Actuators in robotics
Overview

Václav Hlaváč
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Cybernetics
Czech Republic
http://cmp.felk.cvut.cz/~hlavac

Courtesy to several authors of presentations on the web.
What is an actuator in robotics?

- A mechanical device for actively moving or driving something.
- Source of movement (drive), taxonomy:
 - Electric drive (motor).
 - Hydraulic drive.
 - Pneumatic drive.
 - Internal combustion, hybrids.
 - Miscellaneous: ion thruster, thermal shape memory effect, artificial muscles, etc.
Outline of the lecture

- Servomechanism.
- Electrical motor.
- Hydraulic drive.
- Pneumatic drive.
- Miscellaneous:
 - Artificial muscles.
Servomechanism

- Mechanism exploring feedback to deliver number of revolutions, position, etc.
- The controlled quantity is mechanical.
Properties of a servo

- High maximum torque/force allows high (de)acceleration.
- Can be source of torque.
- High zero speed torque/force.
- High bandwidth provides accurate and fast control.
- Works in all four quadrants
- Robustness.
Rotary shaft encoder
Classification of Electric Motors

Electric Motors

Alternating Current (AC) Motors
- Synchronous
 - Single-Phase
- Induction
 - Three-Phase

Direct Current (DC) Motors
- Separately Excited
- Self Excited
 - Series
 - Compound
 - Shunt
DC motors

- **Field pole**
 - North pole and south pole
 - Receive electricity to form magnetic field

- **Armature**
 - Cylinder between the poles
 - Electromagnet when current goes through
 - Linked to drive shaft to drive the load

- **Commutator**
- Overturns current direction in armature

(Direct Industry, 1995)
How does a DC motor work?
DC motors, cont.

- Speed control without impact power supply quality
 - Changing armature voltage
 - Changing field current
- Restricted use
 - Few low/medium speed applications
 - Clean, non-hazardous areas
- Expensive compared to AC motors
DC motor, a view inside

- Simple, cheap.
- Easy to control.
- 1W - 1kW
- Can be overloaded.
- Brushes wear.
- Limited overloading on high speeds.
DC motor control

- Controller + H-bridge (allows motor to be driven in both directions).
- Pulse Width Modulation (PWM)-control.
- Speed control by controlling motor current=torque.
- Efficient small components.
- PID control.
DC motor modeling

\[\text{Voltage and Current In} \]

\[U \rightarrow I \]

\[Q \rightarrow \text{Heat Out} \]

\[\tau, \omega \rightarrow \text{Torque and Speed Out} \]

\[UI = Q + \tau \omega \]

\[UI \approx I^2 R + \tau \omega \]
DC motor, shunt

- Separately excited DC motor: field current supplied from a separate force
- Self-excited DC motor: shunt motor

- Field winding parallel with armature winding
- Current = field current + armature current

(Rodwell Int. Corporation, 1999)

Speed constant independent of load up to certain torque

Speed control: insert resistance in armature or field current

(Rodwell Int. Corporation, 1999)
DC motor: series motor

Self-excited DC motor: series motor

- Field winding in series with armature winding
- Field current = armature current

Suited for high starting torque: cranes, hoists

- Speed restricted to 5000 RPM
- Avoid running with no load: speed uncontrolled

(Rodwell Int. Corporation, 1999)
DC compound motor

Field winding in series and parallel with armature winding

Suites for high starting torque if high % compounding: cranes, hoists

Good torque and stable speed

Higher % compound in series = high starting torque
Digital control of DC motors

Pulse-Width-Modulated (PWM)

- Sample Period
- Output is average over sample period

Pulse-Rate-Modulated (PRM)

- Constant pulse length
- Output is average over all periods
AC motor

- Electrical current reverses direction
- Two parts: stator and rotor
 - Stator: stationary electrical component
 - Rotor: rotates the motor shaft
- Speed difficult to control because it depends on current frequency
- Two types
 - Synchronous motor
 - Induction motor
AC motor inventor

