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Abstract— Despite their ubiquitous presence, texture-less ob-
jects present significant challenges to contemporary visual
object detection and localization algorithms. This paper pro-
poses a practical method for the detection and accurate 3D
localization of multiple texture-less and rigid objects depicted
in RGB-D images. The detection procedure adopts the sliding
window paradigm, with an efficient cascade-style evaluation of
each window location. A simple pre-filtering is performed first,
rapidly rejecting most locations. For each remaining location,
a set of candidate templates (i.e. trained object views) is iden-
tified with a voting procedure based on hashing, which makes
the method’s computational complexity largely unaffected by
the total number of known objects. The candidate templates
are then verified by matching feature points in different
modalities. Finally, the approximate object pose associated
with each detected template is used as a starting point for
a stochastic optimization procedure that estimates accurate 3D
pose. Experimental evaluation shows that the proposed method
yields a recognition rate comparable to the state of the art,
while its complexity is sub-linear in the number of templates.

I. INTRODUCTION

Texture-less, smooth and uniformly colored objects occur
frequently in robotic applications that range from personal
robotics to intelligent manipulation and assembly. Common
to such applications is the requirement of identifying and
accurately localizing known objects so that they can be acted
upon by a robot end effector. Fig. 1 depicts an example
of a robotic assembly scenario involving several texture-less
objects. An arm with a gripper is assigned the task of picking
up electrical fuses, at arbitrary locations in its workspace, and
inserting them into the sockets of corresponding fuse boxes.

The method detailed in this paper aims at the reliable
simultaneous detection of multiple texture-less objects with
low false detection rate, real time performance, and sub-
centimeter accuracy in object localization. The input to the
method consists of RGB-D images provided by a consumer-
grade depth sensor such as Kinect. Such sensors provide
aligned color and depth images that concurrently capture
both the appearance and geometry of a scene.
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no. 270138 DARWIN, by CTU student grant SGS15/155/OHK3/2T/13,
and by the Technology Agency of the Czech Republic research program
TE01020415 (V3C – Visual Computing Competence Center) TE01020415.

Fig. 1. Left: Detection of multiple instances of multiple texture-less
objects (fuses and fuse boxes of different types) in a robotic assembly task.
Right: Superimposed renderings of object models at the estimated 3D poses.

While object recognition is a long-standing and widely
studied problem, most attention until recently has been paid
to the recognition of textured objects, for which discrim-
inative appearance features, invariant to changes in pose
and illumination, can be readily extracted [1]. These objects
are often assumed to have piece-wise planar surfaces. Their
appearance variations can be therefore modeled by a simple
geometric transformation (e.g. similarity), which can be
reliably determined from the rich textural information. Can-
didate object locations in the scene are typically determined
by identifying so-called interest points or interest regions [2],
a strategy which drastically reduces the overall computa-
tional cost compared to exhaustive image search. However,
when applied to texture-less objects, interest point detectors
typically fail to identify corresponding image regions and
common local appearance descriptors are no longer discrim-
inative enough to provide reliable correspondences [3].

Recognition and localization of texture-less objects is
challenging in several respects. An object’s appearance is
dominated by its shape, its material properties and by the
configuration of light sources. Unless these are known in



109 108 105 102 100-101 100-101

Scanning 

window 

locations

Detections

+ rough 3D 

poses

Fine 3D 

poses

Pre-filtering
Hypothesis 

Generation
Verification

Fine 3D Pose 

Estimation

Non-max 

Suppression

Fig. 2. Evaluation cascade of the proposed method. Note the typical numbers of detection candidates advancing through individual stages (for a template
size 108 × 108 px, a VGA input image and a scale space with four larger and four smaller scales with a scaling factor 1.2). A detection candidate is a
triplet consisting of a template identifier (object and its orientation), a sliding window scale and a sliding window location.

advance and precisely controlled, it is easier to capture possi-
ble object appearances exhaustively rather than attempting to
describe them with covariant features. In other words, each
object can be represented by hundreds or even thousands
of images, called templates, which depict it from multiple
viewing angles. Being equivalent to matching an image
region to one of the templates or asserting there is no suitable
such template (i.e. the region corresponds to background), the
detection task avoids the need of generalization to unknown
transformations.

