⪯) be a partially ordered set and f : S → S be an idempotent
mapping. The set of fixed points of f coincides with its image, i.e., {s ∈ S | f(s) = s} = im f .

Proof. Inclusion in the ⊇ direction follows from idempotence and the other direction is clear from the
definition of a fixed point.

Lemma 1 ([11, Lemma 2.22(v)]). Let (S,⪯) be a complete lattice and S1 ⊆ S2 ⊆ S. Then
∧

S1 ⪰
∧

S2

and
∨

S2 ⪰
∨

S1.

Proof. The first claim follows from the fact that
∧

S2 =
∧

S1 ∧
∧

(S2 − S1) is a lower bound on
∧

S1.
The second claim follows from the duality principle.

Theorem 3 (cf. [11, Theorem 7.3]). Let (S,⪯) and (Q,⪯) be complete lattices such that Q ⊆ S.

(a) If the meet operations in (S,⪯) and (Q,⪯) coincide 3, then the mapping f : S → Q defined by

f(s) =
∧
{s}↑Q is a closure operator.

(b) If the join operations in (S,⪯) and (Q,⪯) coincide, then the mapping g : S → Q defined by g(s) =∨
{s}↓Q is a dual closure operator.

Proof. We show only (a) since (b) then follows from the duality principle. Notice that we do not need

to distinguish
∧

S and
∧

Q in the definition of f because {s}↑Q is a subset of Q and the meet operations
coincide.

We begin by extensivity: for s ∈ S, s ∈ {s}↑S holds by reflexivity of ⪯ and also {s}↑Q ⊆ {s}
↑
S due

to Q ⊆ S. Lemma 1 yields f(s) =
∧
{s}↑Q ⪰

∧
{s}↑S = s.

For isotony, let s1, s2 ∈ S be such that s1 ⪯ s2. Then {s1}↑Q ⊇ {s2}
↑
Q by transitivity of ⪯ and we

obtain f(s1) =
∧
{s1}↑Q ⪯

∧
{s2}↑Q = f(s2) by Lemma 1.

For idempotency, we have f(s) ∈ {f(s)}↑Q, so f(f(s)) =
∧
{f(s)}↑Q = f(s).

Focusing on the definition of f and g in Theorem 3, for any s ∈ S, we have that f(s) is the least
upper bound on s in Q and g(s) is the greatest lower bound on s in Q. Theorem 3 has the following
practical corollary.

Corollary 1. Let (S,⪯) and (Q,⪯) be complete lattices with Q ⊆ S. Define the mappings f, g : S → Q

by f(s) =
∧

Q {s}
↑
Q and g(s) =

∨
Q {s}

↓
Q. It holds that

Q = {s ∈ S | f(s) = s} = {s ∈ S | g(s) = s}. (2)

Proof. If s ∈ Q, s ∈ {s}↑Q and s ⪯ q holds for any q ∈ {s}↑Q by definition, so s =
∧

Q {s}
↑
Q = f(s). If

s /∈ Q, f(s) ̸= s due to im f = Q. The part with g is obtained dually.

3That is, for any Q′ ⊆ Q we have
∧

S Q′ =
∧

Q Q′. Similarly for the join.

4

Algorithm 1 Iterations of a given set of mappings applied to an initial element s ∈ S of a partially
ordered set (S,⪯).
input: partially ordered set (S,⪯), initial element s ∈ S, isotone and intensive map-

pings f1, . . . , fn : S → S.
1: s′ ← s
2: while ∃i ∈ [n] : fi(s

′) ̸= s′ do
3: Find such i.
4: Update s′ ← fi(s

′).

5: return s′

The converse connection between (dual) closure operators and complete lattices also holds and we
review it in the next theorem.

Theorem 4 ([6, Theorem 2.14][11, Section 7]). Let (S,⪯) be a complete lattice. If f : S → S is a closure
operator (or a dual closure operator), then (im f,⪯) is a complete lattice.

Proof. We prove the case when f is a closure operator. Let ⊤ =
∨

S S ∈ S be the top element in S
(which exists because it is a complete lattice). By extensivity of f , we have that ⊤ ⪯ f(⊤) ∈ S, hence
f(⊤) = ⊤ and ⊤ ∈ im f , so (im f,⪯) has the top element ⊤.

Next, let Q ⊆ im f and s =
∧

S Q ∈ S be the greatest lower bound on Q in S. We will show
that s ∈ im f . Clearly, for all q ∈ Q, we have that s ⪯ q by definition of s. Consequently, f(s) ⪯ f(q) = q
by isotony of f and by q being a fixed point of f (due to q ∈ im f). Therefore, f(s) ⪯

∧
S Q = s. By

extensivity of f and anti-symmetry of ⪯, f(s) = s, so s ∈ im f . Theorem 1 yields that (im f,⪯) is a
complete lattice.

The case when f is a dual closure operator is analogous.

2.1.3 Chaotic Iterations

(Dual4) closure operators frequently appear in the field of constraint propagation. An example is the
arc consistency closure [5, Section 3.3.1]. For more details, we refer to the partial order over domain-
based tightenings and Φ-closure in [5, Section 3.2] and domain reduction in [2, Section 3.1]. The closure
is typically obtained by iteratively applying propagators, which are usually intensive (or extensive, cf.
Footnote 4) and isotone mappings, but may also be idempotent, commutative, or semi-commutative
[5, 2, 3]. This general framework was originally studied in [2, 3] under the name chaotic iteration
and many constraint propagation algorithms, such as the well-known AC-3 algorithm, can be seen as
instantiations of this framework.

We outline a particular version of chaotic iterations in Algorithm 1. We are given a finite set of
isotone and intensive5 mappings on a finite partially ordered set (S,⪯). For an input element s ∈ S,
the algorithm finds the greatest common fixed point s′ of the mappings such that s′ ⪯ s (as stated by
Theorem 5).

Theorem 5 (cf. [3, Theorem 1]). Let (S,⪯) be a finite partially ordered set, s ∈ S, and f1, . . . , fn : S → S
be isotone and intensive mappings. Algorithm 1 terminates in a finite number of iterations and returns
the greatest common fixed point s′ of mappings f1, . . . , fn such that s′ ⪯ s.

Proof. In each iteration of the algorithm, the current s′ strictly decreases w.r.t. ⪯ by intensivity of fi.
This implies that s′ ⪯ s and, by finiteness of S, that the algorithm terminates after a finite number
of iterations. The fact that s′ is a common fixed point of all the mappings fi follows directly from the
condition on line 2 of the algorithm.

To prove that s′ is the greatest common fixed point among those satisfying s′ ⪯ s, we use induction.
In detail, we show that s∗ ⪯ s′ holds during the whole run of the algorithm for any common fixed
point s∗ ∈ S such that s∗ ⪯ s. The base case is clear: s∗ ⪯ s = s′. For the inductive step, by isotony
of fi we have s∗ = fi(s

∗) ⪯ fi(s
′) where the equality is given by s∗ being a common fixed point.

4Although the operators are actually dual closure operators according to the usual formalism, it is common to call them
just ‘closure operators’ in constraint programming literature. This distinction is only technical as it can be easily corrected
by considering the dual setting where the order is formally reversed.

5We state chaotic iterations and related results for intensive mappings and dual closures, although they can be stated
(by the duality principle) also for extensive mappings and closures.

5

Note that, by Theorem 5, the value returned by Algorithm 1 is independent of the way of choosing i
on line 3. An additional property of Algorithm 1 is given in Theorem 6.

Theorem 6. Let (S,⪯) be a finite partially ordered set and f1, . . . , fn : S → S be isotone and intensive
mappings. Let g : S → S be the mapping such that g(s) is the greatest common fixed point of f1, . . . , fn
such that g(s) ⪯ s (i.e., g(s) is the output of Algorithm 1 for input s). Then g is a dual closure operator.

Proof. Intensivity and idempotence is trivial. To show isotony, let s1, s2 ∈ S satisfy s1 ⪯ s2. Since
both g(s1) and g(s2) are common fixed points of the mappings and g(s1) ⪯ s1 ⪯ s2 by intensivity, we
necessarily have g(s1) ⪯ g(s2) because otherwise g(s2) would not be the greatest common fixed point
such that g(s2) ⪯ s2.

Remark 1. Let (S,⪯) be a finite partially ordered set and f1, . . . , fn : S → S be dual closure operators.
Let g : S → S be the dual closure operator defined by Algorithm 1 (as in Theorem 6). By Theorem 4,
(im f1,⪯),. . . , (im fn,⪯), and (im g,⪯) are complete lattices. These lattices satisfy

im g = {s ∈ S | g(s) = s} = {s ∈ S | ∀i ∈ [n] : fi(s) = s} =
n⋂

i=1

im fi (3)

which follows from Proposition 2 and the fact that fixed points of g are precisely the common fixed points
of f1, . . . , fn.

2.2 Linear Programming and Always-Active Inequalities

The linear programming (LP) problem seeks to minimize or maximize a linear function of a finite number
of variables over the set of solutions of a finite number of linear inequalities and equalities (i.e., a convex
polyhedron). It is well-known [34, Section 2.1] that any linear program can be transformed in linear
time to one of the restricted LP forms, e.g., containing only equalities and non-negative variables, or
containing only inequalities and unconstrained variables.

To every linear program, one can construct its dual linear program. This construction is symmetric,
so one can speak about mutually dual linear programs. We will work with the particular form of a
primal-dual pair

max cTx min bT y (4a)

Ax = b y ∈ Rm (4b)

x ≥ 0 AT y ≥ c (4c)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn are constants and x ∈ Rn, y ∈ Rm are variables. We denote by xj the
j-th component of vector x (similarly for y, b, c) and by Ai and Aj the i-th row and j-th column of A
where i ∈ [m] = {1, . . . ,m} and j ∈ [n] = {1, . . . , n}, respectively. The transpose of A is denoted by AT .
We will refer to the left-hand problem of (4) as the primal and to the right-hand problem as the dual.
Note that we always write a constraint and the corresponding dual variable on the same line.

The primal and dual linear programs are related by duality theorems:

Theorem 7 (Strong duality [37, 31]). For any primal-dual pair, exactly one of the following cases
happens:

(a) The primal and the dual are both feasible and their optimal values coincide.

(b) The primal and the dual are both infeasible.

(c) The primal is unbounded and the dual is infeasible or vice versa.

Theorem 8 (Complementary slackness [31, 34]). Let x ∈ Rn and y ∈ Rm be feasible for the primal and
the dual (4), respectively. The following are equivalent:

(a) x and y are optimal for the primal and the dual, respectively,

(b) for each j ∈ [n] it holds that xj(A
T
j y − cj) = 0, i.e., xj = 0 or AT

j y = cj.

For brevity, we define the mappings σ : Rn → 2[n] and τ : Rm → 2[n] by

σ(x) = {j ∈ [n] | xj = 0} (5a)

τ(y) = {j ∈ [n] | AT
j y = cj}, (5b)

6

so that σ(x) is the index set of the primal constraints (4c) that are active (i.e., satisfied with equality6)
at x. Similarly, τ(y) is the index set of the dual constraints (4c) that are active at y. Using this notation,
statement (b) in Theorem 8 can be expressed as τ(y) ∪ σ(x) = [n].

