2D IMAGE SEGMENTATION BASED ON SPATIAL COHERENCE

Václav Hlaváč
Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 121 35 Praha 2, Karlovo nám. 13, Czech Republic
hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz

Lecture plan

1.
2.
3.
4.
Underlying ideas

- **Collect together tokens** that ‘belong together’. Group (cluster) them.
- Tokens are detectable entities in the image which can be grouped.
- **Top-down segmentation**: tokens belong together because they fit to the same object.
- **Bottom-up segmentation**: tokens belong together because they are locally spatially coherent.
- Top-down and bottom-up approaches are not mutually exclusive. They can often cooperate.
Gestalt principles of perceptual organization (1)

- Founding publication by Max Wertheimer (born in Prague) in 1912 in Frankfurt a.M.

- Gestalt theory was meant to have general applicability; its main tenets, however, were induced almost exclusively from observations on visual perception.

- The overriding theme of the theory is that stimulation is perceived in organized or configurational terms (Gestalt in German means “configuration”).

- Patterns take precedence over elements and have properties that are not inherent in the elements themselves.
Gestalt principles of perceptual organization (2)

- **Gestalt**: a structure, configuration, or pattern of physical, biological, or psychological phenomena so integrated as to constitute a functional unit with properties not derivable by summation of its parts.

- “The whole is different from the sum of the parts”.

- Rejected structuralism and its assumptions of atomicity and empiricism.

- Adopted a “holistic approach” to perception.
Humans are good in grouping (1)
Humans are good in grouping (2)
Gestalt grouping principles

- not grouped
- by proximity
- by similarity
- by similarity
- by direction

paralellism symmetry continuity closure
Grouping is not always easy
Contours, boundaries in segmentation

- Physical phenomena involved in the image formation give rise to collections of edgels, often called **contours**, in images.
 - Closed contours = boundaries of semantically meaningful regions.
 - Open contours = are usually parts of region boundaries with gaps due to noise or low contrast.
 - ‘Other contours’ can sometimes be found, e.g., corresponding to a surface discontinuity on the surface of a 3D object.

- Contours can be represented as an ordered list of edgels which is often modeled mathematically as a curve.
Edge-based image segmentation

- Edges by a gradient operator. Edgels are significant edges.
- Edgels linking and following by relaxation, voting, dynamic programming, . . .
- Natural for grouping of curvilinear structures.
- Often leads to hard premature decisions.
Edge-based image segmentation (2)

- Edge detector is applied to find region boundary candidates.
- Thresholding of the edge magnitude is the simplest way how to get boundary candidates.
- Some iterative (possibly knowledge-based technique) is used to find boundaries.

Problems with edge-based segmentation:

- It is difficult to obtain closed contours, i.e., boundaries of regions.
- The whole image need not be segmented.
Edge image thresholding (1)

original image

edge image
(enhanced for display)
Edge image thresholding (1)

threshold 30

threshold 10
(too small)
Non-maximal suppression and hysteresis

Pixel under inspection

Boundary in image

Neighboring pixels (defined by edge direction)

Pixels adjacent with respect to local edge information are inspected.
Non-maximal suppression and hysteresis (2)

Non-maximal suppression

hysteresis
high threshold 70, lower 10
Edge relaxation

- Edge-based segmentation does not provide close borders as some parts of it are missing due to noise.
- Edge relaxation is a postprocessing step which closes gaps between border segments.
- It is an instance of a general algorithm called relaxation labelling.
- In edge relaxation, edge properties in the context of neighboring pixels are iteratively improved.
- The method will be illustrated on one example: relaxation based on crack edges (Hanson, Rieseman 1978).
Introduces ‘superresolution’ inter-pixel property.

There is a formal notion how to express it = cellular complexes.
Crack edge patterns

- **0-0** isolated edge – negative influence on the edge confidence
- **0-1** uncertain – weak positive, or no influence on edge confidence
- **0-2, 0-3** dead end – negative influence on edge confidence
- **1-1** continuation – strong positive influence on edge confidence
- **1-2, 1-3** continuation to border intersection – medium positive influence on edge confidence
- **2-2, 2-3, 3-3** bridge between borders – not necessary for segmentation, no influence on edge confidence
Edge relaxation algorithm

1. Evaluate a confidence $c^{(1)}(e)$ for all crack edges e in the image.

2. Find the edge type of each edge based on edge confidences $c^{(k)}(e)$ in its neighborhood.

3. Update the confidence $c^{(k+1)}(e)$ of each edge e according to its type and its previous confidence $c^{(k)}(e)$.

4. Stop if all edge confidences have converged either to 0 or 1. Repeat steps (2) and (3) otherwise.
Edge relaxation, example (1)

borders after 10 iterations

borders after thinning
Edge relaxation, example (2)

Borders after 100 iterations thinned

Overlaid over original
Image segmentation can be formulated as clustering which has been studied in statistics, pattern recognition or machine learning.

Problem formulation: Assign a pixel to a cluster which is the most spatially adjacent and the most homogeneous with respect to some criterion (e.g., brightness variance).

There are several clustering methods. Seek unsupervised learning algorithms in pattern recognition. E.g., K-means, EM.
K-means clustering

Lloyd’s Algorithm

- Initialize the pixels to belong to a random region.
- Compute the mean feature vector in each region.
- Move a pixel to another region if this decreases the total distance J.

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} \| x_n - \mu_k \|^2,$$

where n points to individual pixels, N is number of pixels, K is an a priori given number of clusters, $K < N$, x_n is a pixel value, μ_k is the cluster representative (mean point of a cluster).

- Iterate until pixels do not move any longer.

There is a danger of ending up in a local minimum of J.

Performance depends much on the initial choice of the clusters.

There are point sets on which K-means takes superpolynomial time $\mathcal{O}(2^{\sqrt{n}})$ to converge.

With $K = 2$ the K-means algorithm can be regarded as a thresholding with an automatically determined threshold.
Region-based image segmentation

- Region growing or/and region splitting.

![Image of a tiger in a grassy area with a segmentation overlay]
Mean shift

- Sample **mean of local samples** points in the direction of higher density. It provides the estimate of the gradient.

- Mean shift vector m of each point p

 $$m = \sum_{i \in \text{window}} w_i (p_i - p), \quad w_i = \text{dist}(p, p_i)$$

- Based on the assumption that points are more and more dense as we are getting near the cluster central mass \tilde{T}.
Mean shift algorithm

- Input: points in the Euclidean (feature) space.
- Determine a search window size (usually small).
- Choose the initial location of the search window.
- Compute the mean location (centroid of the data) in the search window.
- Center the search window at the mean location computed in the previous step.
- Repeat until convergence.
Mean shift segmentation algorithm

1. Convert the image into tokens (via color, gradients, texture measures etc).

2. Choose initial search window locations uniformly in the data.

3. Compute the mean shift window location for each initial position.

4. Merge windows that end up on the same ‘peak’ or mode.

5. The data these merged windows traversed are clustered together.
Mean shift segmentation, Example 1

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
Mean shift segmentation, Example 2

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
Mean shift segmentation, Example 3

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html