Existing approaches to the detection of texture-less objects
usually proceed by sweeping sliding windows of several
discrete sizes over the entire image with a small pixel step,
searching for a match against all stored object templates.
These methods scale poorly to large numbers of objects and
special attention has to be paid to implementation details,
otherwise they are too slow for real-time operation.

The proposed method addresses the excessive computa-
tional complexity of sliding window approaches and achieves
high efficiency by employing a cascade-style evaluation of
window locations. Fast filtering is performed first, rejecting
quickly most of the locations by a simple salience check. For
each remaining location, candidate templates are obtained by
an efficient voting procedure based on hashing measurements
sampled on a regular grid. This makes the complexity of the
method sub-linear in the total number of known objects. The
candidate templates are then verified by matching feature
points in different modalities. Each template is associated
with a training-time pose, i.e. a 3D rotation and distance to
the camera reference frame origin. Therefore, a successful
match against a template provides a rough estimate of the
object’s 3D location and orientation. As a final step, a
stochastic, population-based optimization scheme is applied
to refine the pose by fitting a 3D model of the detected
object to the input depth map. The pipeline of our method
is illustrated in Fig. 2 together with the typical numbers of
detection candidates advancing through individual stages.

After reviewing relevant related work in Sec. II, the pro-
posed method is detailed in Sec. III and IV. Sec. V presents
experimental results and Sec. VI concludes the paper.

II. RELATED WORK

A. Texture-less Object Detection

Template matching is one of the earliest techniques ap-
plied to object detection in images. Traditional approaches
typically use only a few stored templates per object, perform
a sequential scan of the input image and compute correlation

coefficients between each window and the stored templates.
A sufficiently high correlation score indicates a successful
match. Correlation employs intensity images, image gradi-
ents or edges. Invariance is achieved only w.r.t. translation,
with little tolerance to misalignments. The interested reader
is referred to [4] for a survey.

Due to their low generalization and limited applicability,
template-based techniques were for some time out of the
mainstream research agenda. Instead, research in object
recognition concentrated on approaches based on viewpoint-
invariant local features obtained from objects rich in tex-
ture [5]. Such approaches require only a small number of
training images per object and generalize well to a wide
range of possible appearances. As computers became faster
and equipped with more memory, template-based methods
grew in popularity again. Today it is not unusual to maintain
thousands of templates per object, thus capturing varying
visual aspects exhaustively.

In recent work, Hinterstoisser et al. [6], [7] have in-
troduced an efficient template matching technique. Instead
of a raw image, object templates are represented by a set
of carefully selected feature points in different modalities
(specifically orientation of intensity gradients and orientation
of 3D surface normals). Measurements at feature points are
quantized and represented as bit vectors, allowing for fast
matching with binary operations. Tolerance to misalignments
is achieved by comparing the binarized representation with
pixels in a small local neighbourhood. The pose retrieved
from the best matching template is used as a starting point
for subsequent refinement with the Iterative Closest Point
(ICP) algorithm [8]. With data structures optimized for fast
memory access and a highly vectorized implementation using
special SSE hardware instructions, the method is capable
of real-time matching of several thousands of templates.
However, its performance is expected to degrade noticeably
for large object databases, since its time complexity is linear
in the number of loaded templates (around 3000 templates
are employed per object). The matching procedure of [6]
inspired the verification stage of our proposed method.

An alternative approach to 3D object detection that re-
quires only 3D object models was presented by Drost et
al. [9]. During training, all possible pairs of 3D points
on a model are described and recorded in a hash table.
During detection, sampled pairs of 3D points from the test
scene are described and used to vote for corresponding
object pose hypotheses. The most voted pose clusters can
be then refined with ICP. Choi and Christensen [10] further



augmented the point pair feature with color information. The
efficiency and performance of these methods depend directly
on the complexity of the 3D scene, which might limit their
applicability to real-time applications.

Another class of methods relies solely on intensity edges,
e.g. [11], [12], [3]. Albeit such methods can operate very fast,
their recognition capability is inherently lower compared to
methods also taking into account depth information. Cai et
al. [11] employed a sliding window approach with hypothesis
generation based on hashing distances and orientations of the
nearest edges from points on a fixed regular grid. We use a
similar hashing scheme in the proposed method.