In the sequel, we will need the notion of relative interior of a set S ⊆ Rn, denoted by riS [30,
Section A2.1]. It is the topological interior of S relative to the affine hull of S, i.e., x ∈ riS if and only
if there exists a ball Br(x) centered at x with a positive radius r such that Br(x) ∩ aff S ⊆ S. For every
convex set S we have riS ⊆ S and, in particular, riS ̸= ∅ if and only if S ̸= ∅. For a singleton set S
we have riS = S. The relative interior of a line segment, [x, x′] = {(1 − α)x + αx′ | 0 ≤ α ≤ 1} where
x, x′ ∈ Rn are such that x ̸= x′, is this line segment without its endpoints, ri [x, x′] = [x, x′] − {x, x′}.
Note, in contrast, that the topological interior of any line segment in Rn is empty unless n = 1. In
convex optimization, the intuitive notion of ‘interior’ is often better captured by relative interior than
topological interior: e.g., the set of optimal solutions of a linear program is a convex polyhedron, which
however need not have full dimension, hence its topological interior can be empty but its relative interior
is non-empty.

Now we are able to state the next theorem:

Theorem 9 (Strict complementary slackness [21, 25, 22, 49]). Let x ∈ Rn and y ∈ Rm be feasible for the
primal and the dual (4), respectively. The following are equivalent:

(a) x and y are in the relative interior of the set of optimal solutions of the primal and the dual,
respectively,

(b) {σ(x), τ(y)} is a partition of [n], i.e., for each j ∈ [n], either xj = 0 or AT
j y = cj.

As a corollary, for any x and y in the relative interior of the set of optimal solutions of the primal and
the dual, respectively, the partition {σ(x), τ(y)} is the same. This unique partition is sometimes called
the optimal partition of [n] [25, 1, 22, 32].

Definition 3. Let A ∈ Rm×n, b ∈ Rm, and j ∈ [n]. We say that the inequality xj ≥ 0 is always active7

in the system Ax = b, x ≥ 0 if for every x ∈ Rn it holds that Ax = b, x ≥ 0 implies xj = 0.8

All always-active inequalities in a system of linear inequalities and equalities can be characterized
using relative interior:

Theorem 10 (cf. [23, Theorem 8]). Let A ∈ Rm×n, b ∈ Rm, j ∈ [n], and

x∗ ∈ ri {x ∈ Rn | Ax = b, x ≥ 0}. (6)

System Ax = b, x ≥ 0 implies xj = 0 if and only if j ∈ σ(x∗), i.e., x∗
j = 0.

Proof. Consider the primal-dual pair (4) with c = 0, i.e., zero objective function in the primal. Trivially,
feasibility is equivalent to optimality for the primal, so the primal (and hence also the dual) is feasible
and bounded.

Let y∗ be in the relative interior of the set of optimal solutions of the dual (4). Any x feasible for
the primal necessarily satisfies complementary slackness with dual-optimal y∗, i.e., τ(y∗) ∪ σ(x) = [n].
Therefore, the system implies xj = 0 for all j ∈ [n]− τ(y∗) = σ(x∗) where the set equality [n]− τ(y∗) =
σ(x∗) is given by strict complementary slackness. Since x∗ satisfies Ax∗ = b, x∗ ≥ 0 and x∗

j > 0 for all
j ∈ [n]− σ(x∗), the inequality xj ≥ 0 for j ∈ [n]− σ(x∗) is not always active.

3 Compared Methods

In this section, we formalize both considered approaches in detail, applied to the problem (4). We start
by BCD in Section 3.1 and then recall the primal-dual approach in Section 3.2 where we focus on a
specific constraint propagation method.

We assume that both linear programs (4) are feasible and bounded and that a dual-feasible solution y
is provided. Furthermore, we expect that a finite collection B ⊆ 2[m] of subsets (‘blocks’) of dual variables
is given. Note that B can be also seen as a collection of subsets of primal constraints (4b).

For both methods, the goal is to improve this dual-feasible solution, ideally to make it dual-optimal.
For brevity of notation, we will assume that the set of blocks B, matrix A, and vectors b and c are fixed
in Sections 3 and 4, and Appendices A and B.

6Recall that an inequality cT x ≥ d is active at a point x if cT x = d [38, 19, 7].
7This term is used, e.g., in [19]. The equivalent term implied equality is used in [39, 23].
8We abbreviate the phrase ‘for every x ∈ Rn it holds that Ax = b, x ≥ 0 implies xj = 0’ by just ‘Ax = b, x ≥ 0 implies

xj = 0’, understanding that the quantifier ∀x is implicitly present.

7

3.1 Block-Coordinate Descent and Relative-Interior Rule

Suppose we apply BCD to the dual (4). For brevity of notation, we formulate this optimization problem
as the unconstrained minimization of the extended-valued function f : Rm → R ∪ {∞} defined by

f(y) =

{
bT y if AT y ≥ c

∞ otherwise
. (7)

To formulate BCD, we introduce a new notation: for B = {i1, . . . , i|B|} ⊆ [m] and y ∈ Rm, by yB we
denote the restriction of y onto the set B, i.e., yB = (yi1 , . . . , yi|B|) where the order of the components of

the vector yB is defined by the natural total order on [m]. As noted above, we assume that a set B ⊆ 2[m]

of blocks of variables is given and an initial feasible solution y = y1 is available (i.e., f(y1) <∞). BCD in
each iteration chooses a single block B ∈ B and minimizes the function f over variables yB while keeping
the remaining variables y[m]−B fixed, i.e., updates yk to some yk+1 satisfying9

yk+1
B ∈ argmin

y′∈RB

f(y′, yk[m]−B) (8a)

yk+1
i = yki ∀i ∈ [m]−B. (8b)

By repeating updates (8) with different blocks B ∈ B, the points yk remain feasible for the dual and the
sequence of objective values bT yk is non-increasing.

The set of block-optimal solutions, argminy′
B∈RB f(y′B , y[m]−B) ⊆ RB , is a non-empty convex polyhe-

dron. If this polyhedron contains more than one point, we need to choose a single point of this polyhedron.
It was recently argued [48, 47] that this point should be chosen from the relative interior of the polyhe-
dron, which was called the relative-interior rule. Thus, the update condition (8) has to be modified as

yk+1
B ∈ ri argmin

y′∈RB

f(y′, yk[m]−B) (9a)

yk+1
i = yki ∀i ∈ [m]−B. (9b)

As the relative interior of a non-empty convex set is always non-empty (see Section 2.2), an update
satisfying (9) is always possible.

Definition 4 ([48, 47]). A point y feasible to the dual (4) is

• a local minimum10 (LM) of the dual w.r.t. B if

yB ∈ argmin
y′∈RB

f(y′, y[m]−B) (10)

(i.e., (8) for yk+1 = yk = y) holds for all B ∈ B,
• an interior local minimum (ILM) of the dual w.r.t. B if

yB ∈ ri argmin
y′∈RB

f(y′, y[m]−B) (11)

(i.e., (9) for yk+1 = yk = y) holds for all B ∈ B,
• a pre-interior local minimum (pre-ILM) of the dual w.r.t. B if there is an ILM y′ such that y is in a
face of the polyhedron { y ∈ Rm | AT y ≥ c} containing y′ in its relative interior. Since the number
of faces is finite in our case, this means that the set of pre-ILMs is the closure of the set of ILMs.

Clearly, every ILM is a pre-ILM and every pre-ILM is an LM [48, 47]. The fixed points of BCD
algorithm following the updates (8) are local minima and fixed points of BCD with the relative-interior
rule (9) are interior local minima. We will not use the definition of pre-ILM explicitly but instead rely
on its properties, given by the following theorem.

9Note the notation abuse in (8a): (y′, yk
[m]−B

) ∈ R[m] denotes the concatenation of the components of the vectors y′ ∈ RB

and yk
[m]−B

∈ R[m]−B in the right order. E.g., for m = 5 and B = {2, 3}, we have y′ = (y′2, y
′
3), y

k
[m]−B

= (yk1 , y
k
4 , y

k
5),

and (y′, yk
[m]−B

) = (yk1 , y
′
2, y

′
3, y

k
4 , y

k
5).

10We emphasise that this is different from the usual notion of a local minimum in optimization: here (by Definition 4),
the objective in a local minimum cannot be improved by any single update (8) instead of an arbitrary update within some
neighborhood.

8

y2

y1

y1

y2

y3

y4

y5

y6

(0, 1)

(2, 0)(1, 0)

Figure 1: Five iterations of coordinate descent with the relative-interior rule starting from the initial
point y1. We minimize the objective function bT y = y2 over the shaded feasible set.

Theorem 11 ([48, 47]). Let (Bi)
∞
i=1 be a sequence of blocks Bi ∈ B that contains each element of B an

infinite number of times. Let (yi)∞i=1 be a sequence produced by the BCD method, where the blocks are
visited in the order given by (Bi)

∞
i=1.

(a) If (yi)∞i=1 satisfies (9) and y1 is an ILM, then yi is an ILM for all i.

(b) If (yi)∞i=1 satisfies (9) and y1 is a pre-ILM, then yi is an ILM for some i.

(c) If (yi)∞i=1 satisfies (8) and y1 is a pre-ILM, then bT yi = bT y1 for all i.

(d) If (yi)∞i=1 satisfies (9) and y1 is not a pre-ILM, then bT yi < bT y1 for some i.

Therefore, if y1 is a pre-ILM, the objective cannot be improved by any further BCD iterations (8),
even with the relative-interior rule (9). On the other hand, if y1 is not a pre-ILM, BCD with the relative-
interior rule (9) inevitably improves the objective after a finite number of iterations. In this sense,
pre-ILMs are the ‘best possible’ kind of fixed points of BCD (we mentioned this already in Footnote 1).
It also follows that the relative-interior rule is not worse (in this sense) than any other rule to choose
non-unique block-optimal solutions in BCD.

We illustrate Definition 4 and Theorem 11 on the following example, adapted from [48, 47, 14].

Example 1. Let the dual (4) minimize the objective bT y = y2 over variables y = (y1, y2) ∈ R2 subject
to 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 2, and y1 + y2 ≥ 1, see Figure 1. Let the set of blocks be B = {{1}, {2}},
which corresponds to coordinate descent since both B ∈ B are singleton sets. We will iterate update (9),
alternating between B = {1} and B = {2}. The initial point y1 ∈ R2 is shown in the figure.

First we take B = {2}, i.e., we minimize y2 over the line segment that is the intersection of the feasible
set and the vertical straight line passing through y1. The argmin-set in (9) is a singleton, hence taking
its relative interior does not change it (thus, we would get the same result using update (8)). This results
in point y2 and the objective decreases. Point y2 is an LM (w.r.t. B) because both of its components are
block-wise optimal.

Next we take B = {1}, i.e., we minimize y2 over the horizontal line segment passing through y2. Since
the objective is constant horizontally, it cannot be decreased and the argmin-set is the whole line segment.
Note that rule (8) would allow us to choose any point of this line segment as the next point y3, e.g., we
could set y3 = y2 and stop the algorithm. However, the relative-interior rule (9) forces us to choose y3 in
the interior of the line segment, as shown in the figure. This does not decrease the objective but obtains
the ‘room’ to decrease the objective in the next iteration.

Indeed, taking now B = {2} allows us to move to point y4 and decrease the objective. The next two
updates move us to point y6, which is an ILM (hence also a pre-ILM) and, in this particular example, also
a global minimum. All future updates will stay in the relative interior of the line segment [(1, 0), (2, 0)].

The set of LMs (w.r.t. B) is [(0, 1), (1, 0)]∪ [(1, 0), (2, 0)], the set of pre-ILMs is [(1, 0), (2, 0)] and the
set of ILMs is ri [(1, 0), (2, 0)]. The global minima coincide with the pre-ILMs in this example (however,
this is not true in general).

9

Remark 2. One can ask how to choose the block set B. Though the theory presented here applies to
any set B, for a concrete problem at hand it is natural to choose B so that the updates (8) or (9) can
be computed in closed-form, resulting in efficient algorithms [20, 40, 47, 18]. If this is impossible (e.g.,
the blocks are too large), one can use general LP solvers. In particular, interior-point methods can be
used to compute the updates (9) since they return a point from the relative interior of the set of optimal
solutions.