Nikola Tesla
AC synchronous motors

- Constant speed fixed by system frequency
- DC for excitation and low starting torque: suited for low load applications
- Can improve power factor: suited for high electricity use systems
- Synchronous speed (Ns):

\[N_s = \frac{120 \ f}{P} \]

f = supply frequency
P = number of poles
AC induction motor, components

- **Rotor**
 - Squirrel cage: conducting bars in parallel slots
 - Wound rotor: 3-phase, double-layer, distributed winding

- **Stator**
 - Stampings with slots to carry 3-phase windings
 - Wound for definite number of poles
How induction motors work?

- Electricity supplied to the stator.
- Magnetic field generated that moves around rotor.
- Current induced in rotor.
- Rotor produces second magnetic field that opposes stator magnetic field.
- Rotor begins to rotate.
AC induction motor, a view inside
AC induction motors, properties

Disadvantages:
- About 7x overload current at start.
- Needs a frequency changer for control.

Advantages:
- Simple design, cheap
- Easy to maintain
- Direct connection to AC power source

Advantages (cont):
- Self-starting.
- 0,5kW – 500kW.
- High power to weight ratio
- High efficiency: 50 – 95 %
Induction motor, speed and slip

- Motor never runs at synchronous speed but lower “base speed”
- Difference is “slip”
- Install slip ring to avoid this
- Calculate % slip:

\[
\text{% Slip} = \frac{N_s - N_b}{N_s} \times 100
\]

Ns = synchronous speed in RPM
Nb = base speed in RPM
AC Induction motor load, speed, torque relationship

At start: high current and low “pull-up” torque

At 80% of full speed: highest “pull-out” torque and current drops

At full speed: torque and stator current are zero
Delta Δ – star Y

- Inter-phase (L-L) voltage 400 V.
- The inrush current can be too large (~7 times the nominal current).
- Phase-ground (L-N) voltage 230 V.
- $Y\Delta$ starting reduces the inrush current.

Courtesy: Ivo Novák, images
Single phase induction motor

- One stator winding.
- Single-phase power supply.
- Squirrel cage rotor.
- Use several tricks to start, then transition to an induction motor behavior.
- Up to 3 kW applications.
- Household appliances: fans, washing machines, dryers, airconditioners.
- Lower efficiency: 25 – 60 %
- Often low starting torque.
Single-phase induction motor

- Three-phase motors produce a rotating magnetic field.
- When only single-phase power is available, the rotating magnetic field must be produced using other means.
- Two methods to create the rotating magnetic field are usually used:
 1. Shaded-pole motor.
 2. Split-phase motor.
Ad 1. Shaded-pole motor

- A small squirrel-cage motor with an auxiliary winding composed of a copper ring or bar.
- Current induced in this coil induce a 2nd phase of magnetic flux.
- Phase angle is small \(\Rightarrow \) only a small starting torque compared to torque at full speed.
- Used in small appliances as electric fans, drain pumps of a washing machine, dishwashers.
Ad 2. Split-phase motor (1)

- Has a startup winding separate from the main winding. Fewer turns of smaller wire than the main winding, so it has a lower inductance (L) and higher resistance (R).
- The lower L/R ratio creates a small phase shift, not more than about 30 degrees.
- At start, the startup winding is connected to the power source via a centrifugal switch, which is closed at low speed.
- The starting direction of rotation is given by the order of the connections of the startup winding relative to the running winding.
Ad 2. Split-phase motor (2)

- Once the motor reaches near operating speed, the centrifugal switch opens, disconnecting the startup winding from the power source.

- The purpose of disconnecting the startup winding is to eliminate the energy loss due to its high resistance.

- The motor then operates solely on the main winding.