B. 3D Pose Estimation

A common aspect of the approaches mentioned in Sec. II-
A is that the pose associated with the detected object is
approximate. This is due to the limited resolution of the
pose sampling process employed in training or possible mis-
matches, and necessitates the refinement of the retrieved pose
with a geometric optimization step. The ICP algorithm [8]
is the most common choice for this purpose. ICP represents
the gold standard method for geometrically aligning two sets
of points whose relative pose is approximately known. How-
ever, when the two point sets are relatively far apart or have
a small overlap, ICP’s strategy of matching closest points
generates large numbers of incorrect correspondences. The
situation is aggravated by the inevitable presence of noise
and outliers. As a result, ICP can easily get stuck in local
minima and its performance largely depends on the quality
of initialization. To counter this, numerous enhancements to
the basic ICP have been proposed that aim to improve the
speed of convergence or increase robustness to local minima,
outlying points and noise [13]. These enhancements often re-
quire considerable trial and error for tuning their parameters
to a particular application. Here we take a different approach
and refine 3D pose with an optimization scheme based on
Particle Swarm Optimization (PSO) [14]. PSO has proven to
be an effective framework for dealing with other flavors of
pose estimation, e.g. [15], [16].

III. DETECTION OF TEXTURE-LESS OBJECTS

Detection of objects in an input RGB-D image is based
on a sliding window approach, operating on a scale pyramid
built from the image. Let L denote the set of all tested
locations. The number of locations |L| is a function of
image resolution, spatial image sampling by the sliding
window (e.g. every 5 pixels), scale range (e.g. two or four
octaves), and scale space discretisation. The known objects
are represented with a set T of template images – RGB-
D images of a fixed size. There are several thousands
of templates per object, capturing its appearance from all
possible viewing angles, but from a fixed distance. The
training distance, which then affects the depth channel of an
RGB-D template, is object-specific but fixed for all templates
of a certain object. This distance is chosen so that the object
would optimally fill the template image if observed with
a camera with identical intrinsic parameters (focal length

and resolution) as the camera observing later the test scene.
Each template is associated with the object ID, the training
distance Zt and the object orientation R0 it represents.

In general, every window wl, l = (x, y, s), l ∈ L, needs
to be tested against every template, which makes the asymp-
totic complexity O(|L||T |). This is computationally very
demanding even for moderate numbers of known objects.
We therefore propose a cascaded evaluation, where the set
of candidate locations L is quickly reduced (Sec. III-A) and
the candidate templates T are pruned (Sec. III-B) before the
template matching itself (Sec. III-C) is performed.

A. Pre-filtering of Window Locations

To reduce the number of image locations, an image win-
dow is first assessed with a simple objectness measure [17],
[18], i.e. its likelihood that it contains any of the objects.
This corresponds to a two-class classifier distinguishing
between background and object classes, with the object class
encompassing all the templates in T .

Our objectness measure is based on the number of depth-
discontinuity edgels within the window, and is computed
with the aid of an integral image for efficiency. Depth-
discontinuity edgels arise at pixels where the response of the
Sobel operator, computed over the depth image, is above a
threshold θe, which is set to 30% of the physical diameter of
the smallest object in the database. The window is classified
as containing an object if its number of depth edgels is at
least 30% of the number of depth edgels in the template
containing the least amount of them. This setting is tolerant
to partial occlusions but still strong enough to prune most
of the window locations – roughly 90% to 99% of them in
images of our robot workspace (Fig. 1), depending on the
scene clutter. Only image windows that pass the objectness
test are processed further.

B. Hypothesis Generation

In this phase, a small subset of candidate templates is
quickly identified for each image window that passed the
objectness test. Up to N templates with the highest proba-
bilities pt(t|wl), t ∈ T are retrieved. This can be seen as
a multi-class classification problem where there is one class
for each training template, but none for the background.

The procedure retrieves candidate templates from multiple
(for robustness) trained hash tables, which is a constant com-
plexity O(1) operation in the number of stored templates.
Each hash table h ∈ H is indexed by a trained set Mh

of measurements taken on the window wl or template t,
discretized into a hash key. Mh is different for each table.
The table cells contain lists of templates with the same key,
the lists are then used to vote for the templates. A template
can receive up to |H| votes, in which case all the template’s
measurement sets (for all the tables) would be discretised to
the same hash keys as measurements on the window wl. Up
to N templates with the highest number of votes, and with
at least v votes, are passed onward to the next step of the
detection cascade. The voting is still an O(|T |) operation for
each wl.