Remark 3. In local search methods, one seeks to improve a current feasible solution by choosing a next
solution with a better objective from a certain neighborhood. Thus, BCD can be seen as a local search
where, for a block B ⊆ [m], the neighborhood of y is the set {y′ ∈ Rm | AT y′ ≥ c, ∀i ∈ [m]−B : yi = y′i}.
Since this set is infinite in general, BCD can be seen as very large-scale neighborhood search [35] and
choosing different blocks B is analogous to variable neighborhood descent [24]. This view is arguable,
however, because one usually speaks about local search only in discrete optimization, while BCD is usually
applied to continuous problems.

3.2 Primal-Dual Approach

Let us now focus on the latter of the two approaches to approximately solve linear programs, primal-
dual approach with constraint propagation, which we proposed in [15]. Given a dual-feasible solution y,
the complementary slackness conditions for primal-dual pair (4) can be written in terms of the primal
variables x as

Ax = b (12a)

xj = 0 ∀j ∈ [n]− τ(y) (12b)

xj ≥ 0 ∀j ∈ τ(y) (12c)

where τ(y) is defined by (5).
By Theorem 8, system (12) is feasible if and only if y is dual optimal. Furthermore, by Farkas’

lemma [31, Section 6.4], system (12) is feasible if and only if Farkas’ alternative system

bT ȳ < 0 (13a)

AT
j ȳ ≥ 0 ∀j ∈ τ(y) (13b)

is infeasible. Moreover, any ȳ satisfying (13) is a dual-improving direction from y, so one can update
y ← y + θȳ for a suitable step size θ > 0 and improve the dual objective.

If the set of dual-feasible solutions is unbounded in direction ȳ, choosing an arbitrary θ > 0 keeps
the point y + θȳ dual-feasible and pushes the dual objective arbitrarily low. This happens if and only
if AT

j ȳ ≥ 0 for all j ∈ [n]. In such a case, the dual is unbounded and the primal is infeasible (which
contradicts our assumptions from the beginning of Section 3).

Assuming that the dual is bounded in direction ȳ (i.e., AT
j ȳ < 0 for at least one j ∈ [n]), Proposition 12

shows how to compute θ such that the updated point y remains feasible and the dual objective improves.

Proposition 12 (cf. [34, Theorem 5.2]). Let y be feasible for the dual (4), let ȳ satisfy (13) and ∃j ∈
[n] : AT

j ȳ < 0, and let

θ = min
j∈[n]

AT
j ȳ<0

cj −AT
j y

AT
j ȳ

> 0. (14)

Then y′ = y + θȳ is feasible for the dual (4) and bT y > bT y′.

Proof. First, note that θ > 0 which follows from the fact that if AT
j ȳ < 0, then j /∈ τ(y) by (13b), hence

cj −AT
j y < 0 by definition of τ(y) in (5b). This together with AT

j ȳ < 0 in (14) implies that each term in
the minimum (14) is positive.

To prove feasibility of y′, i.e., AT
j y

′ ≥ cj for all j ∈ [n], we consider two cases. If AT
j ȳ ≥ 0, then

AT
j y

′ = AT
j y+ θAT

j ȳ ≥ AT
j y ≥ cj where we used θ > 0 and the assumption that y is feasible. If AT

j ȳ < 0,

then θ ≤ (cj − AT
j y)/A

T
j ȳ by definition of θ, which is equivalent to AT

j y
′ = AT

j y + θAT
j ȳ ≥ cj . Also,

bT y′ = bT y + θbT ȳ < bT y due to (13a) and θ > 0.

It is easy to see that the step size (14) is optimal in the sense that it provides the greatest possible
improvement of the dual objective along the direction ȳ from the current point y.

10

Algorithm 2 Primal-dual approach for approximate optimization of the dual (4).

input: dual-feasible solution y, propagation rules for (12).
1: while constraint propagation detects infeasibility of system (12) do
2: Find an improving direction ȳ satisfying (13).
3: Update y ← y + θȳ where θ is defined by (14).

4: return y (At this point, we are unable to prove that (12) is infeasible.)

Following [15], these properties can be used to iteratively optimize a linear program if an initial dual-
feasible solution y is provided. We construct system (12) and if it is infeasible, we find an improving
direction ȳ satisfying (13) and update y ← y + θȳ using (14). By repeating this iteration, we obtain a
better and better upper bound on the common optimal value of (4). Eventually, if (12) becomes feasible,
the current y is optimal for the dual. This optimization scheme is related to the primal-dual method [34,
Section 5], where complementary slackness is not enforced strictly but its violation is minimized instead.

Since checking feasibility of a system of linear equalities and inequalities is in general as hard as
solving a linear program, we proposed in [15] to detect infeasibility of (12) using constraint propagation.
However, some forms of constraint propagation may not detect infeasibility each time when the system
is infeasible (i.e., they are refutation-incomplete), so the approach may generally terminate in a non-
optimal dual solution [15]. Moreover, the step size may not be calculated exactly but only approximately.
A general scheme of the primal-dual approach with exact line search is outlined in Algorithm 2.

Remark 4. Unlike the primal-dual method, Algorithm 2 need not terminate after a finite number of
iterations in general. Indeed, it is known that the VAC / Augmenting DAG algorithm need not terminate
in finite time – to fix this, a version of capacity scaling has been proposed [9, 28, 44]. We propose a similar
modification and state sufficient conditions for finiteness of Algorithm 2 in [14, Section 2.2.1]. Similarly,
the BCD methods (8) and (9) also need not converge after a finite number of updates. However, one
easily obtains fixed points of BCD and of Algorithm 2 (with the aforementioned modification) in practice
up to machine precision. We do not discuss convergence in more detail because it is not needed for this
paper.

3.2.1 Activity Propagation in a System of Linear Inequalities

Constraint propagation can be seen as a special kind of inference: in each iteration, new valid constraints
are inferred from the current set of constraints using a propagation rule, and added to the current
constraint set (which is usually done implicitly by replacing some of the initial constraints). Whenever
the current constraint set becomes infeasible, the initial constraint set is clearly also infeasible. For a
system of linear inequalities and equalities over continuous variables, the inferred constraints are again
linear inequalities or equalities. While in [15] we discussed this process in full generality, here we focus
on the following natural propagation rule:

Choose a subset of the inequalities and equalities, infer which inequalities are always active
(see Definition 3) in this subset, and turn them into equalities.11

We call constraint propagation with this rule activity propagation. It is our key observation in this paper
that the primal-dual approach with this particular form of constraint propagation has the same fixed
points as BCD, when both are applied to a linear program.

Activity propagation, as defined above, is applicable to a system of linear constraints in any form,
including both inequality and equality constraints over non-negative or real-valued variables. The con-
nection with BCD holds even in these more general cases but further in this section we focus on the
particular case of system (12). We will comment on the other forms later in Section 5.

Remark 5. Activity propagation has been used, under various names, in several existing methods. One
example is the VAC algorithm [9] and the Augmenting DAG algorithm [28, 44], where the primal prob-
lem (4) is the basic LP relaxation of the weighted CSP and activity propagation is equivalent to the arc-
consistency algorithm [15]. The approach proposed in [15] to upper-bound the LP relaxation of weighted
Max-SAT is (up to technical details) another example. If the minimization of a convex piecewise-affine
function is expressed as a linear program, then activity propagation strictly subsumes the sign relaxation
technique introduced in [46] and further developed in [12].

11E.g., turning the inequality x1 ≤ 1 into equality means changing it to x1 = 1. Clearly, this can be seen as adding the
inequality x1 ≥ 1 to the system, obtaining thus the system x1 ≤ 1, x1 ≥ 1.

11

Activity propagation, when applied to system (12), works as follows. We first initialize J = τ(y).
Then, in every iteration, we choose a subset B ∈ B of equalities (12a) (where B ⊆ 2[m] was introduced
at the beginning of Section 3), decide if the system

Aix = bi ∀i ∈ B (15a)

xj = 0 ∀j ∈ [n]− J (15b)

xj ≥ 0 ∀j ∈ J (15c)

implies12 xj = 0 for some j ∈ J and if so, we remove all such indices j from J . Eventually, if the
set J shrinks so much that system (15) becomes infeasible, then system (12) is also infeasible, so y is not
optimal and can be improved.

In the rest of this section, we analyze activity propagation in detail. We show that the activity
propagator associated with each B ∈ B is a (dual) closure operator and activity propagation can be seen
as chaotic applications of these operators.

Definition 5. Let B ⊆ [m]. A set J ⊆ [n] is B-consistent if system (15) is feasible and does not
imply xj = 0 for any j ∈ J (i.e., does not contain any always-active inequality), i.e., if the system

Aix = bi ∀i ∈ B (16a)

xj = 0 ∀j ∈ [n]− J (16b)

xj > 0 ∀j ∈ J (16c)

is feasible. For B ⊆ 2[m], J is B-consistent if it is B-consistent for each B ∈ B.

Proposition 13. Let B ⊆ [m]. If J, J ′ ⊆ [n] are B-consistent, so is J ∪ J ′.

Proof. If (16) is satisfied by x and x′ for J and J ′, respectively, then it is satisfied by (x+x′)/2 for J ∪J ′

due to (xj + x′
j)/2 > 0 ⇐⇒ (xj > 0∨ x′

j > 0) which follows from non-negativity of the components of x
and x′.

Proposition 13 says that for a fixed B ⊆ [m], the collection of all B-consistent subsets of [n] is closed
under union. This is a natural property of many local consistencies, called ‘stability’ under union in [5,
Definition 3.17]. In other words, this collection is a join-semilattice with respect to the ordering by the
set inclusion and its join is the set union. However, it is not a (complete) lattice as it need not have a
bottom element.

In order to overcome this, we add the bottom element ⊥ to this collection by the lifting operation
(recall Section 2.1.1). We then equip the set J = 2[n] ∪ {⊥} with the partial order ⊑ defined by

J ⊑ J ′ ⇐⇒ (J = ⊥ ∨ (J, J ′ ⊆ [n] ∧ J ⊆ J ′)) (17)

where ∨ and ∧ denotes here the logical disjunction and conjunction, respectively, and J, J ′ ∈ J . Conse-
quently, for any B ⊆ [m], the set

JB = {J ⊆ [n] | J is B-consistent} ∪ {⊥} ⊆ J , (18)

partially ordered by ⊑, is a complete lattice by Theorem 1. The join operation of this lattice is the binary
operation ⊔ on J defined by13

J ⊔ J ′ =

J if J ′ ⊑ J

J ′ if J ⊑ J ′

J ∪ J ′ otherwise

. (19)

According to Theorem 3b, the complete lattice (JB ,⊑) gives rise to the dual closure operator pB : J →
JB defined by

pB(J) =
⊔
{J ′ ∈ JB | J ′ ⊑ J}. (20)

The set pB(J) is the B-consistency closure of J ∈ J . Note that the assumptions of Theorem 3b are
satisfied because JB ⊆ J and the complete lattices (JB ,⊑) and (J ,⊑) have the same join operation,
namely ⊔.

12Recalling Definition 3, system (15) implies xj = 0 if xj = 0 holds for all x satisfying (15), i.e., xj = 0 is an always-active
inequality in (15). This can be decided, e.g., by Theorem 10 or by projecting polyhedron (15) onto the j-th coordinate (the
projection is the singleton set {0} if and only if (15) implies xj = 0). Alternatively, one can maximize xj subject to (15)
and the maximum equals 0 if and only if (15) implies xj = 0.