- Commonly used in major appliances such as air conditioners and clothes dryers.
Ad 2. Split-phase motor (3)

- A capacitor start motor is a split-phase induction motor with a starting capacitor inserted in series with the startup winding.
- An LC circuit produces a greater phase shift (and so, a much greater starting torque) than a split-phase motor.
Stepper Motors

- A sequence of (3 or more) poles is activated in turn, moving the stator in small “steps”.
- Very low speed / high angular precision is possible without reduction gearing by using many rotor teeth.
- Can also perform a “microstep” by activating both coils at once.
Driving stepper motors

- Signals to the stepper motor are binary, on-off values (not PWM).
- In principle easy: activate poles as A B C D A … or A D C B A … Steps are fixed size, so no need to sense the angle! (open loop control).
- In practice, acceleration and possibly jerk must be bounded, otherwise motor will not keep up and will start missing steps (causing position errors).
- Driver electronics must simulate inertia of the motor.
Stepper Motor Selection

- Permanent Magnet / Variable Reluctance
- Unipolar vs. Bipolar
- Number of Stacks
- Number of Phases
- Degrees Per Step
- Microstepping
- Pull-In/Pull-Out Torque
- Detent Torque
Voice coil motor

- The name comes form the original use in loudspeakers.
- Either moving coil or moving magnet.
- Used for proportional or tight servomechanisms, where the speed is of importance.
- E.g. in a computer disc drive, gimbal or other oscillatory applications.
Linear electric motors

- There are some true linear magnetic drives.
 - BEI-Kimco voice coils:
 - Up to 30 cm travel
 - 100 lbf
 - > 10 g acceleration
 - 2.5 kg weight
 - 500 Hz corner frequency.
 - Used for precision vibration control.
Tubular linear motor

- Enclosed coil
- Symmetrical design
- Large air gap
- Enclosed magnets
- Load bearing housing
- Integral heat sink fins
Force

- Peak: 744 - 1860 N
- Continuous: 137 - 276N

Maximum Velocity

- Up to 9.4 m/s

Feedback

- Built-in position sensor
- 1V pk-pk sin/cos
- 25 micron repeatability

Range of motion

- Travel lengths up tp 1362 mm

Dimensions

- W x H: 70 x 122mm
- Rod diameter: 38mm

ServoTube delivers the speed of a belt-drive system with the clean reliability of a linear forcer at a price unprecedented in the industry. Familiar form factor, integral position feedback and large air gap make installation simple.

The ServoTube forcer components consist of an IP67 rated forcer and a sealed stainless steel thrust rod enclosing rare-earth magnets. Four models deliver a continuous force range of 137~276 N (31~62 lb) with peak forces up to 1860 N (418 lb). A range of Thrust Rods are available for ServoTube is an ideal OEM solution for easy integration into pick-and-place gantries and general purpose handling machines. The load is mounted directly to the forcer typically supported by a single bearing rail. The Thrust Rod is mounted at both ends, similar to a ballscrew. A large air gap reduces alignment constraints.

The tubular forcer has superior thermal efficiency, radiating heat uniformly. High duty cycles are possible without the need for forced-air or water cooling.
Hydraulic actuators

- Linear movement.
- Big forces without gears.
- Actuators are simple.
- Used often in mobile machines.
- Bad efficiency.
- Motor, pump, actuator combination is lighter than motor, generator, battery, motor & gear combination.
Hydraulic actuators, examples
Hydraulic pump (1)

- **Gear pump**
 - Lowest efficiency ~ 90%

- **Rotary vane pump**
 - Mid-pressure ~ 180 bars

External teeth

Internal teeth
Hydraulic pump (2)

- Archimedes screw
- Bent axis pump
Hydraulic pump (3)

- Axial piston pumps, swashplate principle
- Radial piston pump
 High pressure (∼ 650 bar)
 Small flows.
Hydraulic cylinder
Vane motor
Gear motor
Semi-rotary piston motor

300 degrees
Large torque at low speed.