Fig. 3. Templates and test windows are hashed using measurements from
trained triplets of grid points. Left: Sample triplets which are valid for the
shown template, i.e. their points lie in the object mask. Right: A triplet is
described by depth differences {d′1, d′2} and normal vectors {n1,n2,n3}.

Fig. 4. Feature points in different modalities whose consistency is evaluated
in the hypothesis verification. The points are trained independently for each
template. Left to right: surface normals, image gradients, depth, color.

Measurement sets Mh and their quantization. The
hashing/voting procedure was inspired by the work of
Cai et al. [11]. A regular grid of 12 × 12 reference points
is placed over the training template or sliding window.
This yields 144 locations from which k-tuples are sampled.
We use triplets in our setup, i.e. k = 3 (Fig. 3). Each
location is assigned with a depth d and a surface normal
n. A measurement set Mh is a vector consisting of k − 1
relative depth values and k normals,Mh = (d2h−d1h , d3h−
d1h , . . . , dkh

−d1h ,n1h , . . . ,nkh
). The relative depths dih−

d1h are quantized into 5 bins each, with the quantization
boundaries learned from all the training templates to provide
equal frequency binning, i.e. each bin contains the same
number of templates. To quantize surface normals we use the
approach proposed in [7], where the normals are quantized
to 8 discrete values based on their orientation. For triplets
of reference points we have two relative depths and three
normals, leading to a hash table size of 5283 = 12800 bins.

Training-time selection of measurement sets. To provide
robustness to occlusion and noise, multiple hash tables are
built, which differ in the selection of the k-tuples drawn
from the 144 reference points. The k-tuples can be chosen
randomly. Alternatively, they can be optimally selected to
(a) cover maximally independent measurements (for robust-
ness), and (b) to fill the tables as uniformly as possible (for
stable detection time). The optimal selection is unfortunately
NP -complete, therefore we employ a hybrid heuristic strat-
egy. We first randomly generate a set of m, m � |H|, k-
tuples and then retain the subset with the largest joint entropy
of the quantized measurements.

For the results reported below, |H| = 100 hash tables were
employed, chosen from m = 5000. The minimal number of
votes per template was v = 3 and the maximum number of
candidates passed to the verification stage was N = 100.

C. Hypothesis Verification

The verification stage corresponds to the traditional tem-
plate matching. Thanks to the template selection in the
previous step, only up to N templates are considered for
each image window wl that passed the initial objectness
test. This makes the complexity of this stage constant in the
number of stored templates. Since the templates were already
identified in the previous step, the verification can be seen as
a set of up to N separate two-class classification problems
discriminating between the object represented by a template
and the background class, i.e. p(obj|ti, wl) ≶ p(bkg|ti, wl).

The verification proceeds in a sequence of tests evaluating
the following: I object size in relation to distance, II sampled
surface normals, III sampled image gradients, IV sampled
depth map, and V sampled color. The tests are ordered
according to increasing computational cost. Any failed test
classifies the window as non-object – corresponding to either
the background, or an object not represented by template ti
– and subsequent tests are not evaluated.

Test I verifies that the observed object size (i.e. the level
of the scale pyramid) corresponds to its distance measured
in the depth map. The object is expected at distance Ze

calculated as Ze = Zts, where s is the scale factor of the
pyramid level and Zt is the template’s training distance. If the
measured depth Zw is within the interval |Ze/

√
f, Ze ·

√
f |,

where f is the discretization factor of the scale space, the
depth Zw is considered to be feasible, otherwise the test fails.

Tests II and III verify orientation of surface normals and
intensity gradients at several feature points. Following [19],
the point locations are greedily extracted during the training
stage, independently for each template (Fig. 4). The feature
points for the surface normal orientation test are extracted
at locations with locally stable orientation of normals (i.e.
further away from depth discontinuities). For the intensity
gradient orientation test, the feature points are extracted at
locations with large gradient magnitude (i.e. typically on the
object contour). We extract 100 points in both cases. The
orientations are quantized and compared template-against-
sliding window, which can be done very fast by bitwise
operations using response maps described in [6].