13Recall that ⊥ ⊑ J for any J ∈ J , so if the elements J, J ′ are not comparable by ⊑, they are subsets of [n], hence set
union in the last case in (19) is well-defined.

12

Proposition 14. A set J ⊆ [n] is B-consistent if and only if pB(J) = J .

Proof. Apply Corollary 1 to the complete lattices (J ,⊑) and (JB ,⊑) and the associated dual closure
operator pB . Note that ⊥ is not a subset of [n], so it is not B-consistent despite that pB(⊥) = ⊥.

Note, combining Proposition 14 with Proposition 2 yields a different characterization of the set JB ,
namely

JB = {J ∈ J | pB(J) = J} = im pB . (21)

Next, for any J ⊆ [n] and B ⊆ [m], we define

XB(J) = {x ∈ Rn | x satisfies (15)}. (22)

It is easy to see from (15) that if J ⊆ J ′, then XB(J) ⊆ XB(J
′). We show in Appendix B that the

restriction of XB to B-consistent sets is a bijection between B-consistent sets and non-empty faces of the
polyhedron XB([n]) and that the face lattice of XB([n]) is order-isomorphic to the lattice (JB ,⊑).

Theorem 15. Let J ⊆ [n] and B ⊆ [m]. The following are equivalent:

(a) system (15) is feasible,

(b) pB(J) ̸= ⊥,
(c) pB(J) is the union of all B-consistent subsets of J , i.e., pB(J) is the greatest B-consistent subset

of J ,

(d) pB(J) = J − { j ∈ J | (15) implies xj = 0 }, i.e., system (15) implies xj = 0 if and only if j ∈
[n]− pB(J).

If these statements hold, then pB(J) = [n]−σ(x∗) for every x∗ ∈ ri XB(J), where σ was defined in (5a).

Proof. (a) =⇒ (b): If (15) is feasible, then

J ′ = J − { j ∈ J | (15) implies xj = 0 } (23)

is B-consistent by definition. Also, J ′ ⊑ J , hence pB(J) ̸= ⊥ due to ⊥ ⊔ J ′ = J ′.
(b) =⇒ (c): If pB(J) ̸= ⊥, pB(J) =

⋃
{J ′ ∈ JB | J ′ ⊆ J} because ⊥ is the identity element of ⊔ and

operation ⊔ coincides with ∪ when applied to subsets of [n].
(c) =⇒ (a): Since pB(J) ̸= ⊥, intensivity of pB implies pB(J) ⊆ J , hence XB(pB(J)) ⊆ XB(J).

By definition of a B-consistent set, system (15) is feasible for pB(J), i.e., XB(pB(J)) ̸= ∅. Conse-
quently, XB(J) ̸= ∅, i.e., (15) is feasible.

(c) =⇒ (d) by contradiction: Let J ′ be defined as in (23) and pB(J) ̸= J ′. As discussed above, J ′ is
B-consistent and J ′ ⊆ J , so pB(J) ⊋ J ′. Consequently, there exists j ∈ pB(J)− J ′. By definition of J ′,
(15) implies xj = 0, i.e., xj = 0 holds for all x ∈ XB(J) = XB(J

′). Moreover, pB(J) ⊆ J implies
XB(pB(J)) ⊆ XB(J), thus xj = 0 holds for all x ∈ XB(pB(J)). Having j ∈ pB(J) is contradictory
with pB(J) being B-consistent (recall Proposition 14).

(d) =⇒ (b): Trivial because (23) is not equal to ⊥.
The last claim follows from (d) by applying Theorem 10 to system (15).

Remark 6. Even though this is not important for our theory, Theorem 15 shows how to compute pB
in practice. In detail, it suffices to check feasibility of (15) and, if (15) is feasible, compute a relative-
interior point of its solution set (or identify all always-active inequalities, recall Footnote 12). In general,
both steps can be reduced to a linear program. For the latter step, see, e.g., [19, 32]. However, if the
blocks are small and the problem has a suitable structure, it is possible to solve these problems in closed
form without using a general-purpose LP solver (see, e.g., [15] or [12]).

By statement (d) of Theorem 15, the map pB can be interpreted as the propagator for activity
propagation. Note that pB satisfies the typical properties of constraint propagators, i.e., idempotence,
intensivity, and isotony [3]. Moreover, pB holds on to the intuitive idea of a propagator: it makes an
inference based on local information (namely, a subset B of equalities (12a)). Using this propagator, we
formulate the propagation algorithm in Algorithm 3, which enforces B-consistency of an input set J ∈ J .

Since the set J is finite and propagator pB for each B ∈ B is intensive and isotone, Algorithm 3 is an
instance of Algorithm 1, describing chaotic iterations. By Theorem 5, the value returned by Algorithm 3
is independent of the order in which the mappings pB are applied. Thus, we can denote the value returned
by Algorithm 3 as pB(J). For any J ∈ J , pB(J) is the greatest common fixed point of the mappings
pB , B ∈ B such that pB(J) ⊑ J . By Theorem 6, the mapping pB : J → J is a dual closure operator and
pB(J) is the B-consistency closure of J ∈ J .

13

Algorithm 3 Propagation algorithm pB applied to input J ∈ J .
input: J ∈ J
1: J ′ ← J
2: while ∃B ∈ B : pB(J

′) ̸= J ′ do
3: Find such a set B.
4: J ′ ← pB(J

′)

5: return J ′

Proposition 16. A set J ⊆ [n] is B-consistent if and only if pB(J) = J .

Proof. Consider the following chain of equivalences:

J is B-consistent ⇐⇒ ∀B ∈ B : J is B-consistent (24a)

⇐⇒ ∀B ∈ B : pB(J) = J (24b)

⇐⇒ pB(J) = J (24c)

where (24a) is given by Definition 5 and (24b) follows from Proposition 14. Equivalence (24c) follows
from the definition of pB in Algorithm 3.

In analogy to (18), we can define the set

JB = {J ⊆ [n] | J is B-consistent} ∪ {⊥} (25)

which satisfies
JB = {J ∈ J | pB(J) = J} = im pB =

⋂
B∈B

im pB =
⋂
B∈B
JB (26)

where the set equalities follow from Proposition 16, Proposition 2, Remark 1, and (21), respectively.
Additionally, Theorem 4 yields that (JB,⊑) is the complete lattice induced by pB. The join operation of
this complete lattice is again ⊔.

Remark 7. The properties of pB and pB are analogous to the properties of, e.g., the arc-consistency
propagator and arc-consistency closure, respectively. In more general view, the propagator resembles
domain-based constraint propagation [5] and pB corresponds to Φ-closure in [5].

Example 2. Let m = 3, n = 4, J = {2, 3, 4}, B = {{1, 2}, {3}}, and the system Ax = b from (12a) be

3x1 + x2 = 1 (27a)

x2 + 2x3 = 1 (27b)

− 2x2 + 5x3 − x4 = 0 (27c)

where the equalities are numbered 1–3 from top to bottom. Recall that x2, x3, x4 ≥ 0 due to (12b) and
x1 = 0 due to (12c) (note that 1 /∈ J). We now demonstrate the run of Algorithm 3.

First, see that p{3}(J) = J because equality (27c) can be easily satisfied by, e.g., x2 = x3 = 1
and x4 = 3. So, this equality does not (together with non-negativity of x2, x3, x4) imply that any of these
variables are zero and p{3} is therefore not applied.

Second, we apply propagator p{1,2}. From (27a), it follows that x2 = 1 due to x1 = 0. Combining
this with (27b) yields that x3 = 0. Hence, equalities (27a)-(27b) together with x1 = 0 imply x3 = 0, i.e.,
p{1,2}(J) = {2, 4} and x3 is set to zero (via (12c) and 3 /∈ p{1,2}(J)).

14

Third, we return to propagator p{3}. Due to x3 = 0, (27c) can be satisfied only with x2 = x4 = 0. In
other words, (27c) together with x3 = 0 and non-negativity of x2 and x4 implies x2 = x4 = 0, i.e., all
variables are now zero and p{3}({2, 4}) = ∅.

Finally, we again apply propagator p{1,2} and find that equalities (27a)-(27b) cannot be satisfied if
all variables are zero. Hence, the propagation algorithm detected a contradiction, i.e., p{1,2}(∅) = ⊥
and pB(J) = ⊥.15

14Note, we cannot set x2 = 1 because there is no inequality x2 ≤ 1 (or x2 ≥ 1) in system (12) that could be made active.
We say more on this in Section 5.3.

15In general, it does not necessarily hold that pB(∅) = ⊥. E.g., if b = 0 (i.e., system (16a) is homogeneous), then (16) is
feasible even with J = ∅ and pB(∅) = ∅ ̸= ⊥.

14

Algorithm 4 Algorithmic scheme for approximate optimization of the dual (4) using activity propaga-
tion.

input: dual-feasible solution y
1: while pB(τ(y)) = ⊥ do
2: Find an improving direction ȳ satisfying (13).
3: Update y ← y + θȳ where θ is (14).

4: return y

Let us recall system (12). If pB(τ(y)) = ⊥, then (12) is infeasible. This follows from the fact that if a
subsystem (15) (with J = τ(y)) implies xj = 0 for some j ∈ J , then also the whole system (12) implies
xj = 0. Furthermore, if a subsystem (15) is infeasible, then so is (12). On the other hand, pB(τ(y)) ̸= ⊥
in general does not imply that (12) is feasible.

As discussed earlier, if (12) is infeasible, there exists an improving direction ȳ satisfying (13). We
note that such an improving direction can be constructed from the history of the propagation, but we
postpone this technical procedure to Appendix A as it is not essential to characterize the fixed points of
this method.

In Algorithm 4 (which is a special case of Algorithm 2), we show how activity propagation can be
applied to iteratively improve a feasible solution of the dual (4). Note, Algorithm 4 is precisely Algorithm 2
where the constraint propagation method is activity propagation.

4 Relation Between the Approaches

In this section, we will show a close connection between Algorithm 4 (based on constraint propagation)
and BCD. In detail, we will prove that the stopping points of Algorithm 4 are the pre-ILMs of the dual (4)
w.r.t. B and that the ILMs of the dual (4) w.r.t. B are the points y for which the set τ(y) is B-consistent.
Then it follows from Theorem 11 that BCD with the relative-interior rule (and, consequently, any BCD
method) cannot improve the objective when initialized in any stopping point of Algorithm 4. Vice versa,
Algorithm 4 cannot improve the objective when initialized in any pre-ILM.

We will proceed as follows. We begin in Section 4.1 by identifying a connection between the actions
of propagators and BCD updates. Using these results, we characterize the kinds of local minima in BCD
using local consistency conditions in Section 4.2. In turn, this allows us to state the relation between
optimality of BCD and strength of the propagator in Section 4.3.

4.1 Connection Between Propagators and BCD Updates

For a fixed set B ⊆ [m], the dual (4) restricted to block of variables yB , together with the corresponding
primal on the left, reads16

max dTx min
∑
i∈B

biyi (28a)

Aix = bi yi ∈ R ∀i ∈ B (28b)

xj ≥ 0
∑
i∈B

Aijyi ≥ dj ∀j ∈ [n] (28c)

where dj = cj −
∑

i∈[m]−B Aijyi are constants and Aij is the element of A in row i and column j.

Clearly
∑

i∈B Aijyi = dj if and only if j ∈ τ(y), hence the complementary slackness conditions for the
pair (28) (i.e., the conditions for block-optimality of yB) are (15) where J = τ(y). Similarly, the strict
complementary slackness conditions for (28) are (16) where J = τ(y). A consequence of this observation
is stated in Lemma 2.