180 degrees
Doubles the torque.
Radial piston motor

High starting torque
Real hydraulic motor
Pneumatic actuators

- Like hydraulic except power from compressed air.

- Advantages:
 - Fast on/off type tasks.
 - Big forces with elasticity.
 - No hydraulic oil leak problems.

- Disadvantage:
 - Speed control is not possible because the air pressure depends on many variables that are out of control.
Other Actuators

- Piezoelectric.
- Magnetic.
- Ultrasound.
- Shape Memory Alloys (SMA).
- Inertial.
Examples
Muscles

- Muscles contract when activated.
- Muscles are also attached to bones on two sides of a joint. The longitudinal shortening produces joint rotation.
- Bilateral motion requires pairs of muscles attached on opposite sides of a joint are required.
Muscles inside

- Muscles consist of long slender cells (fibres), each of which is a bundle of finer fibrils.
- Within each fibril are relatively thick filaments of the protein myosin and thin ones of actin and other proteins.
- Tension in active muscles is produced by cross bridges.
Artificial muscles, properties

- **Mechanical properties**: elastic modulus, tensile strength, stress-strain, fatigue life, thermal and electrical conductivity.

- **Thermodynamic issues**: efficiency, power and force density, power limits.

- **Packaging**: power supply/delivery, device construction, manufacturing, control, integration.
Artificial muscles, technology 1

1. Traditional mechatronic muscles, e.g. pneumatic.
2. Shape memory alloys, e.g. NiTi.
3. Chemical polymers - gels (Jello, vitreous humor)
 - 1000-fold volume change \(\sim \) temp, pH, electric fields. Force up to 100 N/cm\(^2\).
 - 25 \(\mu \)m fiber \(\rightarrow \) 1 Hz, 1 cm fiber \(\rightarrow \) 1 cycle/2.5 days.
4. Electro active polymers
 - Store electrons in large molecules. Deformation \(\sim (\text{voltage})^2\).
 - Change length of chemical bonds.
5. Biological Muscle Proteins
 - Actin and myosin.
 - 0.001 mm/sec in a petri dish.

6. Fullerenes and Nanotubes
 - Graphitic carbon.
 - High elastic modulus \rightarrow large displacements, large forces.
 - Macro-, micro-, and nano-scale
 - Potentially superior to biological muscle.
Pneumatic artificial muscle

- Called also McKibben muscle.
- In development since 1950s.
- Contractile or extensional devices operated by pressurized air filling a pneumatic bladder.
- Very lightweight, based on a thin membrane.
- Current top implementation: Shadow hand.
Artificial Muscles: McKibben Type

- (Brooks, 1977) developed an artificial muscle for control of the arms of the humanoid torso Cog.
- (Pratt and Williamson 1995) developed artificial muscles for control of leg movements in a biped walking robot.
Shape memory alloys 1

- Nickel Titanium – *Nitinol*.
- Crystallographic phase transformation from Martesite to Austenite.
- Contract 5-7% of length when heated - 100 times greater effect than thermal expansion.
- Relatively high forces.
- About 1 Hz.
- Structural fatigue – a failure mode caused by which cyclic loading which results in catastrophic fraction.
Robot Lobster, an example

- A robot lobster developed at Northeastern University used SMAs very cleverly.
- The force levels required for the lobster’s legs are not excessive for SMAs.
- Because the robot is used underwater cooling is supplied naturally by seawater.

More on the robot lobster is available at: http://www.neurotechnology.neu.edu
Artificial Muscles: Electroactive Polymers

- Like SMAs, Electroactive Polymers (EAPs) also change their shape when electrically stimulated.
- The advantages of EAPs for robotics are that they are able to emulate biological muscles with a high degree of toughness, large actuation strain, and inherent vibration damping.
- Unfortunately, the force actuation and mechanical energy density of EAPs are relatively low.
Electroactive Polymer Example

Robotic face developed by a group led by David Hanson. More information is available at: www.hansonrobotics.com