The depth map test IV and the color test V reuse the
locations of feature points extracted for the surface normal
test II. In the depth test, difference d between the depth in the
template and the depth in the window is calculated for each
feature point. A feature point is matched if |d− dm| < kD,
where dm is the median value of ds over all feature points,
D is the physical object diameter, and k is a coefficient (set
to 0.05 in our experiments). Finally, pixel colors in test V
are compared in the HSV space, as done in [19].

A template passes the tests II to V if at least θc of
the feature points have a matching value within a small
neighbourhood. In our experiments θc = 60% to tolerate
partial occlusions, and the extent of the local neighborhood
is 5 × 5 pixels to compensate for the sliding window step,
and for the discretization of orientations during training. A
verified template that passes all the tests is assigned a final



score computed as m =
∑

i∈{II...V} ci, where ci is the
fraction of matching feature points in tests II to V.

D. Non-maxima Suppression

The verified templates are accumulated from all different
locations and scales. Since different views of one object are
often alike, and since multiple objects may by rather similar,
unique detections are identified by repeatedly retaining the
candidate with the highest score r, and removing all detec-
tions that have a large overlap with it. The score is calculated
as r = m(a/s), where m is the verification score defined
above, s is the detection scale, and a is the area of the object
in the considered template. Weighting the score by the object
area favours detections which explain more of the scene (e.g.
when a cup is seen from a side, with the handle visible, we
prefer a template depicting the handle over other templates
where the handle is occluded, but which would otherwise
yield the same matching score). The retained detections are
passed to the 3D pose estimation stage, together with the
approximate 3D poses which have been associated with the
training templates.

IV. FINE 3D POSE ESTIMATION

Fine 3D pose estimation refers to the accurate computation
of translation and rotation parameters that define an object’s
position and orientation in space, assuming that approximate
initial values for these parameters are provided. This process
receives as inputs a mesh model of the object, an initial object
pose {R0, t0}, a depth image and the sensor’s intrinsics and
outputs a refined pose {R, t}. Objects are represented with
arbitrary 3D mesh models, which can originate from CAD
drawings or from digital scans. A mesh M is comprised of
an ordered set of 3D vertex points V and an ordered set G
of triplet indices upon V that define the mesh triangles. The
3D oriented bounding box B of each model is precomputed
using the eigenvectors of V ’s covariance matrix.

Candidate poses {Ri, ti} are generated and then evaluated
by using them to synthesize renderings of M, producing
depth images Si (see Sec. IV-B). A scoring function yields
score o(i), which quantifies the similarity between each
image Si and the input using depth, edge and orientation cues
(Sec. IV-C). PSO is used to optimize the scoring function
and find the pose whose rendered depth image is the most
similar to the input one (Sec. IV-D). An overview of the
approach is provided in Fig. 5 whereas its components are
briefly described in the following subsections. A detailed
presentation and evaluation of our pose estimation pipeline
can be found in [20].

A. Initialization

The initial pose used to bootstrap pose estimation can be
quite crude. The projection on the sensor of the model at
the initial pose determines a 2D, axis-aligned bounding box
b. This box is inflated proportionally to the distance of the
initial pose to mitigate any pose inaccuracies and is assumed
to enclose most of the projection of the target object on the
input image.

Fig. 5. Pose estimation for an electrical fuse and fuse box. Left: Initial
poses superimposed on a captured image (their misalignment can be seen
by zooming in). Thumbnails show in magnification captured depths and
detected edges (bottom), along with color-coded surface normals (top)
in the region of the fuse box. Right: Refined poses. Thumbnails show
corresponding fuse box depths and surface normals obtained by rendering.

To suppress sensor noise, the acquired depth image is
median filtered with a 5× 5 kernel and the result is retained
as image D. Depth shadows and other shortcomings of
consumer depth sensors manifest themselves as invalid pixels
in D, not contributing with 3D points. Surface normals for
valid depth pixels are estimated by local least-squares plane
fitting and stored in N [21]. Binary image E is computed
from D, by thresholding the output of the Sobel operator
applied to D. The distance transform T of E is computed
for later use. The above computations are parallelized on a
GPU at the pixel level, while the computation of T uses the
parallel formulation of [22]. To evaluate an input frame, only
the depth image D is uploaded to the GPU which then uses
it to compute N and T . No other input data exchange with
the GPU occurs during pose estimation.