Lemma 2. Let y be feasible for the dual (4) and let B ⊆ [m]. Then

(a) block of variables yB satisfies (10) if and only if pB(τ(y)) ̸= ⊥,
(b) block of variables yB satisfies (11) if and only if pB(τ(y)) = τ(y), i.e., τ(y) is B-consistent.

Proof. (a): Clearly, yB is optimal for the dual (28) if and only if there exists x feasible for the primal (28)
satisfying complementary slackness conditions. The complementary slackness conditions are equivalent

16The primal in the pair (28) is of course different from the primal in the pair (4).

15

to (15) for J = τ(y). By statements (a) and (b) in Theorem 15, (15) for J = τ(y) is feasible if and only
if pB(τ(y)) ̸= ⊥.

(b): Block yB satisfies (11) if and only if there exists an optimal solution x for the primal problem (28)
satisfying strict complementary slackness conditions with yB . This is equivalent to feasibility of (16) for
J = τ(y), i.e., to B-consistency of τ(y), hence pB(τ(y)) = τ(y) by Proposition 14.

Let us now focus on the relation between the propagators pB and block-coordinate updates (9).

Lemma 3. Let y be feasible for the dual (4) and let B ⊆ [m]. Let y∗ be the result of applying BCD
iteration (9) to y w.r.t. block B, i.e., y∗ = (y∗B , y[m]−B) where y∗B ∈ ri argminy′∈RB f(y′, y[m]−B). Then

(a) pB(τ(y)) = ⊥ if and only if bT y > bT y∗,

(b) if pB(τ(y)) ̸= ⊥, then bT y = bT y∗ and pB(τ(y)) = τ(y∗).

Proof. It follows from Lemma 2a that pB(τ(y)) = ⊥ holds if and only if condition (10) was not satisfied,
i.e., yB was not block-optimal and updating it results in improved objective, i.e., bT y > bT y∗. On the
other hand, if (10) was satisfied, yB was block-optimal and objective does not improve, i.e., pB(τ(y)) ̸= ⊥
implies bT y = bT y∗.

For the remaining statement, suppose that yB was block-optimal, i.e., pB(τ(y)) ̸= ⊥ by Lemma 2a.
Since any optimal solution to the primal (28) needs to satisfy complementary slackness with any dual-
optimal yB , the set of primal-optimal solutions coincides with x feasible for (15) where J = τ(y). Let
x∗ be from the relative interior of (15) for J = τ(y), i.e., from the relative interior of the set of optimal
solutions of the primal (28). By the last statement in Theorem 15 together with feasibility of (15)
for J = τ(y), we have that pB(τ(y)) = [n] − σ(x∗) = τ(y∗) where the second equality holds by strict
complementary slackness (Theorem 9).

Remark 8. Lemmas 2 and 3 provide a new insight into BCD updates with the relative-interior rule.
Let y be dual-feasible. In a single update of y over a block B ∈ B to obtain y∗, exactly one of the following
cases happens:

(a) If yB already satisfies condition (11), then τ(y) = τ(y∗) and bT y = bT y∗.

(b) If yB satisfies (10) but not (11), then τ(y) ⊋ τ(y∗) and bT y = bT y∗.

(c) If yB does not satisfy (10), then bT y > bT y∗.

Suppose we try to improve y by BCD updates (9) where the sequence (Bk)
∞
k=1 is such that each B ∈ B

occurs in it an infinite number of times. Since the set τ(y) can shrink only a finite number of times,
case (b) can happen only a finite number of times in a row. Hence, when applying relative-interior
updates (9) for consecutive B ∈ B from the sequence, either the objective bT y improves after a finite
number of iterations or an ILM w.r.t. B is attained (cf. Theorem 11).

Case (b) corresponds to the situation when yB is on the relative boundary of the set of block-optimal
solutions (i.e., it is block-optimal but not in the relative interior of the set of block-optima). By an
update satisfying the relative-interior rule, such yB is moved to the relative interior and the set τ(y)
shrinks. Geometrically, even if the current y is block-optimal, choosing a block-optimal solution from the
relative interior shifts the current solution to a face of higher dimension, thus providing ‘more room’ for
improvement in subsequent iterations [47] (recall Example 1). Given our point of view with propagators,
it corresponds to identifying all always-active inequalities in the system (15). On the other hand, if a
block-optimal yB is kept on the relative boundary, this corresponds to a propagator that cannot identify
all always-active inequalities, but possibly only some of them.

Remark 9. Lemma 3 implies that, to compute the value of the propagator pB(J) where J = τ(y),
one can also (besides the options mentioned in Remark 6) compute a relative-interior solution of the
dual (28). Assuming that (15) is feasible, it suffices to know the indices of dual constraints active at
the aforementioned relative-interior solution to compute pB(τ(y)). Although this seems to suggest that
computing pB(τ(y)) is simpler than computing a relative-interior update (9), we explain in Appendix A
that one still needs a certain dual relative-interior solution to compute the improving direction for the
primal-dual approach with activity propagation. In summary, the complexity of computing a BCD update
from y satisfying the relative-interior rule and computing pB(τ(y)) is similar in practice, which is not
surprising.

The connection between the propagators and BCD for multiple consecutive iterations is given by the
following theorem.

16

Theorem 17. Let y1 be a feasible point for the dual (4). Let (Bk)
∞
k=1 be a sequence of blocks from B.

Let (yk)∞k=1 be a sequence satisfying (9) w.r.t. blocks (Bk)
∞
k=1. Let (Jk)

∞
k=1 be the sequence defined by

J1 = τ(y1) and Jk+1 = pBk
(Jk) for all k ≥ 1. Then, for every k it holds that:

(a) if Jk = ⊥, then bT yk < bT y1,

(b) if Jk ̸= ⊥, then bT yk = bT y1 and τ(yk) = Jk.

Proof. We proceed by induction. The base case with k = 1 holds by definition due to bT y1 = bT y1 and
J1 = τ(y1) ̸= ⊥. For the inductive step with k ≥ 1, yk+1 originated from yk by updating block Bk and
Jk+1 = pBk

(Jk). We consider the following cases:

• If pBk
(τ(yk)) ̸= ⊥ and Jk ̸= ⊥, we have that bT yk = bT yk+1 and pBk

(τ(yk)) = τ(yk+1) by
Lemma 3b. By induction hypothesis, due to Jk ̸= ⊥, we have bT y1 = bT yk and τ(yk) = Jk.
Therefore, τ(yk+1) = pBk

(τ(yk)) = pBk
(Jk) = Jk+1 ̸= ⊥ and bT y1 = bT yk = bT yk+1.

• If pBk
(τ(yk)) = ⊥ and Jk ̸= ⊥, then by Lemma 3a, bT yk > bT yk+1. Similarly to the previous

case, by induction hypothesis: since Jk ̸= ⊥, it holds that bT y1 = bT yk and τ(yk) = Jk. Thus,
pBk

(τ(yk)) = pBk
(Jk) = Jk+1 = ⊥ and bT y1 = bT yk > bT yk+1.

• If Jk = ⊥, by induction hypothesis bT yk < bT y1 and by isotony of propagator, Jk+1 = pBk
(Jk) =

pBk
(⊥) = ⊥. Since updates (9) never worsen the objective, bT y1 > bT yk ≥ bT yk+1.

Example 3. Let the matrix A, vector b and set B be as in Example 2. In addition, let c = (3, 6, 6, 0), so
that the dual (4) reads

min y1 + y2 (29a)

3y1 ≥ 3 (29b)

y1 + y2 − 2y3 ≥ 6 (29c)

2y2 + 5y3 ≥ 6 (29d)

− y3 ≥ 0 (29e)

where the constraints (29b)-(29e) correspond to the primal variables x1-x4.
For y1 = (3, 3, 0), the set of active dual constraints is J = τ(y1) = {2, 3, 4} (which is the same initial

set J as in Example 2). We now initialize BCD at y1. As given by the theorems above, the set of active
dual constraints after each update of block B will be the same as if the propagator pB was applied (to be
precise, this holds until the propagator returns ⊥). Moreover, the propagator returns ⊥ if and only if the
corresponding BCD update improves the objective.

For B = {3}, y1 is block-optimal and also in the relative interior of the set of block-optimal solutions
which is in correspondence to p{3}(τ(y

1)) = τ(y1) (cf. Lemma 2b for y1 and B = {3}).
Next, y1 is block-optimal for B = {1, 2} but not in the relative interior of the set of block-optimal

solutions. Updating the values of y1{1,2} to the relative interior of the set of block-optimal solutions

results in, e.g., y2 = (2, 4, 0). Although the relative interior contains multiple elements, we will have
p{1,2}(τ(y

1)) = τ(y2) = {2, 4} for any of them (cf. Lemma 3b for y1 and B = {1, 2}).
Now, y2 is block-optimal for B = {3} but not in the relative interior of the set of block-optimal

solutions. A relative-interior update for this coordinate results in, e.g., y3 = (2, 4,− 1
5). So, we

have p{3}(τ(y
2)) = τ(y3) = ∅ (cf. Lemma 3b for y2 and B = {3}).

Finally, y3 is not block-optimal for B = {1, 2}. Updating this block with the relative-interior rule
results in, e.g., y4 = (2− 1

5 , 4−
1
5 ,−

1
5) and improves the objective from bT y3 = 6 to bT y4 = 6− 2

5 . Note
that p{1,2}(τ(y

3)) = ⊥ (cf. Lemma 3a for y3 and B = {1, 2}).

4.2 Final Characterization

The results from the previous section allow us to characterize all types of (local) minima occurring in
BCD in terms of the propagation algorithm.

Theorem 18. Let y be feasible for the dual (4). Then

(a) y is an LM of the dual (4) w.r.t. B if and only if pB(τ(y)) ̸= ⊥ for all B ∈ B,
(b) y is an ILM of the dual (4) w.r.t. B if and only if pB(τ(y)) = τ(y), i.e., τ(y) is B-consistent,
(c) y is an optimal solution of the dual (4) if and only if p[m](τ(y)) ̸= ⊥,
(d) y is in the relative interior of the set of optimal solutions of the dual (4) if and only if τ(y) is

[m]-consistent,

17

(e) y is a pre-ILM of dual (4) w.r.t. B if and only if pB(τ(y)) ̸= ⊥.

Proof. (a): By definition, y is an LM of dual (4) w.r.t. B if (10) holds for all B ∈ B. Applying Lemma 2a,
this is equivalent to pB(τ(y)) ̸= ⊥ for all B ∈ B.

(b): Analogous, except that we use Lemma 2b and recall Proposition 16.
(c): Dual optimality of y is equivalent to (10) with B = [m]. The claim now follows from Lemma 2a.
(d): Similar, by Lemma 2b.
(e): Let (Bk)

l
k=1 be a finite sequence of blocks Bk ∈ B such that

pBl
(pBl−1

(· · · pB2
(pB1

(τ(y))) · · ·)) = pB(τ(y)). (30)

Note, (Bk)
l
k=1 can be obtained, e.g., by storing the individual blocks as they were applied in Algo-

rithm 3. Let us extend this finite sequence into an infinite sequence (Bk)
∞
k=1 so that (Bk)

∞
k=1 contains

each element of B an infinite number of times. Next, define sequences (Jk)
∞
k=1 and (yk)∞k=1 based on the

sequence (Bk)
∞
k=1 and y1 = y as in Theorem 17.

If Jl+1 = pB(τ(y)) = ⊥, Theorem 17a yields bT y1 > bT yl+1. This together with Theorem 11c implies
that y = y1 is not a pre-ILM because updates (9) cannot improve the objective from a pre-ILM.

