State space search
A* Algorithm and way to it via Breath-first search and Dijkstra algorithms

Václav Hlaváč
Czech Technical University in Prague (ČVUT)
Czech Institute of Informatics, Robotics, and Cybernetics (CIIRC)
Prague 6, Zikova 4, Czech Republic
hlavac@ciirc.cvut.cz
http://people.ciirc.cvut.cz/hlavac/

Courtesy: Antonín Vobecký and authors of several presentation on the web
Motivation

- Many analytical tasks can be solved by searching through a space of possible states.
- Starting from an initial state, we try reaching a goal state.
- Sequence of actions leading from initial to goal state is the solution to the problem.
- The issues: large number of states and many choices to make in each state.
- Search has to be performed in a systematic manner.
Typical search tasks
State space search, the basic idea

- State space search amounts to a search through a directed graph.
 - graph nodes = states
 - arcs (directed edges) = transitions between states.

- Graph may be defined explicitly or implicitly.

- Graph may contain cycles.

- If we also need the transition costs, we work with a weighted directed graph.

V. Hlaváč, State space search
Size of the search space

- The state space can be HUGE! (Combinatorial explosion)
- Right representation helps.
 - Eight puzzle: 181,440
 - Draughts / Checkers / in Czech dáma: 10^{40}
 - Chess: 10^{120} (in an average length game)
 - Theorem Proving: Infinite!
- Control strategy helps choose which operators to apply:
 - Small # of operators: general, but bushy tree.
 - Large #: perhaps overly specific, but less bushy trees.
Search tree

- By searching through a directed graph, we gradually construct a search tree.

- We do this by expanding one node after the other: we use the successor function to generate the descendants of each node.

- **Open nodes** or “the frontier”: nodes that have been generated, but have not yet been expanded.

- **Closed nodes**: already expanded nodes.

- **Search strategy** is defined by the order in which the nodes are expanded. Different orders yield different strategies.
State space vs. search tree

- Search tree is created while searching through the state space.
- Search tree can be infinite even if the state space is finite. E.g. if the state space contains cycles \rightarrow search tree is infinite.
Open nodes, pictorial illustration
The basic search algorithm

Initialize: put the start node into OPEN

while OPEN is not empty
 take a node N from OPEN
 if N is a goal node, report success
 put the children of N onto OPEN

Report failure

- If OPEN is a stack, this is a depth-first search.
- If OPEN is a queue, this is a breadth-first search.
- If OPEN is a priority queue, sorted according to most promising first, we have a best-first search (Dijkstra algorithm).
Breadth-first search

(abbrev. BFS)

Implementation:

- Pick and remove a location from the **OPEN** (frontier).
- Mark the location as visited so that we know not to process it again.
- Expand it by looking at its neighbors. Any neighbors we haven’t seen yet we add to the frontier.
Breadth-first search (2)
Breadth-first search (3)

- visits all reachable places
- efficiency:
 - time: $O(b^d)$
 - space: $O(b^d)$
 - $b=$ branching factor, $d=$ depth of goal
- no priority
- possible improvements:
 - early exit = search stops when the goal is reached
 - movement cost → Dijkstra algorithm
Dijkstra algorithm

- Adding movement cost to Breath-first search algorithm, expands in all directions
- Using priority queue
 - Choosing move with the lowest cost
- Time efficiency: $O(|E| + |V| \log |V|)$, $V =$ number of nodes, $E =$ number of edges
Dijkstra algorithm vs. BFS
Greedy best first search

- better for finding path to one exact location
- use of heuristics:
 - distance to the goal
 - e.g.:
    ```python
    def heuristics(a, b):
        return abs(a.x - b.x) + abs(a.y + b.y)
    ```
- time/space efficiency: $O(b^m)$
 - good heuristics can give huge improvements
- priority queue
 - priority = distance to goal
Greedy best-first search - examples

Breadth First Search

Greedy Best-First Search
Greedy best-first search - examples

- Problem with obstacles.
- May not find the shortest path.
A* algorithm (read “A star”)

- Using the best of both Dijkstra and Greedy algorithms, worst time/space: $O(b^d)$
- Expanding based on:
 - distance from start
 - distance to goal (=heuristics)
A* algorithm

V. Hlaváč, State space search
Map of Manhattan

- How would you find a path from S to G?
Best-First Search

- The *Manhattan distance* \((\Delta x + \Delta y)\) is an estimate of the distance to the goal
 - It is a heuristic function

- Best-First Search
 - Order nodes in priority queue to minimize estimated distance to the goal \(h(n)\)

- Compare: Dijkstra
 - Order nodes in priority queue to minimize distance from the start
Best First in action

- How would you find a path from S to G?
Problem 1: Led astray

- Eventually will expand vertex to get back on the right track
Problem 2: Optimality

- With Best-first search, are you *guaranteed* a shortest path is found when
 - goal is first seen?
 - when goal is removed from priority queue (as with Dijkstra?)
Sub-optimal solution

- No! Goal is by definition at distance 0: will be removed from priority queue immediately, even if a shorter path exists!
Synergy?