B. Pose Hypotheses Rendering

A rendering process simulates depth images of the target
object at a hypothesized pose against a blank background.
Pose rendering is formulated as follows. Transform {R0, t0}
brings the model in an approximate location and orientation,
in the depth sensor’s reference frame. Candidate poses are
parametrized relative to this initial pose, using a relative
translation ti and an “in place” rotation Ri about the centroid
c of points in V . Specifically, the model is first translated
by −c, rotated by Ri, and translated back to place by c.
Rotation Ri is the product of primitive rotations about the
3 axes: Ri = Rx(θi) ·Ry(φi) ·Rz(ωi). The transformation
model point x undergoes is thus Ri ·(x−c)+c+ti. To avoid
repeated transformations, the initial and candidate poses are
combined into the following:

Ri ·R0 · x+Ri · (t0 − c) + c+ ti. (1)

The rotational component of candidate poses is parameter-
ized using Euler angles whereas their translation is parame-
terized with Euclidean coordinates. The model transformed
according to Eq. (1), is rendered in depth image Si. Depth
edges and surface normals of Si are computed and stored in
binary image Ei and data structure Ni, respectively.

Computation and storage of Si, Ei, and Ni is delegated to
the GPU. The process employs Z-buffering to respect visi-
bility and realistically render self-occlusions. Parallelization



is performed at two levels of granularity. At a fine level,
rendering is parallelized upon the triangles of the rendered
mesh. At a coarser level, multiple hypotheses are rendered
simultaneously, with a composite image gathering all render-
ings. In this manner, multiple hypotheses are evaluated in a
single batch, resulting in better utilization of GPU resources
and reduced communication. Edge detection is applied once,
directly upon the composite image.

C. Pose Hypotheses Evaluation

A candidate pose is evaluated with respect to the extent to
which it explains the input depth image. Objective function
o(·) avails a score o(i) and considers the similarity of depth
values, surface normals, as well as depth edges between D
and Si. Two range images are corresponded in terms of their
coordinates and are compared as follows.

Depth values are directly compared between D and Si for
pairs of pixels. For n pixel pairs, depth differences δk, are
computed and the cumulative depth cost term is defined as:

di =
∑n

k=1
1/(|δk|+ 1), (2)

where |δk| is set to ∞ if greater than threshold dT (20mm
in our implementation) to avoid comparing with background
surfaces. For the same n pairs of pixels, the cost due to
surface normal differences is quantified as:

ui =
∑n

k=1
1/(|γk|+ 1), (3)

where γk is the angle between the two surface normals, pro-
vided by their dot product. Edge differences are aggregated
in an edge cost using E and Ei. Let m be the number of
edgels of Ei within b. For each such edgel j, let εj denote
the distance from its closest edgel in D which is looked up
from T . The corresponding edge cost term is then:

ei =
∑m

j=1
1/(εj + 1). (4)

Each of the cost terms in Eqs. (2), (3) and (4) involves
two ordered pixel sets, one from each image D and Si,
that contain the pixel locations to be compared. As di, ui,
and ei have different numeric ranges, the combined cost is
defined by their product o(i) = −di · ei · ui, where the
minus sign is used to ensure that optimal values correspond
to minima, since di, ei and ui are non-negative. Summing
the reciprocals of partial differences |δk|, |γk| and εj rewards
poses that maximize the support (i.e. spatial overlap) between
the compared regions of D and Si. The objective function
improves when more pixels in the rendered depth map
closely overlap with the imaged surfaces in the input image.

As no segmentation is employed, inaccurate pose hypothe-
ses might cause the rendered object to be compared against
pixels imaging background or occluding surfaces. To counter
this, only pixels located within b are considered. Hypotheses
that correspond to renderings partially outside b obtain a
poor similarity score and the solution does not drift towards
an irrelevant surface. Also, during the evaluation of each
hypothesis, the oriented bounding box Bi that corresponds
to hypothesis i is computed by transforming B according to

Eq. (1). By so doing, depth pixels from D that correspond to
3D points outside Bi are not considered in the comparison,
as they are irrelevant to the hypothesis being evaluated.