On the other hand, if Jl+1 = pB(τ(y)) ̸= ⊥, then pB(Jl+1) = Jl+1 ̸= ⊥ for all B ∈ B, hence Jk ̸= ⊥
for all k, so bT y1 = bT yk by Theorem 17b. Combining this with Theorem 11d yields that y = y1 is a
pre-ILM.

Corollary 2 summarizes and connects the results given by Theorem 18.

Corollary 2. Let y be a feasible point for the dual (4). The following implications and equivalences hold
(for better readability, equivalent statements are boxed in gray):

y is an LM of dual (4) w.r.t. B ⇐ y is an ILM of dual (4) w.r.t. B
⇕ ⇕

pB(τ(y)) ̸= ⊥ for all B ∈ B pB(τ(y)) = τ(y)
⇑ ⇕

y is a pre-ILM of dual (4) w.r.t. B ⇐ τ(y) is B-consistent
⇕ ⇑

pB(τ(y)) ̸= ⊥ ⇐ y is in the relative interior of the set
of optimal solutions of dual (4)

⇑ ⇕
y is an optimal solution of dual (4) p[m](τ(y)) = τ(y)

⇕ ⇕
p[m](τ(y)) ̸= ⊥ ⇐ τ(y) is [m]-consistent

Proof. The equivalences follow from Theorem 18. To prove the implications, it suffices to show for any
J ⊆ [n] that

p[m](J) = J
(a)
=⇒ pB(J) = J

=⇒(b)

=⇒(c)

p[m](J) ̸= ⊥
(d)
=⇒ pB(J) ̸= ⊥

(e)
=⇒ ∀B ∈ B : pB(J) ̸= ⊥.

(31)

(a): p[m](J) = J is equivalent to J being [m]-consistent by Proposition 14, i.e., (16) is feasible
for B = [m] by definition. This clearly implies feasibility of (16) for any B ⊆ [m] as then (16) contains
only a subset of all the equalities, so J is B-consistent which is equivalent to pB(J) = J by Proposition 16.

(b) and (c): Trivial due to J ̸= ⊥.
(d): Denote p[m](J) = J ′ ̸= ⊥, so (16) is feasible for J ′ and B = [m] because J ′ is [m]-consistent

by Proposition 14. As in the previous case, this implies pB(J
′) = J ′. By (24), J ′ is a common fixed

point of propagators pB , B ∈ B and a subset of J . As discussed in Section 3.2.1, pB(J) is the greatest
common fixed point of these propagators such that pB(J) ⊑ J , so ⊥ ̸= J ′ ⊑ pB(J). Due to ⊥ ⊑ J ′, we
have pB(J) ̸= ⊥.

(e): By contrapositive: if pB(J) = ⊥ for some B ∈ B, then the propagation algorithm (Algorithm 3)
terminates with pB(J) = ⊥.

18

4.3 BCD Optimality in Terms of Propagation Strength

As a consequence of the obtained results, we are able to characterize linear programs exactly solvable by
BCD. Precisely, we characterize linear programs where (pre-)ILMs are optima of the dual (4) in terms of
refutation-completeness (i.e., the ability to always detect infeasibility) of activity propagation.

Corollary 3. Let B ⊆ 2[m]. The following are equivalent:

(a) every ILM y of the dual (4) w.r.t. B is a global minimum of the dual (4),

(b) every pre-ILM y of the dual (4) w.r.t. B is a global minimum of the dual (4),

(c) for all y feasible for the dual (4) we have p[m](τ(y)) = ⊥ =⇒ pB(τ(y)) = ⊥, i.e., if (12) is
infeasible, then the propagation algorithm detects it (pB(τ(y)) = ⊥),

(d) for all y feasible for the dual (4), if τ(y) is B-consistent, then (12) is feasible.

Moreover, if these statements hold, then the set of global minima coincides with the set of pre-ILMs of
the dual (4) w.r.t. B.

Proof. Since every ILM is also a pre-ILM, we have (b) =⇒ (a). To show (a) =⇒ (b), let y1 be a pre-ILM.
By Theorem 11b and 11c, after performing a finite number of relative-interior updates (9) from y, we
attain an ILM with the same objective.

Theorem 18b yields (a) ⇐⇒ (d). The contrapositive of statement (c) is pB(τ(y)) ̸= ⊥ =⇒
p[m](τ(y)) ̸= ⊥. The equivalence (b) ⇐⇒ (c) is now immediate from the implications and equivalences
summarized in Corollary 2.

One inclusion in the last statement follows already from (b). We prove the remaining part by contra-
diction: if a global minimum is not a pre-ILM, then, by Theorem 11d, the objective must improve after
a finite number of updates, which is impossible.

See that statements (a) and (b) in Corollary 3 state that the BCD fixed points are global optima
whereas statement (c) means that the propagation algorithm is able to detect infeasibility of any infeasible
system.

As this result was already stated in the conference version of this paper [17], it led to a simplification
of the proof in [16] where a class of linear programs solvable by BCD was identified. This simplified
proof was, along with a newly identified class of such linear programs, given in [18]. Recently, we used
Corollary 3 to prove optimality of BCD on yet another class of linear programs in [14, Section 5.2.1].

5 Other Forms of Linear Programs

Linear programs can come in various forms [34, Section 2.1] which can be easily transformed to each
other, preserving global optima. One can ask if the connection between constraint propagation and BCD
holds also for different forms than (4). This question is non-trivial because transformations that preserve
global optima do not necessarily preserve (pre-)ILMs [18]. We show that if we use activity propagation
as defined at the beginning of Section 3.2.1, the two approaches remain equivalent independently of the
formulation.

5.1 Primal with Inequalities and Non-negative Variables

For example, consider the primal-dual pair

max cTx min bT y (32a)

Ax ≤ b y ≥ 0 (32b)

x ≥ 0 AT y ≥ c. (32c)

The primal problem (32) (on the left-hand side) can be equivalently reformulated [34, Section 2.1][31,
Section 4.1] by introducing non-negative slack variables si ≥ 0, i ∈ [m] (where m is the number of rows
of A) which yields the primal-dual pair

max cTx min bT y (33a)

Ax+ s = b y ∈ Rm (33b)

x ≥ 0 AT y ≥ c (33c)

s ≥ 0 y ≥ 0 (33d)

19

which is in the form (4). See that the duals (32) and (33) are identical, hence also BCD applied to them
is identical.

Activity propagation for the case of (33) corresponds to deciding which si and xj are implied to
be zero. Clearly, setting si = 0 corresponds to setting Aix = bi and enforcing si > 0 is equivalent to
Aix < bi. Thus, instead of rewriting (32) into (33), we can apply propagation directly to the primal (32)
except that when considering system (15) for some B ∈ B, we will instead of a single set J use two sets,
J1 ⊆ [m] and J2 ⊆ [n], that indicate which of the original inequalities need to hold with equality, i.e., we
will use

Aix ≤ bi ∀i ∈ B ∩ J1 (34a)

Aix = bi ∀i ∈ B ∩ ([m]− J1) (34b)

xj ≥ 0 ∀j ∈ J2 (34c)

xj = 0 ∀j ∈ [n]− J2 (34d)

instead of (15). Deciding which inequalities among (34a) in (34) are always active17 by considering a
set J1 ⊆ [m] is in one-to-one correspondence with deciding which inequalities si ≥ 0 in

Aix+ si = bi ∀i ∈ B (35a)

si ≥ 0 ∀i ∈ J1 (35b)

si = 0 ∀i ∈ [m]− J1 (35c)

xj ≥ 0 ∀j ∈ J2 (35d)

xj = 0 ∀j ∈ [n]− J2 (35e)

are always active. In particular, (34) contains an always-active inequality if and only if (35) contains an
always-active inequality.

5.2 Primal with Inequalities and Unconstrained Variables

The second common form of a primal-dual pair is

max cTx min bT y (36a)

Ax ≤ b y ≥ 0 (36b)

x ∈ Rn AT y = c. (36c)

By complementary slackness, y is optimal for the dual if and only if there exists x ∈ Rn such that

Aix ≤ bi ∀i ∈ σ′(y) (37a)

Aix = bi ∀i ∈ [m]− σ′(y) (37b)

where σ′(y) = {i ∈ [m] | yi = 0} (in analogy to (5a)).
From this point, we could completely repeat the reasoning from Section 3.2.1 and prove the same

theorems as in Section 4. We would infer from

Aix ≤ bi ∀i ∈ B ∩ σ′(y) (38a)

Aix = bi ∀i ∈ B ∩ ([m]− σ′(y)) (38b)

whether some of the inequalities (38a) are always active. As an example, for any y feasible for the
dual (36): y is an ILM of the dual (36) w.r.t. B if and only if for each B ∈ B, (38) is feasible and no
inequality from (38a) is always active in the system (38).

5.3 Redundant Constraints

It was observed in [18] that adding redundant constraints into a linear program has significant influence
on its solvability by BCD. Using our results, we are able to explain this quite naturally.

17In general and analogously to Definition 3, the inequality Cix ≤ di is always active in the system Ax = b, Cx ≤ d
if Ax = b, Cx ≤ d implies Cix = di.

20

As an example, consider the following LP relaxation of the weighted vertex cover problem on a graph
(V,E) with vertex weights w : V → R+ together with its dual

min wTx max
∑

{i,j}∈Eyij (39a)

xi + xj ≥ 1 yij ≥ 0 ∀{i, j} ∈ E (39b)

xi ≥ 0
∑

j∈Ni
yij ≤ wi ∀i ∈ V (39c)

where Ni is the set of neighbors of vertex i in the graph. If we optimize the primal by coordinate descent
or the dual by coordinate ascent, there are interior local minima and maxima, respectively, that are not
global optima [18, 14]. However, if we add redundant constraints x ≤ 1 to the primal, we obtain

min wTx max
∑

{i,j}∈E yij+
∑

i∈V zi (40a)

xi + xj ≥ 1 yij ≥ 0 ∀{i, j} ∈ E (40b)

xi ≥ 0 zi +
∑

j∈Ni
yij ≤ wi ∀i ∈ V (40c)

xi ≤ 1 zi ≤ 0 ∀i ∈ V. (40d)

Note that, at optimum of the dual, we have zi = min{wi −
∑

j∈Ni
yij , 0} for each i ∈ V , so variables z

can be eliminated and the dual simplified to

max
y≥0

(∑
{i,j}∈E

yij +
∑
i∈V

min{wi −
∑

j∈Ni

yij , 0}
)
. (41)

We showed [18] that coordinate ascent in (41) is equivalent to block-coordinate ascent of the dual (40)
w.r.t. |E| blocks, each consisting of three variables yij , zi, zj where {i, j} ∈ E, and that its interior local
maxima are global maxima.

The explanation for the difference between (non-)optimality for the two formulations lies in the fact
that in case of (39), we can only propagate equality in primal constraints (39b) and xi = 0. However, in
(40), we are also able to propagate xi = 1 due to the added constraint xi ≤ 1. This results in a stronger
propagation algorithm which is even refutation-complete in this case.

In [18, Section 4.3] we observed a similar phenomenon for the LP formulation of min-st-cut and its
dual, maximum flow. Adding redundant bounds 0 ≤ xi ≤ 1 on variables in min-st-cut results in global
optimality of coordinate ascent for the dual (rewritten to a form analogous to (41)). In contrast, the
dual of the usual LP formulation of min-st-cut (i.e., without these bounds) is not amenable to coordinate
ascent as it is not even possible to change any single dual variable while staying within the feasible
set. This difference is now explained by the possibility of the underlying propagation algorithm to set
the primal variables to their bounds, i.e., set xi = 0 or xi = 1 which is not possible if variables x are
unbounded.