- Dijkstra / Breadth First guaranteed to find *optimal* solution
- Best First often visits *far fewer* vertices, but may not provide optimal solution

Can we get the best of both?
A*, heuristics

Order vertices in priority queue to minimize
(distance from start) + (estimated distance to goal)

\[f(n) = g(n) + h(n) \]

- \(f(n) \) = priority of a node
- \(g(n) \) = true distance from start
- \(h(n) \) = heuristic distance to goal
Optimality

- Suppose the estimated distance \((h)\) is *always* less than or equal to the *true* distance to the goal
 - heuristic is a *lower bound on true distance*
 - heuristic is *admissible*

- Then: *when the goal is removed* from the priority queue, we are *guaranteed* to have found a shortest path!
A* in action

<table>
<thead>
<tr>
<th>vertex</th>
<th>g(n)</th>
<th>h(n)</th>
<th>f(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52nd & 9th</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
A* in action

The diagram shows a grid with streets and avenues as follows:

- **52nd St**
- **51st St**
- **50th St**

The grid has avenues labeled as 9th Ave, 8th Ave, 7th Ave, 6th Ave, 5th Ave, and 4th Ave.

A vertex **S** is marked on 52nd St, and a vertex **G** is marked on 51st St. The text indicates that there are 5 blocks between these two vertices.

There is a table showing the values for vertices **52nd & 4th**, **51st & 9th**:

<table>
<thead>
<tr>
<th>Vertex</th>
<th>g(n)</th>
<th>h(n)</th>
<th>f(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52nd & 4th</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>51st & 9th</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

This suggests that the cost function f(n) for A* algorithm is being demonstrated.
A* in action

<table>
<thead>
<tr>
<th>vertex</th>
<th>g(n)</th>
<th>h(n)</th>
<th>f(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52\text{nd} & 4\text{th}</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>51\text{st} & 8\text{th}</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>50\text{th} & 9\text{th}</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
A* in action

<table>
<thead>
<tr>
<th>vertex</th>
<th>g(n)</th>
<th>h(n)</th>
<th>f(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52${nd}$ & 4${th}$</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>51${st}$ & 7${th}$</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>50${th}$ & 9${th}$</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>50${th}$ & 8${th}$</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

(5 blocks)
A* in action

<table>
<thead>
<tr>
<th>vertex</th>
<th>g(n)</th>
<th>h(n)</th>
<th>f(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52nd & 4th</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>51st & 6th</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>50th & 9th</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>50th & 8th</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>50th & 7th</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>
A* in action

<table>
<thead>
<tr>
<th>vertex</th>
<th>g(n)</th>
<th>h(n)</th>
<th>f(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52nd & 4th</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>51st & 5th</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>50th & 9th</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>50th & 8th</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>50th & 7th</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>
A* in action

52nd St

51st St

50th St

9th Ave 8th Ave 7th Ave 6th Ave 5th Ave 4th Ave

(5 blocks)

S

G

<table>
<thead>
<tr>
<th>vertex</th>
<th>g(n)</th>
<th>h(n)</th>
<th>f(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52nd & 4th</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>50th & 9th</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>50th & 8th</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>50th & 7th</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

DONE!
What would Dijkstra have done?
Importance of Heuristics

- **h₁ = number of tiles in the wrong place**
- **h₂ = sum of distances of tiles from correct location**

<table>
<thead>
<tr>
<th>D</th>
<th>IDS</th>
<th>A*(h₁)</th>
<th>A*(h₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>227</td>
<td>73</td>
</tr>
<tr>
<td>14</td>
<td>3473941</td>
<td>539</td>
<td>113</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>3056</td>
<td>363</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>39135</td>
<td>1641</td>
</tr>
</tbody>
</table>
Summary

Finding path to ALL locations:

- Same cost → Breadth-first search
- Costs vary → Dijkstra algorithm

Finding path to ONE location:

- Preferably use A* algorithm