D. Pose Estimation

The search space for the pose estimation is constrained
in a 6D neighborhood of the initial pose estimate. Each
dimension of the pose search space is bounded, defining a
search hyperrectangle centered on the initial pose estimate.
As the cost of an exhaustive search in R6 is prohibitive,
a numerical optimization approach is adopted to minimize
objective function o(·). This minimization is performed with
PSO, which stochastically evolves a population of candidate
solutions dubbed particles, that explore the parameter space
in runs called generations. PSO does not require knowledge
of the derivatives of the objective function, depends on very
few parameters and requires a relatively small number of
objective function evaluations until convergence. Compared
to gradient-based optimization methods, PSO has a wider
basin of convergence, exhibiting better robustness to local
minima. Furthermore, as particles evolve independently at
each generation, it is amenable to an efficient parallel imple-
mentation [20].

V. EXPERIMENTS AND EVALUATION

A. Object Localization

The presented method was evaluated quantitatively with
the aid of the publicly available dataset by Hinterstoisser
et al. [19]. This dataset includes 15 texture-less objects and
provides for each a 3D mesh model and a test sequence
consisting of approximately 1200 RGB-D frames in VGA
resolution. The test sequences feature heavy 2D and 3D
clutter, mild occlusions and large viewpoint variations and
are accompanied by the ground truth object pose for each
frame. The task is to localize the given object in each frame,
i.e. to detect it and estimate its 3D pose.

Training templates were rendered from the provided 3D
models so that they uniformly covered the upper view hemi-
sphere (with a step of 10◦ in both azimuth and elevation).
To achieve invariance to rotation around the optical axis, an
in-plane rotation to each template (from −40◦ to 40◦ with
a step of 10◦) was also applied. In total, each object was
represented by 2916 templates of size 108 × 108 px. Each
test image was scanned at 9 scales (4 larger and 4 smaller
scales with scaling factor 1.2) with a scanning step of 5 px.

We compare our method to the LINEMOD [6] and
LINEMOD++ [7] methods of Hinterstoisser et al. and the
method of Drost et al. [9]. These methods were already
briefly described in Sec. II-A; here we provide more details
regarding their relation to our method. LINEMOD follows
an exhaustive template matching approach. LINEMOD++
extends it by two post-processing verification steps. Specifi-
cally, a color check and a depth check (by a rough but fast
ICP) are performed in order to prune hypotheses. A finer ICP
is then carried out for the best of the remaining hypotheses.
The essential difference of our method is the addition of the



Sequence Our method LINEMOD++ LINEMOD Drost et al.
1. Ape 93.9 95.8 69.4 86.5
2. Benchvise 99.8 98.7 94.0 70.7
3. Bowl 98.8 99.9 99.5 95.7
4. Box 100.0 99.8 99.1 97.0
5. Cam 95.5 97.5 79.5 78.6
6. Can 95.9 95.4 79.5 80.2
7. Cat 98.2 99.3 88.2 85.4
8. Cup 99.5 97.1 80.7 68.4
9. Driller 94.1 93.6 81.3 87.3
10. Duck 94.3 95.9 75.9 46.0
11. Glue 98.0 91.8 64.3 57.2
12. Hole punch 88.0 95.9 78.4 77.4
13. Iron 97.0 97.5 88.8 84.9
14. Lamp 88.8 97.7 89.8 93.3
15. Phone 89.4 93.3 77.8 80.7
Average 95.4 96.6 83.0 79.3

TABLE I
RECOGNITION RATES [%] FOR THE DATASET OF [19] AND km = 0.1

(i.e. THE PERCENTAGE OF OBJECTS LOCALIZED WITH AN ERROR

SMALLER THAN 10% OF THEIR DIAMETER).

pre-filtering and the hypothesis generation stage, avoiding
the exhaustive search.

We used the same quantification of pose error as in [19].
That is, for the ground truth pose {Rg, tg} and the estimated
pose {Re, te}, the error is e = 1/ν

∑
i |gi − ei|, where

gi = Rgxi + tg , ei = Rexi + te, and i enumerates the ν
vertices of V . For objects with ambiguous pose due to their
symmetry (namely “Cup”, “Bowl”, “Box” and “Glue”), the
error is computed as e = 1/ν

∑
iminj |gi − ej |. An object

is considered to be correctly localized if e ≤ kmd, where
km is a fixed coefficient and d is the diameter of the model,
i.e. the maximum distance between any of its vertices.