Our results therefore shed light on which constraints are useful in terms of propagation or BCD even
though they are redundant from the point of global optimality.

6 Conclusion

Even though propagation in a system of linear inequalities can be performed in many ways, we have
proposed a propagation algorithm which not only has natural and useful properties but also allows a
full characterization of types of local minima in BCD. Additionally, there is a tight connection between
the fixed points of BCD with relative-interior rule (or any BCD method whose fixed points are the ‘best
possible’, i.e., pre-ILMs) and the fixed points of the primal-dual approach based on this propagation
algorithm. Despite the fact that both algorithms may not reach a global optimum, none of the algorithms
can improve the fixed points of the other.

We argued that the propagation algorithm can be generalized to linear programs in any form. In
detail, BCD in the dual for a given set of blocks B corresponds to propagating which primal constraints
given by complementary slackness should be active and which inactive while inferring only from subsets
of the constraints given by sets in B.

We believe that our findings are interesting for the theory of BCD as they explain what kind of
local consistency is reached by any BCD algorithm (both with or without relative-interior rule) on any
linear program. E.g., as shown in [47], since both TRW-S [27] and max-sum diffusion [29, 44] satisfy
the relative-interior rule, their fixed point conditions are equivalent to the proposed local consistency
condition if applied to the specific LP formulations which these algorithms optimize.

21

The tight connection between the decidability of feasibility of a system of linear inequalities by (gener-
ally refutation-incomplete) propagation and BCD (Corollary 3) provides theoretical ground for analysis of
BCD in terms of constraint propagation. Identifying in which special cases a certain kind of propagation
is refutation-complete (i.e., it is always able to decide feasibility) is of interest in the constraint program-
ming community [8, 10]. Such analysis of activity propagation may lead to a different characterization
of linear programs solvable by BCD. Moreover, it may result in better design for choices of blocks of
variables so that the propagation is more effective and BCD may reach better stopping points. Since we
already stated this result in the previous version of this paper [17], it led to the discovery of new classes
of linear programs solvable by BCD [18, 14]. Even though these classes are relatively narrow, it is open
whether they are the only ones. This connection also precisely explains the differences in applicability
of BCD caused by minor changes in the formulation of the optimized linear program, as discussed in
Section 5.3.

The practical impact of these results is mainly focused on approximately optimizing challenging
large-scale linear programs which are not solvable by off-the-shelf LP solvers due to their super-linear
space complexity. Propagation algorithms subsumed (up to technical details) by the proposed one were
previously derived ad-hoc for specific linear programs [9, 15, 28, 46, 12] where they provided useful
solutions which were often close to global optima. Presenting all of these algorithms in a single framework
may simplify design of similar algorithms in the future.

Acknowledgments: This work has been supported by the Czech Science Foundation (grant 19-09967S),
the OP VVV project CZ.02.1.01/0.0/0.0/16 019/0000765, and the Grant Agency of the Czech Technical
University in Prague (grants SGS19/170/OHK3/3T/13 and SGS22/061/OHK3/1T/13).

A Computing an Improving Feasible Direction

As discussed at the beginning of Section 3.2, if (12) is infeasible, there exists an improving feasible
direction ȳ satisfying (13). We describe one way of obtaining such a direction based on the propagation
algorithm (Algorithm 3). We remark that conditions (13) define a whole convex cone of improving
directions and our algorithm finds one of them based on its precise implementation.

Let y be a dual-feasible point such that pB(τ(y)) = ⊥. This implies infeasibility of (12), i.e., non-
optimality of y. Consider sequences (Bl)

L
l=1 and (Jl)

L
l=1 where J1 ⊋ J2 ⊋ · · · ⊋ JL, J1 = τ(y), Jl+1 =

pBl
(Jl) for every l ∈ [L− 1], and pBL

(JL) = ⊥. To construct ȳ, we use the primal-dual pair

max 0 min bT ŷl (42a)

Aix = bi ŷli ∈ R ∀i ∈ Bl (42b)

xj = 0 – ∀j ∈ [n]− Jl (42c)

xj ≥ 0 AT
j ŷ

l ≥ 0 ∀j ∈ Jl (42d)

– ŷli = 0 ∀i ∈ [m]−Bl. (42e)

and proceed as outlined in Algorithm 5. Note that the primal (42) is a feasibility problem identical to (15)
if Jl = J and Bl = B. Even though Algorithm 5 may seem complicated, it is easy to see that in cases
when the blocks B are small, problem (42) is also small (and thus could even be solvable in closed-form).
Correctness of Algorithm 5 is given by the following theorem.

Theorem 19. Let J1 = τ(y). If pB(τ(y)) = ⊥, Algorithm 5 returns a vector ȳ1 satisfying (13).

Proof. We will proceed by induction, i.e., we claim that for each l ∈ [L], ȳl satisfies AT
j ȳ

l ≥ 0 for all

j ∈ Jl and bT ȳl = bT ȳL < 0 is maintained during the whole algorithm. Thus, eventually AT
j ȳ

1 ≥ 0 holds
for all j ∈ J1 = τ(y).

For the base case with l = L, primal (42) is infeasible due to pBL
(JL) = ⊥ (see Theorem 15) and

dual (42) is therefore unbounded since it is always feasible. Thus, there exists ŷL feasible to the dual (42)
that satisfies bT ŷL < 0. By feasibility, AT

j ŷ
L
i ≥ 0 for all j ∈ JL.

For the inductive step, let l ≤ L − 1. If condition on line 3 is not satisfied, AT
j ȳ

l ≥ 0 holds for all

j ∈ Jl trivially by setting ȳl equal to ȳl+1 on line 7 due to our inductive hypothesis.
If condition on line 3 is satisfied, let us focus on (42). Since pBl

(Jl) = Jl+1 ̸= ⊥, primal (42) is feasible
with optimal value 0, which is attained by all feasible solutions. Let xl and ŷl be in the relative interior
of the set of optimal solutions of the primal and dual (42), respectively. Since xl, ŷl are from the relative

22

Algorithm 5 Construction of improving direction

input: sequences of sets (Bl)
L
l=1 and (Jl)

L
l=1 satisfying Jl+1 = pBl

(Jl) for every l ∈ [L−1], and pBL
(JL) =

⊥
1: Set ȳL ← ŷL where ŷL is feasible for the dual (42) with l = L and bT ŷL < 0.
2: for l ∈ {L− 1, L− 2, . . . , 2, 1} in descending order do
3: if ∃j ∈ Jl − Jl+1: A

T
j ȳ

l+1 < 0 then

4: Find ŷl from the relative interior of the optimal solution set of dual (42) for l.
5: Set ȳl ← ȳl+1 + δlŷ

l where δl = max
j∈Jl−Jl+1

AT
j ȳl+1<0

−AT
j ȳ

l+1/AT
j ŷ

l.

6: else
7: Set ȳl ← ȳl+1.

8: return ȳ1

interior, they satisfy strict complementary slackness (see Theorem 9), i.e., xj = 0 ⇐⇒ AT
j ŷ

l > 0 for

all i ∈ Jl. By the last statement in Theorem 15, xj = 0 ∧ AT
j ŷ

l > 0 holds for all j ∈ Jl − Jl+1 because

pBl
(Jl) = Jl+1. For completeness, xj > 0 ∧AT

j ŷ
l = 0 holds for all j ∈ Jl+1.

Notice that δl is well-defined because condition on line 3 was satisfied. Moreover, δl > 0 due to both
−AT

j ȳ
l+1 and AT

j ŷ
l being positive by definition of δl.

We consider the following cases to prove that AT
j ȳ

l ≥ 0 for all j ∈ Jl:

• If j ∈ Jl+1, then AT
j ȳ

l+1 ≥ 0 by inductive hypothesis and AT
j ŷ

l = 0 by strict complementary

slackness, hence AT
j ȳ

l = AT
j ȳ

l+1 ≥ 0.

• If j ∈ Jl − Jl+1, then AT
j ŷ

l > 0. If AT
j ȳ

l+1 ≥ 0, then AT
j ȳ

l = AT
j ȳ

l+1 + δlA
T
j ŷ

l ≥ 0. On the other

hand, if AT
j ȳ

l+1 < 0, it holds by definition of δl that δl ≥ −AT
j ȳ

l+1/AT
j ŷ

l, which is after a simple

reformulation equivalent to AT
j ȳ

l = AT
j ȳ

l+1 + δlA
T
j ŷ

l ≥ 0.

Finally, it holds by strong duality that bT ȳl = 0, which yields bT ȳl = bT ȳl+1 + δbT ŷl = bT ȳl+1 < 0.

B Faces and B-consistent Sets

In this section, we explain the geometric meaning of B-consistent sets, as defined in Section 3.2.1. In
detail, we will show that the set of B-consistent sets is order-isomorphic to the set of non-empty faces of
the polyhedron XB([n]) (defined in (22)). Consequently, the lattice (JB ,⊑) (see (18)) is isomorphic to
the face lattice of XB([n]).

The faces of a convex polyhedron are usually defined using valid inequalities (or supporting hyper-
planes) [50, Section 2.1]. However, faces can be also equivalently obtained by forcing subsets of inequal-
ities to be active [38, Section 5.6]. We use this latter definition. Moreover, we define faces only for the
polyhedron XB([n]) (see (22)) where B ⊆ [m] is fixed.

Definition 6. Let B ⊆ [m]. A set F ⊆ Rn is a face of the polyhedron XB([n]) if F = ∅ or F = XB(J)
for some J ⊆ [n]. The set of all faces of XB([n]) is denoted by

FB = {F | F is a face of XB([n])}. (43)

It is immediate that the set of all faces of XB([n]) is finite. Moreover, the set of all faces is closed
under intersections, as shown by the following corollary.

Corollary 4 ([50, Proposition 2.3]). Let B ⊆ [m]. If F, F ′ ∈ FB, then F ∩ F ′ ∈ FB.

Proof. This is clear if F = ∅ or F ′ = ∅. Otherwise, there are J, J ′ ⊆ [n] such that F = XB(J)
and F ′ = XB(J

′). Hence, XB(J) ∩XB(J
′) = XB(J ∩ J ′) ∈ FB .

Thus, the face set of the polyhedron XB([n]) forms a finite meet-semilattice w.r.t. the partial order
given by set inclusion where the meet operation is set intersection. Moreover, XB([n]) is the top element
of this meet-semilattice, so (FB ,⊆) is a complete lattice by Theorem 1. This is known as the face
lattice [50, 4, 37].

We will now describe the connection between B-consistent sets and the faces of polyhedron XB([n]).
Firstly, let us point our attention to the fact that we could require the set J to be B-consistent in
Definition 6. We formulate a stronger statement in the following theorem.

23

Theorem 20. Let B ⊆ [m]. For any non-empty F ∈ FB, there exists a unique B-consistent set J ⊆ [n]
such that F = XB(J). Conversely, for any B-consistent set J ⊆ [n], the face XB(J) is non-empty.

Proof. For the first part, let us show that at least one such set exists. By definition, since F ∈ FB is
non-empty, there exists J ′ ⊆ [n] such that F = XB(J

′). Clearly, we have that XB(J
′) = XB(pB(J

′)) and
pB(J

′) is B-consistent by Theorem 15. To show that this set is unique, let us proceed by contradiction.
Let J1, J2 ⊆ [n] be B-consistent sets such that XB(J1) = XB(J2) = F and J1 ̸= J2. Without loss of
generality, assume J2−J1 ̸= ∅ and let j∗ ∈ J2−J1 be arbitrary. We have that xj∗ = 0 for all x ∈ XB(J1)
due to j∗ /∈ J1, so J2 is not B-consistent as (15) for J2 implies xj∗ = 0 and j∗ ∈ J2.