As in the methods being compared, the best detection of
the object of interest was selected and evaluated in each
frame. For the detected template with the highest matching
score, the corresponding initial 3D pose was refined by our
pose estimation method and the error of the resulting pose
was calculated as explained above. Table I compares the
recognition rates (for km = 0.1) of our method with the
rates of the other methods which were published in [19].
Our method achieved an average recognition rate of 95.4%
(i.e. the percentage of correctly localized objects) and out-
performed LINEMOD and the method of Drost et al. The
average recognition rate achieved by LINEMOD++ is better
by 1.2%. Recognition rates of our method with respect to
different values of km can be found in Fig. 6 (top). The
benefit of the pose estimation stage can be seen in Fig. 6
(middle), where the average pose errors of the initial and the
refined poses are compared. Pose refinement employed PSO
with parallelized hypotheses rendering (cf. Sec. IV-B). With
100 particles and 100 generations it required around 0.19 s
per frame to estimate the pose of a single model with ≈ 7K
triangles. For comparison, when hypotheses were evaluated
sequentially on the GPU, PSO required 4.8 s. In [20], we
show that our PSO-based pose estimation delivers superior
results compared to the commonly used ICP. Visualizations
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Fig. 6. Top: Recognition rates for various km. Middle: Average errors
of initial and refined poses of true positives for km = 0.1 (object names
corresponding to the numbers can be found in Table I). Bottom: Average
recognition rate (dashed line) and average recognition time w.r.t. the number
of loaded object templates (there were 2916 templates per object).

of sample results are in Fig. 7.
To evaluate scalability, we also run our method when

templates of 8 and 15 objects were loaded for detection.
As can be seen in Fig. 6 (bottom), the complexity of our
method was proven sub-linear in the number of templates
(0.75 s vs. 2.08 s when templates of 1 and 15 objects were
loaded) while the recognition rate drops only slightly (by
only 1% when the 43740 templates of all 15 objects were
loaded w.r.t. the case when only 2916 templates of a single
object were loaded). The sub-linearity is achieved by the
hypothesis generation stage which allows the comparison of
only a small set of templates for each window location.

In terms of running time, the whole method needed on
average 0.75 s per VGA frame. This time was achieved by
our parallelized C++ implementation on a modern desktop
PC equipped with a 16 core CPU and an NVIDIA GTX
780 GPU (the GPU was only employed during the pose



Fig. 7. Sample 3D pose estimations on the dataset of [19] (cropped).

Fig. 8. Cropped close-ups of 3D pose estimations in a manipulation task.

estimation). As reported in [19], the method of Drost needed
on average 6.3 s and LINEMOD++ only 0.12 s. The latter
time was achieved with a highly optimized implementation
using heavy SSE parallelization and a limited scale space (for
each object, only a limited set of scales were considered).
With a similar level of optimization, we expect our method to
run even faster since it evaluates only a small set of templates
for each window. In the case of multiple object detection
and localization that arises often in robotic applications, our
method is expected to outperform LINEMOD++ in terms of
running time.

B. Robotic Application

The intended application of the proposed method relates to
robotic manipulation and assembly of objects. Figs. 1 and 8
demonstrate its suitability for a manipulation task with elec-
trical parts along with its tolerance to mild occlusions. When
a robotic gripper was present in the scene, its posture was
accurately provided by motor encoders and used to mask out
the corresponding pixels in the image, preventing them from
contaminating pose estimation. As shown in Fig. 6 (middle),
the poses estimated with the presented method achieve a sub-
centimeter average accuracy in the estimated pose (for the
recognition of 95.4%). This meets the requirements imposed
by the compliant grippers of the industrial robotic arms used
in our application (Stäubli RX130 and RX90).

VI. CONCLUSION

An approach for texture-less object detection and 3D pose
estimation in RGB-D images has been presented. It is based
on a sliding window approach with a cascade-style evaluation
of each window location. Sub-linearity in the number of

training templates is achieved by an efficient voting pro-
cedure based on hashing which generates a small set of
candidate templates for each window location. The templates
are verified in several modalities and approximate object
poses associated with the matched templates are refined by
a stochastic optimization scheme. Experiments on a public
dataset have demonstrated that the proposed method detects
objects with a recognition rate comparable to the state of the
art and achieves sub-centimeter accuracy in localization. The
method is therefore well-suited to multiple object detection,
a commonly required task in robotic applications.
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