For the other part, it is clear that any B-consistent set defines a face of the polyhedron by Definition 6.
Moreover, this face is non-empty due to (15) being feasible for any B-consistent set J .

Following Theorem 20, XB can be interpreted as a bijection between B-consistent sets and the set of
non-empty faces of XB([n]).

18

As already noted earlier in Section 3.2.1, XB is an isotone mapping, i.e., if J ⊆ J ′ ⊆ [n], then
XB(J) ⊆ XB(J

′). The converse relation also holds if we restrict ourselves to B-consistent sets:

Proposition 21. Let B ⊆ [m] and J, J ′ ⊆ [n] be B-consistent. If XB(J) ⊆ XB(J
′), then J ⊆ J ′.

Proof. By contradiction: let XB(J) ⊆ XB(J
′) and J ⊈ J ′. The latter implies that there is j ∈ [n] such

that j ∈ J and j /∈ J ′. By Definition 5, there exists x∗ ∈ XB(J) satisfying (16) for J with x∗
j > 0.

However, by definition of XB(J
′) (see (22)), we have xj = 0 for all x ∈ XB(J

′) (due to j /∈ J ′),
so x∗ /∈ XB(J

′), which contradicts XB(J) ⊆ XB(J
′).

It seems natural to extend the mapping XB to obtain the isotone bijection X ′
B :JB → FB defined by

X ′
B(J) =

{
XB(J) if J ⊆ [n]

∅ if J = ⊥
. (44)

Clearly, we have that J ⊑ J ′ ⇐⇒ X ′
B(J) ⊆ X ′

B(J
′) for any J, J ′ ∈ JB . The lattices (JB ,⊑) and

(FB ,⊆) are therefore order-isomorphic and X ′
B is a lattice isomorphism [11].19

Remark 10. In some formalisms, ∅ does not belong to the face lattice of some polyhedra. To be precise,
if (S,⊆) is the face lattice of some polyhedron, then (S − {∅},⊆) is a lattice if and only if

⋂
{F | F ∈

S − {∅}} ̸= ∅, i.e., if there is a minimal non-empty face [4, Section 8]. As an example, for the non-
negative orthant X∅([n]) = {x ∈ Rn | x ≥ 0}, we have

⋂
{F | F ∈ F∅ − {∅}} = {0} and (F∅ − {∅},⊆) is

a lattice where the bottom element is {0} (i.e., the singleton set containing the origin).
Consequently, if (FB − {∅},⊆) is a lattice, then (JB − {⊥},⊑) is a lattice too. These lattices are

again order-isomorphic and XB is the lattice isomorphism.

References

[1] I. Adler and R. D. Monteiro. A geometric view of parametric linear programming. Algorithmica,
8(1):161–176, 1992.

[2] K. R. Apt. From chaotic iteration to constraint propagation. In International Colloquium on Au-
tomata, Languages, and Programming, pages 36–55. Springer, 1997.

[3] K. R. Apt. The rough guide to constraint propagation. In Conf. on Principles and Practice of
Constraint Programming, pages 1–23. Springer, 1999.

[4] A. Bachem and M. Grötschel. New aspects of polyhedral theory. Inst. für Ökonometrie und Operations
Research, 1980.

[5] C. Bessiere. Constraint propagation. In Handbook of Constraint Programming, chapter 3. Elsevier,
2006.

[6] T. Blyth. Lattices and Ordered Algebraic Structures. Universitext. Springer London, 2005.

18In analogy to [4, Section 4], for a B-consistent set J and F = XB(J), [m] − J is the equality set of F . Additionally,
the lattice (JB ,⊑) is similar to the equality set lattice of XB([n]) [4, Section 8].

19Following on Footnote 18, this result is analogous to the fact that, for a polyhedron M , the face lattice of M is
anti-isomorphic to the equality set lattice of M [4, Diagram 8.1].

24

[7] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[8] D. A. Cohen and P. G. Jeavons. The power of propagation: when gac is enough. Constraints,
22(1):3–23, 2017.

[9] M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft arc consistency
revisited. Artificial Intelligence, 174(7-8):449–478, 2010.

[10] M. C. Cooper and S. Živný. The power of arc consistency for csps defined by partially-ordered
forbidden patterns. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 652–661, 2016.

[11] B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cambridge university press,
2002.

[12] T. Dlask. Minimizing Convex Piecewise-Affine Functions by Local Consistency Techniques. Master’s
thesis, Czech Technical University in Prague, Faculty of Electrical Engineering, 2018.

[13] T. Dlask. Unit propagation by means of coordinate-wise minimization. In International Conference
on Machine Learning, Optimization, and Data Science, pages 688–699. Springer, 2020.

[14] T. Dlask. Block-Coordinate Descent and Local Consistencies in Linear Programming. Ph.D. thesis,
available online https://dspace.cvut.cz/handle/10467/102874?locale-attribute=en, Czech
Technical University in Prague, Faculty of Electrical Engineering, 2022.

[15] T. Dlask and T. Werner. Bounding linear programs by constraint propagation: application to Max-
SAT. In International Conference on Principles and Practice of Constraint Programming, pages
177–193. Springer, 2020.

[16] T. Dlask and T. Werner. A class of linear programs solvable by coordinate-wise minimization. In I. S.
Kotsireas and P. M. Pardalos, editors, Learning and Intelligent Optimization, pages 52–67. Springer,
2020.

[17] T. Dlask and T. Werner. On relation between constraint propagation and block-coordinate descent in
linear programs. In International Conference on Principles and Practice of Constraint Programming,
pages 194–210. Springer, 2020.

[18] T. Dlask and T. Werner. Classes of linear programs solvable by coordinate-wise minimization. Annals
of Mathematics and Artificial Intelligence, 90(7):777–807, 2022.

[19] R. M. Freund, R. Roundy, and M. J. Todd. Identifying the set of always-active constraints in a
system of linear inequalities by a single linear program. Technical Report 1674-85, Massachusetts
Institute of Technology, Alfred P. Sloan School of Management, 1985.

[20] A. Globerson and T. S. Jaakkola. Fixing max-product: Convergent message passing algorithms for
MAP LP-relaxations. In Advances in Neural Information Processing Systems, pages 553–560, 2008.

[21] A. J. Goldman and A. W. Tucker. Theory of Linear Programming, pages 53–97. Princeton University
Press, 1956.

[22] H. J. Greenberg. The use of the optimal partition in a linear programming solution for postoptimal
analysis. Operations Research Letters, 15(4):179–185, 1994.

[23] H. J. Greenberg. Consistency, redundancy, and implied equalities in linear systems. Annals of
Mathematics and Artificial Intelligence, 17(1):37–83, 1996.

[24] P. Hansen, N. Mladenović, J. Brimberg, and J. A. M. Pérez. Variable neighborhood search. In
Handbook of metaheuristics, chapter 3. Springer, 2010.

[25] B. Jansen, C. Roos, T. Terlaky, and J.-P. Vial. Interior-point methodology for linear programming:
duality, sensitivity analysis and computational aspects. In Optimization in Planning and Operation
of Electric Power Systems, pages 57–123. Springer, 1993.

25

https://dspace.cvut.cz/handle/10467/102874?locale-attribute=en

[26] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr, S. Nowozin, D. Batra, S. Kim, B. X.
Kausler, T. Kröger, J. Lellmann, N. Komodakis, B. Savchynskyy, and C. Rother. A comparative
study of modern inference techniques for structured discrete energy minimization problems. Intl. J.
of Computer Vision, 115(2):155–184, 2015.

[27] V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 28(10):1568–1583, 2006.

[28] V. K. Koval and M. I. Schlesinger. Dvumernoe programmirovanie v zadachakh analiza izobrazheniy
(Two-dimensional programming in image analysis problems). Automatics and Telemechanics, 8:149–
168, 1976. In Russian.

[29] V. Kovalevsky and V. Koval. A diffusion algorithm for decreasing energy of max-sum labeling
problem. Glushkov Institute of Cybernetics, Kiev, USSR, 1975. Unpublished.

[30] C. Lemaréchal and J.-B. Hiriart-Urruty. Fundamentals of Convex Analysis. Springer Grundlehren
Text Editions, Springer Verlag, New York, 2004.

[31] J. Matoušek and B. Gärtner. Understanding and using linear programming. Springer-Verlag, 2006.

[32] S. Mehrotra and Y. Ye. Finding an interior point in the optimal face of linear programs. Mathematical
Programming, 62(1):497–515, 1993.

[33] J. B. Nation. Notes on lattice theory. https://math.hawaii.edu/~jb/math618/

Nation-LatticeTheory.pdf, 1998.

[34] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and complexity.
Courier Corporation, 1998.

[35] D. Pisinger and S. Ropke. Large neighborhood search. In Handbook of metaheuristics, chapter 13.
Springer, 2010.

[36] B. Savchynskyy. Discrete graphical models – an optimization perspective. Foundations and Trends
in Computer Graphics and Vision, 11(3-4):160–429, 2019.

[37] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

[38] A. Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer Science & Business
Media, 2004.

[39] J. Telgen. Identifying redundant constraints and implicit equalities in systems of linear constraints.
Management Science, 29(10):1209–1222, 1983.

[40] S. Tourani, A. Shekhovtsov, C. Rother, and B. Savchynskyy. MPLP++: Fast, parallel dual block-
coordinate ascent for dense graphical models. In Proceedings of the European Conference on Com-
puter Vision, pages 251–267, 2018.

[41] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. J.
Optim. Theory Appl., 109(3):475–494, June 2001.

[42] S. Živný. The Complexity of Valued Constraint Satisfaction Problems. Cognitive Technologies.
Springer, 2012.

[43] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference.
Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

[44] T. Werner. A linear programming approach to max-sum problem: A review. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(7):1165–1179, July 2007.

[45] T. Werner. Revisiting the linear programming relaxation approach to Gibbs energy minimiza-
tion and weighted constraint satisfaction. IEEE Trans. Pattern Analysis and Machine Intelligence,
32(8):1474–1488, August 2010.

[46] T. Werner. On coordinate minimization of piecewise-affine functions. Technical Report CTU-CMP-
2017-05, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University
in Prague, September 2017.

26

https://math.hawaii.edu/~jb/math618/Nation-LatticeTheory.pdf
https://math.hawaii.edu/~jb/math618/Nation-LatticeTheory.pdf

[47] T. Werner, D. Pr̊uša, and T. Dlask. Relative interior rule in block-coordinate descent. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7559–7567, 2020.

[48] T. Werner and D. Pr̊uša. Relative interior rule in block-coordinate minimization. ArXiv, 2019.

[49] S. Zhang. On the strictly complementary slackness relation in linear programming. In Advances in
Optimization and Approximation, pages 347–361. Springer, 1994.

[50] G. M. Ziegler. Lectures on Polytopes. Springer-Verlag, New York, 1994.

27

	Introduction
	Preliminaries
	Lattices, Closure Operators, and Chaotic Iterations
	Lattices
	(Dual) Closure Operators
	Chaotic Iterations

	Linear Programming and Always-Active Inequalities

	Compared Methods
	Block-Coordinate Descent and Relative-Interior Rule
	Primal-Dual Approach
	Activity Propagation in a System of Linear Inequalities

	Relation Between the Approaches
	Connection Between Propagators and BCD Updates
	Final Characterization
	BCD Optimality in Terms of Propagation Strength

	Other Forms of Linear Programs
	Primal with Inequalities and Non-negative Variables
	Primal with Inequalities and Unconstrained Variables
	Redundant Constraints

	Conclusion
	Computing an Improving Feasible Direction
	Faces and B-consistent Sets

